首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new hemoglobin variant, termed hemoglobin Athens-Georgia, has been found in a 23-year-old Caucasian student and three members of her family. The electrophoretic mobility of this variant at pH 9.0 is slightly less than that of hemoglobin-A. Arginyl residue in position 40 of the beta chain, corresponding to position 6 of the C helix, has been replaced by a lysyl residue. This amino acid substitution is at the alpha1-beta2 contact and slightly affects the oxygen binding properties of the hemoglobin molecule. Hemoglobin Athens-Georgia has an increased affinity for oxygen, a normal heme-heme interaction and a normal Bohr effect. Hematological abnormalities are not associated with this variant.  相似文献   

2.
The complete amino acid sequence has been determined for the alpha chain of component III of the hemoglobin of the tadpole of the bullfrog, Rana catesbeiana. The chain comprises 141 residues of which 80 (57%) are identical to those in the corresponding positions of the human chain. Almost the same extent of similarity exists in the comparison with the sequenced part of the alpha chain of the adult bullfrog. The major features of this chain are: 1) each residue which is common to all other alpha chains of known sequence is also found in this alpha chain; 2) an acetylated NH2 terminus prevents formation of one of the salt bridges found in human hemoglobin which is responsible for part of the alkaline Bohr effect in mammalian hemoglobins; and 3) a prolyl residue at alpha 99 (G6) must distort the G helix.  相似文献   

3.
Hemoglobin Cochin Port-Royal beta 146 (HC3) His yields Arg is the second example in which the beta C-terminal residue is replaced. Owing to the known importance of His beta 146 in the co-operative effects of hemoglobin, the functional properties of this variant were carefully studied. It had a normal Hill coefficient but a reduced alkaline Bohr effect. However, the reduction in Bohr effect is less than the halving predicted from previous mutants and modified hemoglobins.  相似文献   

4.
The hemoglobin of the indigo snake (Drymarchon corais erebennus, Colubrinae) consists of two components, HbA and HbD, in the ratio of 1:1. They differ in both their alpha and beta chains. The amino acid sequences of both a chains (alphaA and alphaD) and one beta chain (betaI) were determined. The presence of an alphaD chain in a snake hemoglobin is described for the first time. A comparison of all snake beta chain sequences revealed the existence of two paralogous beta chain types in snakes as well, which are designated as betaI and betaII type. For the discussion of the physiological properties of Drymarchon hemoglobin, the sequences were compared with those of the human alpha and beta chains and those of the closely related water snake Liophis milians where functional data are available. Among the heme contacts, the substitution alphaD58(E7)His-->Gln is unusual but most likely without any effect. The residues responsible for the main part of the Bohr effect are the same as in mammalian hemoglobins. In each of the three globin chains only two residues at positions involved in the alpha1/beta2 interface contacts, most important for the stability and the properties of the hemoglobin molecule, are substituted with regard to human hemoglobin. On the contrary, nine, eleven, and six alpha1/beta1 contact residues are replaced in the alphaA, alphaD, betaI chains, respectively.  相似文献   

5.
Hemoglobin Abruzzo is an abnormal human hemoglobin with a substitution at a residue known to be involved in the binding of 2,3-diphosphoglyceric acid. It has increased oxygen affinity and reduced heme-heme interaction in the absence of organic or inorganic phosphate cofactors. In inorganic phosphate buffers the Bohr effect and heme-heme interaction are normal, but the oxygen affinity remains higher than that of hemoglobin A. CO combination in inorganic phosphate is more strongly autocatalytic than in normal hemoglobin and a slower rate of oxygen dissociation is observed. Although many of the functional differences of this variant may be attributed to the high oxygen affinity of the mutant beta chains, the interactions between subunits are also affected by the histidine to arginine substitution at beta143. Stripped hemoglobin Abruzzo appears to be significantly more dissociated than hemoglobin A. Kinetic studies indicate that interaction with organic or inorganic phosphates decreases its subunit dissociation. In all of the functional properties examined, hemoglobin Abruzzo is more sensitive to the allosteric influence of organic and inorganic anions than is hemoglobin A.  相似文献   

