首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For phytophagous arthropods, host acceptance behavior is a key character responsible for host plant specialization. The grain rust mite, Abacarus hystrix (Nalepa), is an obligately phytophagous, polyphagous eriophyid mite recorded from at least 70 grass species. In this study, the hypothesis that two host populations of this mite (one collected from quackgrass and the other from ryegrass) are highly host-specific was tested using behavioral data. For this purpose, female behavior when exposed to familiar and novel host plants was observed in no-choice cross experiments. Altogether, 13 variables were used to describe mite behavior. Data were subjected to principal component analysis, and host acceptance behavior was subsequently tested with generalized estimating equations (GEE). Distinct variation in female behavior between familiar and novel hosts was observed. Females from neither population accepted novel hosts. This was recorded as significant differences in the occupation of and overall activity on particular plant parts. On their familiar host, females were not active and showed little tendency to move. On novel hosts females were more active and mobile, spending more time walking, running, and climbing on the whole plant surface and showing a tendency to disperse. Other differences in behavior between studied populations were also observed. Thus, the results suggest that mites of these two studied populations (1) differ in their behaviors during plant exploitation and (2) can quickly distinguish between their familiar host and an unfamiliar host used by a conspecific. These findings support the hypothesis of narrow host specialization of ryegrass and quackgrass populations of this highly polyphagous species.  相似文献   

2.
Recent studies have shown that certain host populations of the cereal rust mite Abacarus hystrix are highly specialized in their host use and it is likely that reproductive isolation exists between them. Here I verified this expectation by testing for reproductive barriers between ryegrass and quackgrass populations of A. hystrix. I performed reciprocal crosses between individuals from both populations and observed results of crosses. Leaves of the three grass species, ryegrass, quackgrass and wheat, were used as mating arenas. I used two criteria to determine reproductive barriers between strains: the proportion of female progeny and viability of progeny. If studied populations of this haplodiploid species are reproductively isolated a male-biased sex ratio and/or hybrid progeny of reduced viability would be expected. I found that in the presence of quackgrass and ryegrass pre-zygotic barriers between studied populations exists. On wheat I observed asymmetry in reproductive barriers. Between females from quackgrass and males from ryegrass a pre-zygotic barrier existed (only males obtained). However, the opposite reciprocal cross (females from ryegrass and males from quackgrass) produced progeny of both sexes. A male-biased sex ratio and low adult emergence suggests that post-zygotic mechanisms acted here. Low viability of progeny obtained from crosses in which females from ryegrass were engaged suggests that the origin of the female nymph acted as a predictor of hybrid inviability. The pattern of sterility observed in the cereal rust mite indicates that in the presence of three hosts (ryegrass, quackgrass and wheat) pre- and post-zygotic reproductive barriers between quackgrass and ryegrass populations of this mite exist. In addition to host fidelity (which acts as pre-zygotic barrier) there are post-zygotic barriers to gene flow.  相似文献   

3.
Abstract: Quantitative characteristics of the occurrence of eriophyoid mites on wheat and associated grasses were studied. Three groups of hosts: cultivated wheat ( Triticum aestivum ), quackgrass ( Agropyron repens ) in cultivation, and quackgrass in balks were analysed. Two species of eriophyoid mites were recorded: Aceria tosichella Keifer and Abacarus hystrix (Nalepa). A. hystrix appeared more frequent [present in 65.0% of all collected samples; (95% confidence interval: 50–80)] and abundant [mean number of individuals per sample: 207.3 (94.4–351.5)] than A. tosichella (17.5%; (7.5–3.0), 13.8 (0.9–32.8), respectively). Significant differences in numbers among studied mite species populations on different host plants have been found. It is concluded that wheat is the marginal host for these two eriophyoids when compared to quackgrass.  相似文献   

