首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Aedes aegypti is an insect vector that transmits several viruses affecting humans worldwide. Entomopathogenic nematodes (EPNs) and their symbiotic bacteria are organisms with the potential to control many insects. In this study, we did a survey aimed to identify EPNs and their symbiotic bacteria and evaluate the larvicidal activity of bacteria against Ae. aegypti. We collected 540 soil samples from 108 sites in Phitsanulok Province, lower northern Thailand. Baiting techniques and White traps were used to isolate EPNs from soil samples. By sequencing of 28S rDNA and internal transcribed spacer regions, 51 EPN isolates were identified as Steinernema surkhetense (35 isolates), Heterorhabditis indica (14 isolates) and Heterorhabditis sp. SGmg3 (two isolates). Based on sequencing of a partial region of the recA gene, 35 isolates of Xenorhabdus were identified as Xenorhabdus stockiae, and 20 Photorhabdus isolates were identified as Photorhabdus luminescens subsp. akhurstii (10 isolates), P. luminescens subsp. hainanensis (seven isolates) and P. asymbiotica subsp. australis (three isolates). Screening for larvicidal activity of bacteria against Ae. aegypti was performed in the laboratory. Xenorhabdus WB5.4 and Xenorhabdus WB12.5, which were closely related to X. stockiae, resulted in high mortality of Ae. aegypti (99.99% and 70%, respectively) at 96 hr after exposure. Comparing with control groups, mortality of Ae. aegypti larvae was low (1.11%–6.67%) after exposure for 24–96 hr. Our findings showed the potential of X. stockiae for controlling Ae. aegypti. Further studies are needed to elucidate the mechanisms through which these bacteria kill Ae. aegypti larvae.  相似文献   

4.

Background

The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in insect reproduction, development and behavior. The late steps of JH III biosynthesis in the mosquito Aedes aegypti involve the hydrolysis of farnesyl pyrophosphate (FPP) to farnesol (FOL), which is then successively oxidized to farnesal and farnesoic acid, methylated to form methyl farnesoate and finally transformed to JH III by a P450 epoxidase. The only recognized FPP phosphatase (FPPase) expressed in the corpora allata (CA) of an insect was recently described in Drosophila melanogaster (DmFPPase). In the present study we sought to molecularly and biochemically characterize the FPP phosphatase responsible for the transformation of FPP into FOL in the CA of A. aegypti.

Methods

A search for orthologs of the DmFPPase in Aedes aegypti led to the identification of 3 putative FPPase paralogs expressed in the CA of the mosquito (AaFPPases-1, -2, and -3). The activities of recombinant AaFPPases were tested against general phosphatase substrates and isoprenoid pyrophosphates. Using a newly developed assay utilizing fluorescent tags, we analyzed AaFPPase activities in CA of sugar and blood-fed females. Double-stranded RNA (dsRNA) was used to evaluate the effect of reduction of AaFPPase mRNAs on JH biosynthesis.

Conclusions

AaFPPase-1 and AaFPPase-2 are members of the NagD family of the Class IIA C2 cap-containing haloalkanoic acid dehalogenase (HAD) super family and efficiently hydrolyzed FPP into FOL. AaFPPase activities were different in CA of sugar and blood-fed females. Injection of dsRNAs resulted in a significant reduction of AaFPPase-1 and AaFPPase-2 mRNAs, but only reduction of AaFPPase-1 caused a significant decrease of JH biosynthesis. These results suggest that AaFPPase-1 is predominantly involved in the catalysis of FPP into FOL in the CA of A. aegypti.  相似文献   

