首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AMP-activated kinase (AMPK) as a key controller in the regulation of whole-body energy homeostasis, plays an important role in protecting the body from metabolic diseases. Recently, improved glucose, lipid utility and increased insulin sensitivity were observed on several diabetic rodent models treated with crude mogrosides isolated from the fruit of Siraitia grosvenorii Swingle, but the precise active compounds responsible for the anti-diabetic activity of this plant have not been clearly identified. In our current work, acid hydrolysis of crude mogrosides provided five new cucurbitane triterpenoids (1-4, 8), along with three known ones (5-7). The main aglycone mogrol (7) and compounds 4 and 8 were found to be potent AMPK activators in the HepG2 cell line. This result suggested AMPK activation by the mogroside aglycones 7 and 8 was proved to contribute at least partially to the anti-hyperglycemic and anti-lipidemic properties in vivo of S. grosvenorii.  相似文献   

2.
Ong KW  Hsu A  Tan BK 《PloS one》2012,7(3):e32718
Chlorogenic acid (CGA) has been shown to delay intestinal glucose absorption and inhibit gluconeogenesis. Our aim was to investigate the role of CGA in the regulation of glucose transport in skeletal muscle isolated from db/db mice and L6 skeletal muscle cells. Oral glucose tolerance test was performed on db/db mice treated with CGA and soleus muscle was isolated for 2-deoxyglucose transport study. 2DG transport was also examined in L6 myotubes with or without inhibitors such as wortmannin or compound c. AMPK was knocked down with AMPKα1/2 siRNA to study its effect on CGA-stimulated glucose transport. GLUT 4 translocation, phosphorylation of AMPK and Akt, AMPK activity, and association of IRS-1 and PI3K were investigated in the presence of CGA. In db/db mice, a significant decrease in fasting blood sugar was observed 10 minutes after the intraperitoneal administration of 250 mg/kg CGA and the effect persisted for another 30 minutes after the glucose challenge. Besides, CGA stimulated and enhanced both basal and insulin-mediated 2DG transports in soleus muscle. In L6 myotubes, CGA caused a dose- and time-dependent increase in glucose transport. Compound c and AMPKα1/2 siRNA abrogated the CGA-stimulated glucose transport. Consistent with these results, CGA was found to phosphorylate AMPK and ACC, consistent with the result of increased AMPK activities. CGA did not appear to enhance association of IRS-1 with p85. However, we observed activation of Akt by CGA. These parallel activations in turn increased translocation of GLUT 4 to plasma membrane. At 2 mmol/l, CGA did not cause any significant changes in viability or proliferation of L6 myotubes. Our data demonstrated for the first time that CGA stimulates glucose transport in skeletal muscle via the activation of AMPK. It appears that CGA may contribute to the beneficial effects of coffee on Type 2 diabetes mellitus.  相似文献   

3.
Resveratrol induces mitochondrial biogenesis and protects against metabolic decline, but whether SIRT1 mediates these benefits is the subject of debate. To circumvent the developmental defects of germline SIRT1 knockouts, we have developed an inducible system that permits whole-body deletion of SIRT1 in adult mice. Mice treated with a moderate dose of resveratrol showed increased mitochondrial biogenesis and function, AMPK activation, and increased NAD(+) levels in skeletal muscle, whereas SIRT1 knockouts displayed none of these benefits. A mouse overexpressing SIRT1 mimicked these effects. A high dose of resveratrol activated AMPK in a SIRT1-independent manner, demonstrating that resveratrol dosage is a critical factor. Importantly, at both doses of resveratrol no improvements in mitochondrial function were observed in animals lacking SIRT1. Together these data indicate that SIRT1 plays an essential role in the ability of moderate doses of resveratrol to stimulate AMPK and improve mitochondrial function both in vitro and in vivo.  相似文献   

4.
5.
Diabetes affects a large population of the world. Lifestyle, obesity, dietary habits, and genetic factors contribute to this metabolic disease. A target pathway to control diabetes is the 5′-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. AMPK is a heterotrimeric protein with α, β, and γ subunits. In several studies, AMPK activation enhanced glucose uptake into cells and inhibited intracellular glucose production. Impairment of AMPK activity is present in diabetes, according to some studies. Drugs used in the treatment of diabetes, such as metformin, are also known to act through regulation of AMPK. Thus, drugs that activate and regulate AMPK are potential candidates for the treatment of diabetes. In addition, many patients encounter important adverse effects, like hypoglycemia, while using allopathic drugs. As a result, the investigation of plant-derived natural drugs that lack adverse side effects and treat diabetes is necessary. Natural products like berberine, quercetin, resveratrol, and so forth have shown significant potential in regulating and activating the AMPK pathway which can lead to manage diabetes mellitus and its complications.  相似文献   

6.
CAMTAs: calmodulin-binding transcription activators from plants to human   总被引:2,自引:0,他引:2  
Finkler A  Ashery-Padan R  Fromm H 《FEBS letters》2007,581(21):3893-3898
  相似文献   