6.
Effects of anions on the molecular basis of the Bohr effect of hemoglobin   总被引:1,自引:0,他引:1  
High-resolution 1H-NMR spectroscopy has been used to investigate the molecular basis of the Bohr effect in human normal adult hemoglobin in the presence of anions which serve as heterotropic effectors, i.e., Cl-, Pi, and 2,3-diphosphoglycerate. The individual H+ equilibria of 22-26 histidyl residues of hemoglobin in both deoxy and carbonmonoxy forms have been measured under buffer conditions chosen to demonstrate the effects of anion binding. The results indicate that beta 2His residues are binding sites for Cl- and Pi in both deoxy and carbonmonoxy forms, and that the affinity of this site for these anions is greater in the deoxy form. Recently assigned, the resonance of beta 146His does not show evidence of involvement in anion binding. The results also indicate that the binding of 2,3-diphosphoglycerate at the central cavity between the two beta-chains in deoxyhemoglobin involves the beta 2His residues, and that the 2,3-diphosphoglycerate-binding site in carbonmonoxyhemoglobin may remain similar to that in deoxyhemoglobin. The interactions of Cl-, Pi and 2,3-diphosphoglycerate also result in changes in the pK values for other surface histidyl residues which vary in both magnitude and direction. The array of pK changes is specific for the interaction of each effector. The participation of beta 2His in the Bohr effect demonstrates that this residue can release or capture protons, depending on its protonation properties and its linkage to anion binding, and therefore provides an excellent illustration of the variable roles of a given amino acid. Although beta 146His does not bind anions, its contributions to the Bohr effect are substantially affected by the presence of anions. These results demonstrate that long-range electrostatic and/or conformational effects of anions binding play significant roles in the molecular basis of the Bohr effect of hemoglobin.  相似文献   

7.
M R Busch  J E Mace  N T Ho  C Ho 《Biochemistry》1991,30(7):1865-1877
Assessment of the roles of the carboxyl-terminal beta 146 histidyl residues in the alkaline Bohr effect in human normal adult hemoglobin by high-resolution proton nuclear magnetic resonance spectroscopy requires assignment of the resonances corresponding to these residues. Previous resonance assignments in low ionic strength buffers for the beta 146 histidyl residue in the carbonmonoxy form of hemoglobin have been controversial [see Ho and Russu (1987) Biochemistry 26, 6299-6305; and references therein]. By a careful spectroscopic study of human normal adult hemoglobin, enzymatically prepared des(His146 beta)-hemoglobin, and the mutant hemoglobins Cowtown (beta 146His----Leu) and York (beta 146His----Pro), we have resolved some of these conflicting results. By a close incremental variation of pH over a wide range in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer, a single resonance has been found to be consistently missing in the proton nuclear magnetic resonance spectra of these hemoglobin variants. The spectra of each of these variants show additional perturbations; therefore, the assignment has been confirmed by an incremental titration of buffer conditions to benchmark conditions, i.e., 0.2 M phosphate, where the assignment of this resonance is unambiguous. The strategy of incremental titration of buffer conditions also allows extension of this resonance assignment to spectra taken in 0.1 M [bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane buffer. Participation of the beta 146 histidyl residues in the Bohr effect has been calculated from the pK values determined for the assigned resonances in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer. Our results indicate that the contribution of the beta 146 histidyl residues is 0.52 H+/hemoglobin tetramer at pH 7.6, markedly less than the 0.8 H+/hemoglobin tetramer estimated by study of the mutant hemoglobin Cowtown (beta 146His----Leu) by Shih and Perutz [(1987) J. Mol. Biol. 195, 419-422]. We have found that at least two histidyl residues in the carbonmonoxy form of this mutant have pK values that are perturbed, and we suggest that these pK differences may in part account for this discrepancy. Furthermore, summation of the positive contribution of the beta 146 histidyl residues and the negative contribution of the beta 2 histidyl residues to the maximum Bohr effect measured in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer suggests that additional sites in the hemoglobin molecule account for proton release upon ligation greater than the contribution of the beta 146 histidyl residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Hemoglobin Atlanta, alpha 2 beta 2 75 Leu-Pro (E19), has been found in several members of three generations of a Caucasian family living in metropolitan Atlanta. The abnormal hemoglobin is one of the nine unstable variants in which either a leucyl or an alanyl residue is replaced by a prolyl residue. These substitutions have been observed in the B, E, F, and G helixes of the beta chain and in the H helix of the alpha-chain. Hemoglobin Atlanta heterozygotes are mildly affected by the presence of this unstable hemoglobin.  相似文献   