5.
The induction of the naturally occurring phenomenon of RNA interference (RNAi) to study gene function in insects is now common practice. With appropriately chosen targets, the RNAi pathway has also been exploited for insect control, typically through oral delivery of dsRNA. Adapting current methods to deliver foreign compounds, such as amino acids and pesticides, to mosquitoes through sucrose solutions, we tested whether such an approach could be used in the yellow fever mosquito, Aedes aegypti. Using a non‐specific dsRNA construct, we found that adult Ae. aegypti ingested dsRNA through this method and that the ingested dsRNA can be recovered from the mosquitoes post‐feeding. Through the feeding of a species‐specific dsRNA construct against vacuolar ATPase, subunit A, we found that significant gene knockdown could be achieved at 12, 24 and 48 h post‐feeding.  相似文献   

6.
Dengue virus (DENV) comprises of four serotypes (DENV‐1 to ‐4) and is medically one of the most important arboviruses (arthropod‐borne virus). DENV infection is a major human health burden and is transmitted between humans by the insect vector, Aedes aegypti. Ae. aegypti ingests DENV while feeding on infected humans, which traverses through its gut, haemolymph and salivary glands of the mosquito before being injected into a healthy human. During this process of transmission, DENV must interact with many proteins of the insect vector, which are important for its successful transmission. Our study focused on the identification and characterisation of interacting protein partners in Ae. aegypti to DENV. Since domain III (DIII) of envelope protein (E) is exposed on the virion surface and is involved in virus entry into various cells, we performed phage display library screening against domain III of the envelope protein (EDIII) of DENV‐2. A peptide sequence showing similarity to lachesin protein was found interacting with EDIII. The lachesin protein was cloned, heterologously expressed, purified and used for in vitro interaction studies. Lachesin protein interacted with EDIII and also with DENV. Further, lachesin protein was localised in neuronal cells of different organs of Ae. aegypti by confocal microscopy. Blocking of lachesin protein in Ae. aegypti with anti‐lachesin antibody resulted in a significant reduction in DENV replication.  相似文献   

7.
8.
Synthesis of (10R)-juvenile hormone III (JH III) outside the corpora allata (CA) was investigated in female Aedes aegypti. Intact females or ligated abdomens of blood-fed and sugar-fed females synthesized in vivo [12-3H]JH III-like molecules from [12-3H]-methyl farnesoate, indicating that an organ(s) in the female abdomen, other than the CA, converted methyl farnesoate into JH III. To find out the organ(s) that synthesized JH III-like molecules, ovaries, fat bodies, and midguts were incubated in vitro with [12-3H]methyl farnesoate and the synthesis of JH III-like molecules was compared with JH III synthesized by CA. To identify tissue(s) having both farnesoic acid methyl transferase and farnesoate epoxidase, enzymes that convert farnesoic acid into JH III, ovaries, and fat bodies were removed from sugar and blood-fed females and incubated with [12-3H]farnesoic acid. Chemical derivatization by methoxyhydrin formation followed by esterification with (+)-α-methoxy- α-trifluoromethyl phenylacetic (MTPA) acid chloride and reversed phase liquid chromatography identified (10R)-JH III methoxyhydrin (+)-MTPA ester as the sole JH III-like molecule produced in tissue culture incubation of ovaries. Since only (10R)-JH III is produced and not racemic JH III, the oxidation of farnesoic acid must be enzymatically mediated. Ovaries and corpora allata of female A. aegypti also synthesized [3H,14C]JH III from L-[methyl-3H]methionine and [14C]acetate which was characterized by HPLC and gas chromatography. These results suggest that mosquito ovary can synthesize (10R)-JH III from farnesoic acid, and that this tissue synthesizes JH III-like molecules from L-methionine and acetate. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The physiological balance of juvenile hormone (JH) in insects depends on its biosynthesis and degradation pathway. Three key enzymes namely, juvenile hormone esterase (JHE), juvenile hormone epoxide hydrolase (JHEH) and juvenile hormone diol kinase (JHDK) are required for degradation in insects. Our present results showed that JHE and JHEH exhibited expression in almost all the tissues. This indicated that JHE and JHEH might degrade JH simultaneously. In addition, the highest levels of JHDK were observed in the midgut, with trace level being found in the malpighian tubule and haemocytes. Since the midgut is a digestive organ and not a JH target, it was hypothesized that both JHE and JHEH hydrolyzed JH to JH diol (JHd) which was then transported to midgut and hydrolyzed further by JHDK, to be finally excreted out of the body. Also the expression studies on JH degradation enzymes in different tissues and stages indicated that the activities of the three enzymes are specific and coincident with the JH functions in silkworm, Bombyx mori L.  相似文献   