4.
The majority of eriophyoid mites are highly host specific and restricted to a narrow range of acceptable host plant species. The cereal rust mite, Abacarus hystrix was considered to be one of a few exceptions among them and has been found to be using a relatively wide host range. Since this species is a vagrant, inhabiting short-lived plants and aerially dispersing, it has commonly been considered to be a host generalist. Here the opposite hypothesis is tested, that host populations of A. hystrix are specialized on their local host plants and may represent host races. For this purpose, females from two host populations (quack grass, Agropyron repens and ryegrass, Lolium perenne) were transferred, and subsequently reared, on their normal (grass species from which females came from) and novel (other grass species) hosts. The female's fitness was assessed by survival and fecundity on the normal and novel host. Females of both populations had no success in the colonization of the novel host. They survived significantly better and had significantly higher fecundity on their normal host than on the novel one. These findings correspond with observations on host-dependent phenotype variability and host acceptance. The presence of locally specialized host populations in A. hystrix may be evidence for high host specificity among eriophyoids and the viruses they transmit. The main conclusion is that A. hystrix, which so far has been considered as a host generalist, in fact may be a complex species consisting of highly specialized host races.  相似文献   

5.
Demography parameters of the cereal rust mite Abacarus hystrix (Nalepa) on quack grass were studied to investigate its potential capacity of population increase in conditions of initially low density. The experiment was maintained under laboratory conditions at a constant temperature of 19.5-20.5 degrees C and 94 +/- 1% RH. Life-history data were used to calculate duration of developmental stages, survival of adults and rates of population increase. A new method of estimation of age-dependent fecundity is proposed. On average, eggs required 7.98 (n = 33, 95% CI: 7.68-8.21) days to develop into adults. Life expectancy of females was longer than that of males (9.72 and 5.41 days, respectively). The mean sex ratio, expressed as the proportion of females, was 0.80 (n = 122, CI: 0.71-0.86). The reproductive output for females was age-dependent and daily egg production reached a peak (3.83 eggs/day, CI: 2.50-5.15) on the 5th day, and then decreased steeply. The net reproductive rate (R0) was 10.12 female progeny per female per generation, the generation time (T) was 11.31 days, the intrinsic rate of increase (r) was 0.20 female progeny per female per day, and the finite rate of increase (lambda) was 1.23 female progeny per day. These estimates showed that A. hystrix has a great potential capacity for rapid population increase when colonising new hosts and its density is low. Therefore, we conclude that the population of the cereal rust mite on quack grass may rapidly build up to very high densities and can be a reservoir population, which may easily disperse and infest other, including cultivated, grasses.  相似文献   

6.
Nonhost resistance of rice to rust pathogens   总被引:1,自引:0,他引:1  
Rice is atypical in that it is an agricultural cereal that is immune to fungal rust diseases. This report demonstrates that several cereal rust species (Puccinia graminis f. sp tritici, P. triticina, P. striiformis, and P. hordei) can infect rice and produce all the infection structures necessary for plant colonization, including specialized feeding cells (haustoria). Some rust infection sites are remarkably large and many plant cells are colonized, suggesting that nutrient uptake occurs to support this growth. Rice responds with an active, nonhost resistance (NHR) response that prevents fungal sporulation and that involves callose deposition, production of reactive oxygen species, and, occasionally, cell death. Genetic variation for the efficacy of NHR to wheat stem rust and wheat leaf rust was observed. Unlike cereal rusts, the rust pathogen (Melampsora lini) of the dicotyledenous plant flax (Linum usitatissimum) rarely successfully infects rice due to an apparent inability to recognize host-derived signals. Morphologically abnormal infection structures are produced and appressorial-like structures often don't coincide with stomata. These data suggest that basic compatibility is an important determinate of nonhost infection outcomes of rust diseases on cereals, with cereal rusts being more capable of infecting a cereal nonhost species compared with rust species that are adapted for dicot hosts.  相似文献   