9.
The glutamyl residue at G3(101)beta of normal hemoglobin (Hb A) is one of the alpha 1 beta 2 subunit contacts which are vital to O2 binding properties of the molecule. The O2 equilibrium properties of the four mutants with different substitutions at this site are studied in order to elucidate the role of this residue. Under stripped conditions with minimum chloride the order of O2 affinity is: Hb A (Glu) much less than Hb Rush (Gln) less than or equal to Hb British Columbia (Lys) less than or equal to Hb Potomac (Asp) less than or equal to Hb Alberta (Gly). The first Adair constants, K1, for the mutant hemoglobins are greater than that for Hb A whereas the fourth, K4, are similar, indicating that the allosteric constants (L) of these mutants are greatly reduced. Therefore, the G3(101)beta residue contributes intrinsically to the strengthening of the structural constraints that are imposed upon the deoxy (T) forms but not the oxy (R) form. On addition of 0.1 M Cl- and further addition of 2,3-diphosphoglycerate or inositol hexaphosphate, their O2 affinities and cooperativities are altered, reflecting different responses to anionic ligands. Hb Rush exhibits a stronger chloride effect than Hb A and the other variants and, as a result, an increased Bohr effect and a smaller heat of oxygenation at pH 6.5. These changes are consistent with an increased positive net charge in the central cavity of Hb Rush and subsequent extra anion binding in the deoxy form. The tetramer to dimer dissociation constants are estimated to be greater than normal for Hb British Columbia and less than normal for Hb Alberta. This comparative study of the G3(101)beta mutants indicates that the size and the charge of this residue may influence the switching of two neighboring interchain hydrogen bonds that occurs during oxygenation of normal hemoglobin.  相似文献   

10.
The coelacanth (Latimeria chalumnae, Actinistia) has a single hemoglobin component. The primary structures of the alpha- and beta-chains are presented. They could be separated by reversed-phase HPLC. Peptides obtained by tryptic digestion of the native and oxidized chains were isolated by reversed-phase HPLC and sequenced in liquid and gas-phase sequenators. The alignment was achieved by employing the N-terminal sequences of the native chains and those of a beta-chain cyanogen bromide peptide as well as fragments obtained by acid hydrolysis. The Latimeria alpha-chains consist of 142 amino-acid residues, due to a fish-specific insertion between positions 46 and 47, whereas the beta-chains are of normal length (146 residues). Latimeria alpha- and beta-chains share 72 (51.1%) and 70 (47.9%) identical residues with human hemoglobin, respectively. Numerous heme contacts and positions involved in subunit interface contacts are replaced. The most interesting of them were studied by molecular modeling. The loss of an alpha 1/beta 2-contact by the exchanges alpha 92(FG4)Arg----Leu and beta 43(CD2)Glu----Lys might be responsible for the easy dissociation of the tetrameric hemoglobin molecule. A comparison of the residues replaced in contact positions with fishes and amphibians revealed the highest number of matches between Latimeria and tadpoles. The same result was obtained by the evaluation of other regions relevant for structure and function of the molecule, like exon-intron boundary regions, phosphate binding sites and salt bridges responsible for the Bohr effect.  相似文献   