10.
Aedes aegypti is among the best‐studied mosquitoes due to its critical role as a vector of human pathogens and ease of laboratory rearing. Until now, this species was thought to have originated in continental Africa, and subsequently colonized much of the world following the establishment of global trade routes. However, populations of this mosquito on the islands in the southwestern Indian Ocean (SWIO), where the species occurs with its nearest relatives referred to as the Aegypti Group, have received little study. We re‐evaluated the evolutionary history of Ae. aegypti and these relatives, using three data sets: nucleotide sequence data, 18,489 SNPs and 12 microsatellites. We found that: (a) the Aegypti Group diverged 16 MYA (95% HPD: 7–28 MYA) from its nearest African/Asian ancestor; (b) SWIO populations of Ae. aegypti are basal to continental African populations; (c) after diverging 7 MYA (95% HPD: 4–15 MYA) from its nearest formally described relative (Ae. mascarensis), Ae. aegypti moved to continental Africa less than 85,000 years ago, where it recently (<1,000 years ago) split into two recognized subspecies Ae. aegypti formosus and a human commensal, Ae. aegypti aegypti; (d) the Madagascar samples form a clade more distant from all other Ae. aegypti than the named species Ae. mascarensis, implying that Madagascar may harbour a new cryptic species; and (e) there is evidence of introgression between Ae. mascarensis and Ae. aegypti on Réunion, and between the two subspecies elsewhere in the SWIO, a likely consequence of recent introductions of domestic Ae. aegypti aegypti from Asia.  相似文献   

11.
Juvenile hormones (JH) and ecdysone coordinately regulate metamorphosis in Aedes aegypti. We studied the function of an epigenetic regulator and multifunctional transactivator, CREB binding protein (CBP) in A. aegypti. RNAi-mediated knockdown of CBP in Ae. aegypti larvae resulted in suppression of JH primary response gene, Krüppel-homolog 1 (Kr-h1), and induction of primary ecdysone response gene, E93, resulting in multiple effects including early metamorphosis, larval-pupal intermediate formation, mortality and inhibition of compound eye development. RNA sequencing identified hundreds of genes, including JH and ecdysone response genes regulated by CBP. In the presence of JH, CBP upregulates Kr-h1 by acetylating core histones at the Kr-h1 promoter and facilitating the recruitment of JH receptor and other proteins. CBP suppresses metamorphosis regulators, EcR-A, USP-A, BR-C, and E93 through the upregulation of Kr-h1 and E75A. CBP regulates the expression of core eye specification genes including those involved in TGF-β and EGFR signaling. These studies demonstrate that CBP is an essential player in JH and 20E action and regulates metamorphosis and compound eye development in Ae. aegypti.  相似文献   