7.
8.
Studying antagonistic coevolution between host plants and herbivores is particularly relevant for polyphagous species that can experience a great diversity of host plants with a large range of defenses. Here, we performed experimental evolution with the polyphagous spider mite Tetranychus urticae to detect how mites can exploit host plants. We thus compared on a same host the performance of replicated populations from an ancestral one reared for hundreds of generations on cucumber plants that were shifted to either tomato or cucumber plants. We controlled for maternal effects by rearing females from all replicated populations on either tomato or cucumber leaves, crossing this factor with the host plant in a factorial design. About 24 generations after the host shift and for all individual mites, we measured the following fitness components on tomato leaf fragments: survival at all stages, acceptance of the host plant by juvenile and adult mites, longevity, and female fecundity. The host plant on which mite populations had evolved did not affect the performance of the mites, but only affected their sex ratio. Females that lived on tomato plants for circa 24 generations produced a higher proportion of daughters than did females that lived on cucumber plants. In contrast, maternal effects influenced juvenile survival, acceptance of the host plant by adult mites and female fecundity. Independently of the host plant species on which their population had evolved, females reared on the tomato maternal environment produced offspring that survived better on tomato as juveniles, but accepted less this host plant as adults and had a lower fecundity than did females reared on the cucumber maternal environment. We also found that temporal blocks affected mite dispersal and both female longevity and fecundity. Taken together, our results show that the host plant species can affect critical parameters of population dynamics, and most importantly that maternal and environmental conditions can facilitate colonization and exploitation of a novel host in the polyphagous T. urticae, by affecting dispersal behavior (host acceptance) and female fecundity.  相似文献   

9.
A virus that causes chlorotic streaks on ryegrass leaves was transmitted by the eriophyid mite Abacarus hystrix (Nalepa). Virus-free mites acquired the virus in 2 hr. feeding on infected ryegrass and the proportion that became infective increased with increased feeding time up to 12 hr.; vectors lost infectivity within 24 hr. of leaving the infected leaves. All instars of A. hystrix transmitted the virus.
The virus was transmitted by manual inoculation of sap to other species of Gramineae, including oats, rice, cocksfoot and meadow fescue, but none of these hosts seemed to contain as much virus as ryegrass; their saps did not precipitate specifically with antiserum prepared against the virus in ryegrass, whereas sap from infected ryegrass precipitated up to a dilution of 1/32. Infective sap of S22 Italian ryegrass contained flexuous rod-shaped particles; the dilution end-point of the virus was about 1 in 1000; the virus was inactivated when held for 10 min. at 60°C. and most of its infectivity was lost after 24 hr. at room temperature.  相似文献   

10.
As in other eukaryotes, protein kinases (PKs) are generally evolutionarily conserved and play major regulatory roles in plant pathogenic fungi. Many PKs have been proven to be important for pathogenesis in model fungal plant pathogens, but little is currently known about their roles in the pathogenesis of cereal rust fungi, devastating pathogens in agriculture worldwide. Here, we report on an in planta highly induced PK gene PsSRPKL from the wheat stripe rust fungus Puccinia striiformis f. sp. tritici (Pst), one of the most important cereal rust fungi. PsSRPKL belongs to a group of PKs that are evolutionarily specific to cereal rust fungi. It shows a high level of intraspecies polymorphism in the kinase domains and directed green fluorescent protein chimers to plant nuclei. Overexpression of PsSRPKL in fission yeast induces aberrant cell morphology and a decreased resistance to environmental stresses. Most importantly, PsSRPKL is proven to be an important pathogenicity factor responsible for fungal growth and responses to environmental stresses, therefore contributing significantly to Pst virulence in wheat. We hypothesize that cereal rust fungi have developed specific PKs as pathogenicity factors for adaptation to their host species during evolution. Thus, our findings provide significant insights into pathogenicity and virulence evolution in cereal rust fungi.  相似文献   