11.
The Bohr effect of hemoglobin and that of the aquomet and cyanomet valency hybrids was measured in the presence and the absence of IHP (inositol hexaphosphate) and DPG (2,3-diphosphoglycerate). In the absence of these organic phosphates the four hybrids show similar, but suppressed Bohr effects as compared to hemoglobin. Addition of IHP and DPG results in all cases in an increase of the Bohr effect. The additional phosphate induced Bohr effect of the hybrids with the alpha chain in the oxidized form is almost identical to that of hemoglobin, while this effect of the hybrids with oxidized beta chains is slighly lower than that of hemoglobin. The results suggest (a) that the Bohr effect is correlated to the ligation state of the hemoglobin molecule rather than to its quaternary structure (b) that the additional phosphate induced Bohr effect is related to the change in quaternary structure of the tetramer, and (c) that with respect to the Bohr effect of the hybrids there is no difference between high and low spin species.  相似文献   

12.
C H Tsai  T J Shen  N T Ho  C Ho 《Biochemistry》1999,38(27):8751-8761
Using our Escherichia coli expression system, we have produced five mutant recombinant (r) hemoglobins (Hbs): r Hb (alpha V96 W), r Hb Presbyterian (beta N108K), r Hb Yoshizuka (beta N108D), r Hb (alpha V96W, beta N108K), and r Hb (alpha V96W, beta N108D). These r Hbs allow us to investigate the effect on the structure-function relationship of Hb of replacing beta 108Asn by either a positively charged Lys or a negatively charged Asp as well as the effect of replacing alpha 96Val by a bulky, nonpolar Trp. We have conducted oxygen-binding studies to investigate the effect of several allosteric effectors on the oxygenation properties and the Bohr effects of these r Hbs. The oxygen affinity of these mutants is lower than that of human normal adult hemoglobin (Hb A) under various experimental conditions. The oxygen affinity of r Hb Yoshizuka is insensitive to changes in chloride concentration, whereas the oxygen affinity of r Hb Presbyterian exhibits a pronounced chloride effect. r Hb Presbyterian has the largest Bohr effect, followed by Hb A, r Hb (alpha V96W), and r Hb Yoshizuka. Thus, the amino acid substitution in the central cavity that increases the net positive charge enhances the Bohr effect. Proton nuclear magnetic resonance studies demonstrate that these r Hbs can switch from the R quaternary structure to the T quaternary structure without changing their ligation states upon the addition of an allosteric effector, inositol hexaphosphate, and/or by reducing the temperature. r Hb (alpha V96W, beta N108K), which has the lowest oxygen affinity among the hemoglobins studied, has the greatest tendency to switch to the T quaternary structure. The following conclusions can be derived from our results: First, if we can stabilize the deoxy (T) quaternary structure of a hemoglobin molecule without perturbing its oxy (R) quaternary structure, we will have a hemoglobin with low oxygen affinity and high cooperativity. Second, an alteration of the charge distribution by amino acid substitutions in the alpha 1 beta 1 subunit interface and in the central cavity of the hemoglobin molecule can influence the Bohr effect. Third, an amino acid substitution in the alpha 1 beta 1 subunit interface can affect both the oxygen affinity and cooperativity of the oxygenation process. There is communication between the alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces during the oxygenation process. Fourth, there is considerable cooperativity in the oxygenation process in the T-state of the hemoglobin molecule.  相似文献   