12.
13.
In Cairns, Australia, the impacts on Aedes aegypti L. (Diptera: Culicidae) populations of two types of ‘lure & kill’ (L&K) lethal ovitraps (LOs), the standard lethal ovitrap (SLO) and the biodegradable lethal ovitrap (BLO) were measured during three mass‐trapping interventions. To assess the efficacy of the SLO, two interventions (one dry season and one wet season) were conducted in three discrete areas, each lasting 4 weeks, with the following treatments: (i) SLOs (>200 traps, ∼4/premise), BG‐sentinel traps (BGSs; ∼15, 1/premise) and larval control (container reduction and methoprene treatment) and (ii) larval control alone, and (iii) untreated control. Female Ae. aegypti populations were monitored for 4 weeks pre‐ and post‐treatment in all three areas using BGSs and sticky ovitraps (SOs) or non‐lethal regular ovitraps (ROs). In the dry season, 206 SLOs and 15 BGSs set at 54 and 15 houses, respectively, caught and killed an estimated 419 and 73 female Ae. aegypti, respectively. No significant decrease in collection size of female Ae. aegypti could be attributed to the treatments. In the wet season, 243 SLOs and 15 BGSs killed ∼993 and 119 female Ae. aegypti, respectively. The mean number of female Ae. aegypti collected after 4 weeks with SOs and BGSs was significantly less than the control (LSD post‐hoc test). The third mass‐trapping intervention was conducted using the BLO during the wet season in Cairns. For this trial, three treatment areas were each provided with BLOs (>500, ∼4/premise) plus larval control, and an untreated control area was designated. Adult female Ae. aegypti were collected for 4 weeks pre‐ and post‐treatment using 15 BGSs and 20 SOs. During this period, 53.2% of BLOs contained a total of 6654 Ae. aegypti eggs. Over the intervention period, collections of Ae. aegypti in the treatment areas were significantly less than in the control area for BGSs but not SOs. An influx of relatively large numbers of young females may have confounded the measurement of changes in populations of older females in these studies. This is an important issue, with implications for assessing delayed action control measures, such as LOs and parasites/pathogens that aim to change mosquito age structure. Finally, the high public acceptability of SLOs and BLOs, coupled with significant impacts on female Ae. aegypti populations in two of the three interventions reported here, suggest that mass trapping with SLOs and BLOs can be an effective component of a dengue control strategy.  相似文献   

14.
The brown planthopper, Nilaparvata lugens (Stål) is an important pest in rice. It has been widely recognized that the juvenile hormone (JH) is regulated by its hydrolase, which includes juvenile hormone esterase (JHE), juvenile hormone epoxide hydrolase (JHEH) and juvenile hormone diol kinase (JHDK). In this paper, we cloned the gene of Jhdk and the gene expression at different stages of N. lugens was analysed, and the relationship with Jhe and Jheh was studied after silencing the jhdk gene of N. lugens (Nljhdk) through double-stranded RNA (dsRNA) feeding. We also explored the expression of the three JH hydrolase after indoxacarb treatments. RT-PCR was used to amplify the full length Jhdk cDNA, and the Nljhdk gene was expressed throughout all the development periods tested and showed the lowest level at the 4th instar and the highest in the 5th instar. The expression level of Nljhdk in male adults was higher than that of female adults. Through feeding, dsRNA against Nljhdk successfully knocked down the target gene, which had no significant effect on the expression of the jhe gene of N. lugens (Nljhe), while the expression of Nljheh was upregulated. Indoxacarb could inhibit N. lugens reproduction, and the expression level of Nljhe and Nljhdk increased with the increasing of indoxacarb concentration, but the expression of the jheh gene of N. lugens (Nljheh) was reduced. These studies provide a line of experimental evidence in N. lugens to support that Nljhdk encodes the functional protein involved in JH degradation and further showed the relationship of the three hydrolases and the mechanism of indoxacarb inhibition of the fecundity of N. lugens.  相似文献   

15.
The mosquitoes Aedes aegypti (L.) and Ae. albopictus Skuse are the major vectors of dengue, Zika, yellow fever, and chikungunya viruses worldwide. Wolbachia, an endosymbiotic bacterium present in many insects, is being utilized in novel vector control strategies to manipulate mosquito life history and vector competence to curb virus transmission. Earlier studies have found that Wolbachia is commonly detected in Ae. albopictus but rarely detected in Ae. aegypti. In this study, we used a two‐step PCR assay to detect Wolbachia in wild‐collected samples of Ae. aegypti. The PCR products were sequenced to validate amplicons and identify Wolbachia strains. A loop‐mediated isothermal amplification (LAMP) assay was developed and used for detecting Wolbachia in selected mosquito specimens as well. We found Wolbachia in 85/148 (57.4%) wild Ae. aegypti specimens from various cities in New Mexico, and in 2/46 (4.3%) from St. Augustine, Florida. Wolbachia was not detected in 94 samples of Ae. aegypti from Deer Park, Harris County, Texas. Wolbachia detected in Ae. aegypti from both New Mexico and Florida was the wAlbB strain of Wolbachia pipientis. A Wolbachia‐positive colony of Ae. aegypti was established from pupae collected in Las Cruces, New Mexico, in 2018. The infected females of this strain transmitted Wolbachia to their progeny when crossed with males of Rockefeller strain of Ae. aegypti, which does not carry Wolbachia. In contrast, none of the progeny of Las Cruces males mated to Rockefeller females were infected with Wolbachia.  相似文献   