11.
12.
The wheat curl mite (WCM) is a major pest in cereal crops around the world and the vector of at least four known pathogens capable of reducing yields in crops such as wheat, corn, barley, oats, millet and rye. Current taxonomy recognizes WCM as a single species, Aceria tosichella; however, recent genetic, physiological and ecological studies have shown that WCM is likely to be a species complex. In this study we assessed genetic variation and phylogenetic relationships among WCM from four continents and a wide range of host plants using DNA sequence data from one mitochondrial gene, one nuclear gene and a single nuclear intergenic spacer region. Phylogenetic analyses revealed 11 unique mite lineages associated with specific plant hosts including wheat and barley. Host associations were consistent across continents, often with a single haplotype dominating a host plant regardless of geographic origin. The genetic and ecological differences identified in this study support the notion that WCM is a species complex in need of major taxonomic revision. These findings have implications for control of WCM globally, particularly within the context of identifying plants that form ‘green bridge’ refuges, assessing disease transmission risk, and identifying resistance in cereal genotypes to WCM and associated pathogens.  相似文献   

13.
Feather mites are highly specialized plumage and skin ectoparasites that are variously adapted for inhabiting certain microhabitats on a bird's body. Different feather mite taxa of higher (familial) rank adapted to the same microhabitats display similar main morphological adaptations even if they are rather distantly related to one another. Hypotheses on the evolution of general adaptations in morphology of feather mites during colonization and establishment in different microhabitats are presented. According to recent data, feather mites are a paraphyletic group consisting of three superfamilies: Analgoidea, Pterolichoidea and Freyanoidea. We present our view on the general feather mite phylogeny course at the familial rank for the Analgoidea by means of cladistic analysis. Co-speciation of parasites with their hosts is postulated as a main factor driving feather mite evolution. Examples are given of non-coevolutionary events, for example recolonization from one host species onto another, extinction and multiple speciation.  相似文献   

14.
The high relevance of host‐switching for the diversification of highly host‐specific symbionts (i.e., those commonly inhabiting a single host species) demands a better understanding of host‐switching dynamics at an ecological scale. Here, we used DNA metabarcoding to study feather mites on passerine birds in Spain, sequencing mtDNA (COI) for 25,540 individual mites (representing 64 species) from 1,130 birds (representing 71 species). Surprisingly, 1,228 (4.8%) mites from 84 (7.4%) birds were found on host species that were not the expected to be a host according to a recent bird–feather mite associations catalog. Unexpected associations were widespread across studied mite (40.6%) and bird (43.7%) species and showed smaller average infrapopulation sizes than typical associations. Unexpected mite species colonized hosts being distantly related to the set of their usual hosts, but with similar body size. The network of bird–mite associations was modular (i.e., some groups of bird and mite species tended to be more associated with each other than with the others), with 75.9% of the unexpected associations appearing within the module of the typical hosts of the mite species. Lastly, 68.4% of mite species found on unexpected hosts showed signatures of genetic differentiation, and we found evidence for reproduction or the potential for it in many of the unexpected associations. Results show host colonization as a common phenomenon even for these putatively highly host‐specific symbionts. Thus, host‐switching by feather mites, rather than a rare phenomenon, appears as a relatively frequent phenomenon shaped by ecological filters such as host morphology and is revealed as a fundamental component for a dynamic coevolutionary and codiversification scenario.  相似文献   

15.
16.
In field experiments apterous Metopolophium dirhodum produced significantly more alatae when reared on mature plants (milky ripe stage) than on young plants. Nymphal and adult survival and relative growth rate were little affected by the developmental stage of the host plant. Relative growth rate and fecundity were strongly related to temperature. Laboratory experiments confirmed that the developmental stage of wheat had no significant effect on survival or relative growth rate of the aphids. However, laboratory grown plants did not produce the levels of alate production seen in field crops and in the field experiments. It is suggested that in investigations into the effects of the host plant on cereal aphids field grown plants should be used whenever possible. Alate production is proposed as the major plant induced factor affecting the development of M. dirhodum populations on wheat in the field. Alatae developed on mature plants even when the number of aphids was very low.  相似文献   