13.
Alkaline Bohr effect of human hemoglobin Ao   总被引:3,自引:0,他引:3  
  相似文献   

14.
A few years ago we reported that histidine (HC3) 146 beta plays a major role in the pH-dependent properties of the R-state of human hemoglobin, accounting for close to 50% of the R-state Bohr effect. We have extended these studies by examining the role of arginine 141 alpha, another group known to affect the overall Bohr effect. We have compared the pH dependencies of the rate constants for the dissociation and combination of the fourth carbon monoxide molecule, l4 and l'4, respectively, for native hemoglobin A (HbA) and a control reconstituted HbA, and des-(Arg 141 alpha) HbA, the hemoglobin molecule resulting from the enzymatic removal of the C-terminal arginine of the alpha-chain of human Hb. From these kinetic constants the pH dependence of L4, the affinity constant for the fourth carbon monoxide molecule, has been estimated. We find that the removal of arginine 141 alpha reduces the pH dependence of log L4 by about 80% between pH 6 and 8, where the alkaline Bohr effect normally occurs. The sum of the effects of the removal of His 146 beta and of Arg 141 alpha is greater than 100%. This suggests that at least one of these modifications alters the contributions of other residues of this Bohr effect.  相似文献   

15.
Hemoglobin Alberta has an amino acid substitution at position 101 (Glu----Gly), a residue involved in the alpha 1 beta 2 contact region of both the deoxy and oxy conformers of normal adult hemoglobin. Oxygen equilibrium measurements of stripped hemoglobin Alberta at 20 degrees C in the absence of phosphate revealed a high affinity (P50 = 0.75 mm Hg at pH 7), co-operative hemoglobin variant (n = 2.3 at pH 7) with a normal Bohr effect (- delta log P50/delta pH(7-8) = 0.65). The addition of inositol hexaphosphate resulted in a decrease in oxygen affinity (P50 = 8.2 mm Hg at pH 7), a slight increase in the value of n and an enhanced Bohr effect. Rapid mixing experiments reflected the equilibrium results. A rapid rate of carbon monoxide binding (l' = 7.0 X 10(5) M-1 S-1) and a slow rate of overall oxygen dissociation (k = 15 s-1) was seen at pH7 and 20 degrees C in the absence of phosphate. Under these experimental conditions the tetramer stability of liganded and unliganded hemoglobin Alberta was investigated by spectrophotometric kinetic techniques. The 4K4 value (the liganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta was found to be 0.83 X 10(-6) M compared to a 4K4 value for hemoglobin A of 2.3 X 10(-6) M, indicating that the Alberta tetramer was less dissociated into dimers than the tetramer of hemoglobin A. The values of 0K4 (the unliganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta and hemoglobin A were also measured and found to be 2.5 X 10(-8) M and 1.5 X 10(-10) M, respectively, demonstrating a greatly destabilized deoxyhemoglobin tetramer for hemoglobin Alberta compared to deoxyhemoglobin A. The functional and subunit dissociation properties of hemoglobin Alberta appear to be directly related to the dual role of the beta 101 residue in stabilizing the tetrameric form of the liganded structure, while concurrently destabilizing the unliganded tetramer molecule.  相似文献   

16.
T Y Fang  M Zou  V Simplaceanu  N T Ho  C Ho 《Biochemistry》1999,38(40):13423-13432
Site-directed mutagenesis has been used to construct two mutant recombinant hemoglobins (rHbs), rHb(betaH116Q) and rHb(betaH143S). Purified rHbs were used to assign the C2 proton resonances of beta116His and beta143His and to resolve the ambiguous assignments made over the past years. In the present work, we have identified the C2 proton resonances of two surface histidyl residues of the beta chain, beta116His and beta143His, in both the carbonmonoxy and deoxy forms, by comparing the proton nuclear magnetic resonance (NMR) spectra of human normal adult hemoglobin (Hb A) with those of rHbs. Current assignments plus other previous assignments complete the assignments for all 24 surface histidyl residues of human normal adult hemoglobin. The individual pK values of 24 histidyl residues of Hb A were also measured in deuterium oxide (D(2)O) in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) buffer in the presence of 0.1 M chloride at 29 degrees C by monitoring the shifts of the C2 proton resonances of the histidyl residues as a function of pH. Among those surface histidyl residues, beta146His has the biggest contribution to the alkaline Bohr effect (63% at pH 7.4), and beta143His has the biggest contribution to the acid Bohr effect (71% at pH 5.1). alpha20His, alpha112His, and beta117His have essentially no contribution; alpha50His, alpha72His, alpha89His, beta97His, and beta116His have moderate positive contributions; and beta2His and beta77His have a moderate negative contribution to the Bohr effect. The sum of the contributions from 24 surface histidyl residues accounted for 86% of the alkaline Bohr effect at pH 7.4 and about 55% of the acid Bohr effect at pH 5.1. Although beta143His is located in the binding site for 2,3-bisphosphoglycerate (2,3-BPG) according to the crystal structure of deoxy-Hb A complexed with 2, 3-BPG, beta143His is not essential for the binding of 2,3-BPG in the neutral pH range according to the proton NMR and oxygen affinity studies presented here. With the accurately measured and assigned individual pK values for all surface histidyl residues, it is now possible to evaluate the Bohr effect microscopically for novel recombinant Hbs with important functional properties, such as low oxygen affinity and high cooperativity. The present study further confirms the importance of a global electrostatic network in regulating the Bohr effect of the hemoglobin molecule.  相似文献   