16.
Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co‐occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub‐Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans‐Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.  相似文献   

17.
Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae) are highly anthropophilic mosquito species and potential vectors of dengue and yellow fever. The location of suitable sites for oviposition requires a set of visual, tactile, and olfactory cues that influence females before they lay their eggs. In this study, the effect of n‐heneicosane, a recognized oviposition pheromone of Ae. aegypti, on the olfactory receptors of the antennae of Ae. aegypti and Ae. albopictus was studied using electroantennographic detection coupled to gas chromatography (GC‐EAD). A significant electroantennographic response to n‐heneicosane in adult females of both mosquito species was observed. In addition, gravid Ae. albopictus females laid more eggs in substrate treated with n‐heneicosane at 0.1, 1, or 10 p.p.m. than in the control, denoting oviposition attractancy. Conversely, at 30, 50, 100, and 200 p.p.m., more eggs were laid in the control substrate, indicating oviposition repellency. Analysis of the larval cuticle by GC and mass spectrometry confirmed the presence of n‐heneicosane in the cuticles of Ae. albopictus larvae. The species‐specific role of n‐heneicosane as an oviposition pheromone in Ae. aegypti and its significance as a behaviour modifier of Ae. albopictus in breeding sites is discussed.  相似文献   

18.
At 25°C, adult female aedes aegypti are most sensitive to sterilization by juvenile hormone (JH) mimics when such chemicals are applied 32 to 36 hr after the blood meal (when the ovaries are at late stage III to early stage IV). Application of JH mimics during this period reduces egg fertility and female fecundity and induces the production of large numbers of visually abnormal eggs. As the most sensitive phase for sterilization with JH mimics is well before oviposition, and as many abnormal eggs are laid following JH mimic treatment, it is likely that in this species sterilization effects are induced by some action on the developing oöcyte rather than on embryonic development.The relative activities of several JH mimics in sterilizing adult female A. aegypti are very similar to their relative activities in inhibiting metamorphosis. Thus the sterilizing action of JH mimics is likely to be a true JH effect and can be used as a test for JH activity for A. aegypti.  相似文献   

19.
Locally acquired dengue cases in the continental U.S. are rare. However, outbreaks of dengue‐1 during 2009, 2010, and 2013 in Florida and dengue‐1 and −2 in Texas suggest vulnerability to transmission. Travel and commerce between Puerto Rico and the U.S. mainland is common, which may pose a risk for traveler‐imported dengue cases. Mosquitoes were collected in Florida and used to evaluate their susceptibility to dengue viruses (DENV) from Puerto Rico. Aedes aegypti and Ae. albopictus were susceptible to virus infection with DENV‐1 and −2. No significant differences were observed in rates of midgut infection or dissemination between Ae. aegypti or Ae. albopictus for DENV‐1 (6–14%). Aedes aegypti was significantly more susceptible to midgut infection with DENV‐2 than Ae. albopictus (Ae. aegypti, ∼28%; Ae. albopictus, ∼9%). The dissemination rate with dengue‐2 virus for Ae. aegypti (23%) was greater than Ae. albopictus (0%), suggesting that Ae. albopictus is not likely to be an important transmitter of the DENV‐2 isolate from Puerto Rico. These results are discussed in light of Florida's vulnerability to DENV transmission.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号