17.
The term synhospitality means the association of two or more closely related parasite species with one host species (Eichler, 1966). The cases of two or three synhospitalic species are known from the same host species, and especially ones where parasites were recorded from different parts of the host range, are quite common. The most ordinary reason causing synhospitality in permanent parasites is the host switching. Nevertheless, there are a number of synhospitality cases, where the parasite complex is monophyletic because evolved on a single host species. The special term--"phylogenetic synhospitality" (FS) is proposed for these cases of synhospitality. Most known cases of FS in acariform mites, permanent parasites of vertebrates, are analysed. It is found out that both astigmatan and prostigmatan parasite mites demonstrate a numbers of FS. The majority of these examples represent parasitism of two or three synhospitalic parasite species. Impressive examples of FS involving a number of synhospitalic species is shown by only astigmatan mites inhabiting the fur of mammals or plumage of birds. Most known examples involving four or more mite species are discussed: 51 mite species of the genus Schizocarpus (Chirodiscidae) parasitizing Castor fiber and C. canadensis (Castoridae); 6 species of Listrophorus spp. (Listrophoridae) from Ondatra zibethicus (Cricetidae); 23 species of Listrophoroides s. 1. (Atopomelidae) from Maxomys surifer (Muridae); 21 species of Cytostethum (Atomelidae) from Potorous tridactylus (Potoridae); 4 species of Listrophoroides (Afrolistrophoroides) from Malacomys longipes (Muridae); 7 species of Fainalges (Xolalgidae) from Aratinga holochlora (Psittacidae); 4 species of Zygepigynia (Pteronyssidae) from Chrysocolaptes lucidus (Picidae). The main reason of FS is that, in spite of the Fahrenholz's rule, the speciation of many parasites proceeds much more intensively than in their hosts because of the more rapid replacement of the parasitic generations. The first factor causing FS is the mite speciation it temporary segregated populations of the host (allopatric speciation). In this case, the "multispecies complexes" appeared after the subsequent reintegration of the host populations formerly isolated. The second factor is the speciation due to the specialization of mites to local microhabitats in the fur or plumage of host (sympatric or synxenic speciation). The second way of speciation is most characteristic for mites with highly specialized attaching structures. The phenomenon of FS more resides in ectoparasites of mammals rather than in feather mites in spite of much more structural complicacy of plumage rather than the fur. The high mobility of birds and wide dispersion of their new generations probably embarrass the process of sympatric speciation in their parasites. As a rule, only really significant geographical barriers play role for population isolation in birds. Thus, it could be concluded that two independent factors or their combination lead to FS. (i) The complex and/or disjunctive host range giving a possibility for allopatric speciation in parasites. (ii) The deep mite specialization to local microhabitats on the host body causing sympatric (synxenic) speciation. Fur of mammals and plumage of birds are very complicated in structure and microconditions and provide a considerable number of different microhabitats for mites inhabiting them. The prevalence of one of these two factors depends on the biological peculiarities of both parasites and their hosts. In mites with lesser specialized attaching organs, for example in atopomelids, allopatric speciation dominates. In mites with strongly specialized attaching organs, for example in listrophorids or chirodiscids, both pathways of speciation may take place. In feather mites, sympatric speciation should be more probable due to quite complicate and various structure of feathers in avian hosts. In fur mites, sympatric speciation is more likely in mites parasitizing hosts with peculiar ecology, for example in semiaquatic rodents possessing quite different fur structure in different parts of the body.  相似文献   

18.
The formation and maintenance of the Nothofagus beech gap in the South Island, New Zealand, has been the focus of biogeographical debate since the 1920s. We examine the historical process of gap formation by investigating the population genetics of fungus beetles: Brachynopus scutellaris (Staphylinidae) inhabits logs and is absent from the beech gap, and Hisparonia hystrix (Nitidulidae) is contiguous through the gap and is found commonly on sooty mould growing on several plant species. Both species show distinctive northern and southern haplotype distributions while H. hystrix recolonized the gap as shown by definitive mixing. B. scutellaris shows two major haplotype clades with strong geographical concordance, and unlike H. hystrix, has clearly defined lineages that can be partitioned for molecular dating. Based on coalescence dating methods, disjunct lineages of B. scutellaris indicate that the gap was formed less than 200 000 years ago. Phylogenetic imprints from both species reveal similar patterns of population divergence corresponding to recent glacial cycles, favouring a glacial explanation for the origin of the gap. Post-gap colonization by H. hystrix may have been facilitated by the spread of Leptospermum scoparium host trees to the area, and they may be better at dispersing than B. scutellaris which may be constrained by fungal host and/or microhabitat. The gap-excluded species B. scutellaris is found in both beech and podocarp-broadleaf forests flanking the Westland gap and its absence in the gap may be related to incomplete recolonization following glacial retreat. We also discuss species status and an ancient polymorphism within B. scutellaris .  相似文献   