17.
The mutations in hemoglobin Nancy beta145(HC2) Tyr leads to Asp and hemoglobin Cochin-Portal-Royal beta146(HC3) His leads to Arg involve residues which are thought to be essential for the full expression of allosteric action in hemoglobin. Relative to the structure of deoxyhemoglobin A, our x-ray study of deoxyhemoglobin Nancy shows severe disordering of the beta chain COOH-terminal tetrapeptide and a possible movement of the beta heme iron atom toward the plane of the porphyrin ring. These structural perturbations result in a high oxygen affinity, reduced Bohr effect, and lack of cooperatively in hemoglobin Nancy. In the presence of inositol hexaphosphate (IHP), the Hill constant for hemoglobin Nancy increases from 1.1 to 2.0. But relative to its action on hemoglobin A, IHP is much less effective in reducing the oxygen affinity and in increasing the Bohr effect of hemoglobin Nancy. This indicates that IHP does not influence the R in equilibrium T equilibrium as much in hemoglobin Nancy as in hemoglobin A, and this probably is due to the disordering of His 143beta which is known to be part of the IHP binding site. IHP is also known to produce large changes in the absorption spectrum of methemoglobin A, but we find that it has no effect on the spectrum of methemoglobin Nancy. In contrast to the large structural changes in deoxyhemoglobin Nancy, the structure of deoxyhemoglobin Cochin-Port-Royal differs from deoxyhemoglobin A only in the position of the side chain of residue 146beta. The intrasubunit salt bridge between His 146beta and Asp 94beta in deoxyhemoglobin A is lost in deoxyhemoglobin Cochin-Portal-Royal with the guanidinium ion of Arg 146beta floating freely in solution. This small difference in structure results in a reduced Bohr effect, but does not cause a change in the Hill coefficient, the response to 2,3-diphosphoglycerate, or the oxygen affinity at physiological pH.  相似文献   

18.
The hemoglobin of Liophis miliaris has unusual properties. The hemoglobin is dimeric in the oxy form, and the cooperativity of O2 binding is very low, but both the Bohr effect and cooperativity are greatly enhanced in the presence of ATP (Matsuura, M. S. A., Ogo, S. H., and Focesi, A., Jr. (1987) Comp. Biochem. Physiol. 86A, 683-687). Four unique chains (2 alpha, 2 beta) can be isolated from the hemolysate. The amino acid sequences of one alpha and one beta chain have been determined in an effort to understand the functional properties. Comparison of the sequences with those of the alpha and beta chains of human Hb shows the following. (i) All 7 of the residues in the beta chain normally conserved in globins are identical to those of the human chain: Gly(B6), Phe(CD1), His(E7), Leu(F4), His(F8), Lys(H10), and Tyr(HC2), except that the distal His(E7) has been replaced by Gln in the alpha chain. (ii) All heme contact residues in the beta chain are identical with those in the human chain, but two differences are present in the alpha chain: the distal His(E7) is replaced by Gln and Met(B13) by Leu. (iii) All residues that form the binding site for organic phosphates are identical to those in human Hb. (iv) The major residues that contribute to the normal Bohr effect in human Hb, Asp-beta 94, His-beta 146, and Val-alpha 1 are conserved. (v) All beta chain residues at the alpha 1 beta 2 interface are identical with those in the human chain except two: Glu(G3)----Val and Glu(CD2)----Thr; these differences in charged residues may explain the dissociation to dimers. (vi) The 23 residues of the alpha chain in the alpha 1 beta 2 contact region are identical with those of the human chain except three: Phe(B14)----Leu, Thr(C3)----Gln and Pro(CD2)----Ser. (vii) A total of 17 differences occur at the alpha 1 beta 1 interface, 11 in the alpha chain and 6 in the beta chain.  相似文献   