7.
植物体有益元素硅的研究进展   总被引:7,自引:2,他引:5  
本文根据植物有益元素硅的一些研究现状,详细地论述了硅在植物体内的含量,分布及影响因素,植物对硅的吸收及运输,硅元素的生理功能以及与其它元素间的相互关系。提出了对植物硅元素研究和硅肥工业发展的一些个人看法。  相似文献   

8.
Effective treatment of diabetes is increasingly dependent on active constituents of medicinal plants capable of controlling hyperglycemia as well as its secondary complications. Sensing the importance of documenting such medicinal plants, here we describe a web database containing information (name, literature citation, active compounds and few related full text articles) of the diabetes medicinal plants exhibiting hypoglycemic, antioxidant and antimicrobial effects. AVAILABILITY: http://www.autogeneralfilters.com/holycross/Home.html.  相似文献   

9.
Exosomes contain regulatory signals such as lipids, proteins, and nucleic acids which can be transferred to adjacent or remote cells to mediate cell-to-cell communication. Exercise is a positive lifestyle for metabolic health and a nonpharmacological treatment of insulin resistance and metabolic diseases. Moreover, exercise is a stressor that induces cellular responses including gene expression and exosome release in various types of cells. Exosomes can carry the characters of parent cells by their modified cargoes, representing novel mechanisms for the effects of exercise. Here, we present a review of exosomes as the perspective players in mediating exercise's beneficial impacts on type 2 diabetes (T2D).  相似文献   

10.
AMP-activated protein kinase (AMPK) is a key sensor and regulator of glucose, lipid, and energy metabolism throughout the body. Activation of AMPK improves metabolic abnormalities associated with metabolic diseases including obesity and type-2 diabetes. The oriental traditional medicinal herbal plant, Gynostemma pentaphyllum, has shown a wide range of beneficial effects on glucose and lipid metabolism. In this study, we found that G. pentaphyllum contains two novel dammarane-type saponins designated as damulin A (1), 2α,3β,12β-trihydroxydammar-20(22)-E,24-diene-3-O-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside], and damulin B (2), 2α,3β,12β-trihydroxydammar-20,24-diene-3-O-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside], that strongly activate AMPK in cultured L6 myotube cells. Damulins A and B also increased β-oxidation and glucose uptake with increasing GluT4 translocation to the plasma membrane in L6 myotube cells. Taken together our results indicate that activation of AMPK by damulins A and B may contribute to beneficial effect of G. pentaphyllum on glucose and lipid metabolism.  相似文献   

11.
12.
Objective: To determine whether tight control of blood pressure prevents macrovascular and microvascular complications in patients with type 2 diabetes.Design: Randomised controlled trial comparing tight control of blood pressure aiming at a blood pressure of <150/85 mm Hg (with the use of an angiotensin converting enzyme inhibitor captopril or a β blocker atenolol as main treatment) with less tight control aiming at a blood pressure of <180/105 mm Hg.Setting: 20 hospital based clinics in England, Scotland, and Northern Ireland.Subjects: 1148 hypertensive patients with type 2 diabetes (mean age 56, mean blood pressure at entry 160/94 mm Hg); 758 patients were allocated to tight control of blood pressure and 390 patients to less tight control with a median follow up of 8.4 years.Main outcome measures: Predefined clinical end points, fatal and non-fatal, related to diabetes, deaths related to diabetes, and all cause mortality. Surrogate measures of microvascular disease included urinary albumin excretion and retinal photography.Results: Mean blood pressure during follow up was significantly reduced in the group assigned tight blood pressure control (144/82 mm Hg) compared with the group assigned to less tight control (154/87 mm Hg) (P<0.0001). Reductions in risk in the group assigned to tight control compared with that assigned to less tight control were 24% in diabetes related end points (95% confidence interval 8% to 38%) (P=0.0046), 32% in deaths related to diabetes (6% to 51%) (P=0.019), 44% in strokes (11% to 65%) (P=0.013), and 37% in microvascular end points (11% to 56%) (P=0.0092), predominantly owing to a reduced risk of retinal photocoagulation. There was a non-significant reduction in all cause mortality. After nine years of follow up the group assigned to tight blood pressure control also had a 34% reduction in risk in the proportion of patients with deterioration of retinopathy by two steps (99% confidence interval 11% to 50%) (P=0.0004) and a 47% reduced risk (7% to 70%) (P=0.004) of deterioration in visual acuity by three lines of the early treatment of diabetic retinopathy study (ETDRS) chart. After nine years of follow up 29% of patients in the group assigned to tight control required three or more treatments to lower blood pressure to achieve target blood pressures.Conclusion: Tight blood pressure control in patients with hypertension and type 2 diabetes achieves a clinically important reduction in the risk of deaths related to diabetes, complications related to diabetes, progression of diabetic retinopathy, and deterioration in visual acuity.