19.
Epichloid fungal endophytes (Epichloë spp., Ascomycota: Clavicipitaceae) inhabit aerial tissues of several cool-season grasses, and enhance host growth and defence against herbivores. The presence of these symbionts can also affect interactions between the host and other non-epichloid plants. The role of an epichloid endophyte on interspecific competition has been tested using perennial grasses with contrasting results, but it has been scarcely tested using annual species in agroecosystems. We evaluated the impact of Epichloë-grass symbiosis on the competitive interaction between a non-host cereal crop (Triticum aestivum, wheat) and a host weed (Lolium multiflorum, ryegrass), growing in the presence of invertebrate herbivores (aphids) under no resource limitation. We conducted an outdoor mesocosm experiment with wheat plants growing in monoculture or in mixture with low or high proportions of ryegrass plants. Ryegrass plants presented either low (E-) or high (E+) incidence of Epichloë occultans (i.e. frequency of epichloid endophytic plants). We measured wheat vegetative and reproductive yield and its natural aphid infestation. Although epichloid endophyte incidence did not affect ryegrass biomass, wheat reproductive yield in mixtures (relative to wheat monocultures) was 45% higher when grown with E+ ryegrass plants than E- conspecific plants. Aphids preferred wheat plants grown with E- plants rather than wheat plants grown with E+ plants, but only in mixtures with high proportion of ryegrass. Our results demonstrate that epichloid endophyte incidence can decrease host competitive ability and confers associational protection to the non-endophytic neighbouring plants. Thus, ryegrass-endophyte symbiosis can increase crop yield by positive neighbourhood effects through different mechanisms probably related to the density of the weed. The benefits of this endosymbiont cannot be considered host-exclusive since they can be disseminated to non-endophytic plants. Furthermore, our results suggest that the epichloid endophyte incidence on annual weeds can contribute to agroecosystem sustainability by influencing pest management and increasing crop yield.  相似文献   

20.
Erwin’s method for estimating total global species richness assumes some host‐specificity among the canopy arthropods. This study examined possible host habitat specialization in two major groups of soil arthropods, the oribatid and mesostigmatid mites, by sampling beneath three tree species: Eucalyptus pilularis Smith, Eucalyptus propinqua Deane and Maiden and Allocasuarina torulosa (Aiton) L. Johnson. The sample sites were in the Lansdowne State Forest, New South Wales, Australia and the three tree species were selected on the basis of their known differential effects on soil. Sampling was conducted over three seasons, and 79 oribatid and 34 mesostigmatid species were identified from 25 196 and 3634 individuals, respectively. Tree species had little effect on mite species composition with only three oribatid species and no mesostigmatid species identified as host‐habitat specialists using a niche breadth measure. Of mite species found under E. pilularis, E. propinqua and A. torulosa trees, 2%, 1% and 0% were defined as host‐habitat specialists, respectively. In contrast, tree species had significant and consistent effects on mite community structure, which differed in relative abundance of the oribatid species, their size class distributions and species rankings. In the mesostigmatid communities, there was a difference in the ranking of the mite species among tree species. Although it was demonstrated that tree species have an impact on the soil environment, the differences between tree species were insufficient to change species composition. The low degree of host‐habitat specialization suggested that other factors were more important for determining mite species composition at a site, and soil mite host‐habitat specialization may not make a large contribution to estimates of total global species richness using methods such as those proposed by Erwin (1982) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号