19.
I M Russu  N T Ho  C Ho 《Biochemistry》1982,21(20):5031-5043
High-resolution proton nuclear magnetic resonance (NMR) spectroscopy at 250 MHz has been used to titrate 22 individual surface histidyl residues (11 per alpha beta dimer) of human normal adult hemoglobin in both the deoxy and the carbon monoxy forms. The proton resonances of beta 2, beta 143, and beta 146 histidyl residues are assigned by a parallel 1H NMR titration of appropriate mutant and chemically modified hemoglobins. The pK values of the 22 histidyl residues investigated are found to range from 6.35 to 8.07 in the deoxy form and from 6.20 to 7.87 in the carbon monoxy form, in the presence of 0.1 M Bis-Tris or 0.1 M Tris buffer in D2O with chloride ion concentrations varying from 5 to 60 mM at 27 degrees C. Four histidyl residues in the deoxy form and one histidyl residue in the carbon monoxy form are found to have proton nuclear magnetic resonance titration curves that deviate greatly from that predicted by the simple proton dissociation equilibrium of a single ionizable group. The proton nuclear magnetic resonance data are used to ascertain the role of several surface histidyl residues in the Bohr effect of hemoglobin under the above-mentioned experimental conditions. Under these experimental conditions, we have found that (i) the beta 146 histidyl residues do not change their electrostatic environments significantly upon binding of ligand to deoxyhemoglobin and, thus, their contribution to the Bohr effect is negligible, (ii) the beta 2 histidyl residues have a negative contribution to the Bohr effect, and (iii) the total contribution of the 22 histidyl residues investigated here to the Bohr effect is, in magnitude, comparable to the Bohr effect observed experimentally. These results suggest that the molecular mechanism of the Bohr effect proposed by Perutz [Perutz, M.F. (1970) Nature (London) 228, 726-739] is not unique and that the detailed mechanism depends on experimental conditions, such as the solvent composition.  相似文献   

20.
High-resolution proton nuclear magnetic resonance studies of hemoglobins Providence-Asn (beta82EF6 Lys replaced by Asn) and Providence-Asp (beta82EF6 Lys replaced by Asp) show that different amino acid substitutions at the same position in the hemoglobin molecule have different effects on the structure of the protein molecule. Hemoglobin Providence-Asp appears to be in a low-affinity tertiary structure in both the deoxy and carbonmonoxy forms. Deoxyhemoglobin Providence-Asn has its beta heme resonance shifted downfield slightly from its position in normal adult hemoglobin; however, the tertiary structures of the heme pocket of hemoglobins A and Providence-Asn are very similar when both proteins are in the carbonmonoxy form. These results are consistent with the oxygen equilibrium measurements of Bonaventura, J., et al. [(1976) J. Biol. Chem. 251, 7563] which show that both Hb Providence-Asn and Hb Providence-Asp have oxygen affinities lower than normal adult hemoglobin, with Hb Providence-Asp having the lowest. Our studies of the effects of sodium chloride on the hyperfine shifted proton resonances of deoxyhemoglobins A, Providence-Asn, and Providence-Asp indicate that the beta82EF6 lysine is probably one, but not the only binding site for chloride ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号