Key messages

  • This study showed that tight control of blood pressure based on captopril or atenolol as first agents and aiming for both a systolic blood pressure <150 mm Hg and diastolic pressure <85 mm Hg achieved a mean 144/82 mm Hg compared with 154/87 mm Hg in a control group
  • 29% of patients in the tight control group required three or more hypotensive treatments
  • Tight control of blood pressure reduced the risk of any non-fatal or fatal diabetic complications and of death related to diabetes; deterioration in visual acuity was also reduced
  • Reducing blood pressure needs to have high priority in caring for patients with type 2 diabetes
  相似文献   

13.
Fructans: beneficial for plants and humans   总被引:5,自引:0,他引:5  
The recent cloning of genes encoding fructosyltransferases and fructan exohydrolases has been a major breakthrough in fructan research. Now, fructan metabolism and fructosyltransferase enzymes can be studied at the molecular level. In addition, fructan synthesis and breakdown can be adapted in such a way that tailor-made fructans are produced in plants for use as healthy food ingredients.  相似文献   

14.
AMP-activated protein kinase (AMPK) is a potential therapeutic target for the treatment of metabolic syndrome including obesity and type-2 diabetes. As part of an ongoing search for new AMPK activators from plants, this study found that the total extract of Myristica fragrans (nutmeg) activated the AMPK enzyme in differentiated C2C12 cells. As active constituents, seven 2,5-bis-aryl-3,4-dimethyltetrahydrofuran lignans, tetrahydrofuroguaiacin B (1), saucernetindiol (2), verrucosin (3), nectandrin B (4), nectandrin A (5), fragransin C1 (6), and galbacin (7) were isolated from this extract. Among the isolates, compounds 1, 4, and 5 at 5 μM produced strong AMPK stimulation in differentiated C2C12 cells. In addition, the preventive effect of a tetrahydrofuran mixture (THF) on weight gain in a diet-induced animal model was further examined. These results suggest that nutmeg and its active constituents can be used not only for the development of agents to treat obesity and possibly type-2 diabetes but may also be beneficial for other metabolic disorders.  相似文献   

15.
We investigated the involvement of chemotactic cytokine receptor 5 (CCR5) gene polymorphism in microvascular complications of T2DM. All subjects were genotyped with the 59029 SNP in the CCR5 gene. The genotype/allele frequencies did not differ between T2DM patients and controls. Genotype distribution was compared in patients with and without complications (nephropathy, retinopathy and neuropathy). The frequency of A allele was significantly higher in patients with complications (OR for A allele 3.07, 95% CI 2.49-3.77). The A allele carriage was associated with diabetic nephropathy (OR 6.17, 95% CI 3.28-11.6). An association was observed between 59029 polymorphism and age at T2DM onset. The A allele was more frequent in early onset than in late onset patients. For AA homozygotes OR was 2.38 (1.19-4.76) and 2.26 (1.12-4.58) in complicated and uncomplicated subgroups, respectively. These results suggest that CCR5 gene polymorphism is associated with diabetic nephropathy in T2DM.  相似文献   

16.
17.
18.
A series of new arctigenin and 9-deoxy-arctigenin derivatives bearing different ester and ether side chains at the phenolic hydroxyl positions are designed, synthesized, and evaluated for activating AMPK potency in L6 myoblasts. Initial biological evaluation indicates that some alkyl ester and phenethyl ether arctigenin derivatives display potential activities in AMPK phosphorylation improvement. Further structure–activity relationship analysis shows that arctigenin ester derivatives 3a, 3h and 9-deoxy-arctigenin phenethyl ether derivatives 6a, 6c, 6d activate AMPK more potently than arctigenin. Moreover, the 2-(3,4-dimethoxyphenyl)ethyl ether moiety of 6c has been demonstrated as a potential functional group to improve the effect of AMPK phosphorylation. The structural optimization of arctigenin leads to the identification of 6c as a promising lead compound that exhibits excellent activity in AMPK activation.  相似文献   

19.
20.
AMP-activated protein kinase (AMPK) is a cellular energy sensor activated by metabolic stresses that either inhibit ATP synthesis or accelerate ATP consumption. Activation of AMPK in response to an increase in the cellular AMP:ATP ratio results in inhibition of ATP-consuming processes such as gluconeogenesis and fatty acid synthesis, while stimulating ATP-generating processes, including fatty acid oxidation. These alterations in lipid and glucose metabolism would be expected to ameliorate the pathogenesis of obesity, type 2 diabetes and other metabolic disorders. Recently, AMPK has also been identified as a potential target for cancer prevention and/or treatment. Cell growth and proliferation are energetically demanding, and AMPK may act as an “energy checkpoint” that permits growth and proliferation only when energy reserves are sufficient. Thus, activators of AMPK could have potential as novel therapeutics both for metabolic disorders and for cancer, which together constitute two of the most prevalent groups of diseases worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号