首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analysis of gene flow and migration of Helicoverpa armigera (Hübner) in a major cropping region of Australia identified substantial genetic structuring, migration events, and significant population genotype changes over the 38-mo sample period from November 1999 to January 2003. Five highly variable microsatellite markers were used to analyze 916 individuals from 77 collections across 10 localities in the Darling Downs. The molecular data indicate that in some years (e.g., April 2002-March 2003), low levels of H. armigera migration and high differentiation between populations occurred, whereas in other years (e.g., April 2001-March 2002), there were higher levels of adult moth movement resulting in little local structuring of populations. Analysis of populations in other Australian cropping regions provided insight into the quantity and direction of immigration of H. armigera adults into the Darling Downs growing region of Australia. These data provide evidence adult moth movement differs from season to season, highlighting the importance of studies in groups such as the Lepidoptera extending over consecutive years, because short-term sampling may be misleading when population dynamics and migration change so significantly. This research demonstrates the importance of maintaining a coordinated insecticide resistance management strategy, because in some years H. armigera populations may be independent within a region and thus significantly influenced by local management practices; however, periods with high migration will occur and resistance may rapidly spread.  相似文献   

2.
1 Spatial and temporal habitat heterogeneity represented by annual crops is a major factor influencing population dynamics of phytophagous insect pests such as the cotton aphid Aphis gossypii Glover. We studied the effects of instability of the cotton agroecosystem resulting from the temporary availability of the plant resource and the repeated use of insecticides on the genetic variability of the cotton aphids.
2 Samples of A. gossypii were collected in cotton plots, treated or not with insecticides and from vegetable crops (Malvaceae, Cucurbitaceae and Solanaceae) within the cotton growing area of northern Cameroon. The genetic structure of the samples was assessed using eight microsatellite markers. Insecticide resistance was estimated through the detection of two mutations in the ace -1 gene that are associated with insensitivity of acetylcholinesterase to carbamate and organophosphate insecticides.
3 The results obtained show that both host plants and insecticides act in genetic structuring of A. gossypii . Ninety-three percent of aphids collected on cotton were characterized by the same microsatellite multilocus genotype, Burk1 , which also displays the insecticide resistant alleles.
4 During the dry season, the cotton crop season after, the genotype Burk1 was principally found on two other malvaceous cultivated plants, rosella and okra, acting as suitable reservoir plants. The ability of the cotton aphid to move among asynchronous suitable habitats in response to changes in resource availability enables the pest to exploit unstable cropping systems. An understanding of the cotton aphid life system may aid to improve strategies for integrated resistance management.  相似文献   

3.
The population dynamics of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in the Murrumbidgee Valley, Australia, has been characterized using five highly variable microsatellite loci. In the 2001-2002 growing season, there were very high levels of migration into the Murrumbidgee Valley with no detectable genetic structuring, consistent with previous analyses on a national scale. By contrast, there was significant genetic structuring over the 2002-2003 growing season, with three distinct genetic types detected. The first type corresponded to the first two generations and was derived from local individuals emerging from diapause and their progeny. The second genetic type corresponded to generation 3 and resulted from substantial immigration into the region. There was another genetic shift in generation 4, which accounts for the third genetic type of the season. This genetic shift occurred despite low levels of immigration. During the third generation of the 2002-2003 growing season, different population dynamics was characterized for H. armigera on maize, Zea mays L., and cotton Gossipium hirsutum L. Populations on cotton tended to cycle independently with very little immigration from outside the region or from maize within the region. Maize acted as a major sink for immigrants from cotton and from outside the region. If resistance were to develop on cotton under these circumstances, susceptible individuals from maize or from other regions would not dilute this resistance. In addition, resistance is likely to be transferred to maize and be perpetuated until diapause, from where it may reemerge next season. If low levels of immigration were to occur on transgenic cotton, this may undermine the effectiveness of refugia, especially noncotton refugia.  相似文献   

4.
The sequence and relative injuriousness of insect pests was studied for three successive years in unsprayed cotton of the Namoi Valley. Heliothis punctigera Wallengren, the native budworm, and to a lesser extent H. armigera (Hübner), the cotton bollworm, prevented the setting of full crops by destroying buds and bolls. After setting, high proportions of bolls were injured by Earias huegeli Rogenhofer, the rough bollworm. Incidental damage was caused to seedlings by Thrips imaginis Bagnall, the plague thrips, and lo leaves by Anomis flava Fabricius, the cotton looper, and by Austracris guttulosa (Walker), the spur-throated locust. In commercial crops, pest control must rely on the use of broad-spectrum insecticides: H. armigera is currently resistant to several of these, and has become the principal species in the local population of cotton pests. A number of enviromental features impede the natural control of pests in the southerly areas where cotton is now produced. In comparison to the older dryland cropping practised in central Queensland, a higher yield is necessary to cover the production costs of irrigated cotton; a shorter growing season prevents the plants from compensating effectively for insect damage and the natural enemies of cotton pests are less abundant and less active.  相似文献   

5.
The density of Helicoverpa armigera (Hübner) populations on Bacillus thuringiensis Berliner (Bt) transgenic cotton, corn, peanut, and soybean; differences in its development on Bt cotton and common (nontransgenic) cotton; and the potential for mating among populations from Bt cotton fields and other crop fields were investigated in the suburbs of Xinxiang City (Henan Province) and Langfang City (Hebei Province) in the southern and northern parts of north China, respectively. Although development of H. armigera on Bt cotton was much slower than on common cotton, there was a still high probability of mating between populations from Bt cotton and other sources due to the scattered emergence pattern of H. armigera adults, and overlap of the second and third generations. In a cotton and corn growing region, early and late planted corn provided suitable refugia for the third and fourth generations of H. armigera, but not for the second generation. In a cotton and soybean/ peanut mix system, noncotton crops provided a natural refugia from the second- to fourth-generation H. armigera, but function of the refuge would closely depend on the proportion of Bt cotton. Consequently, it may be necessary to compensate the original mixed cropping patterns in different areas for delaying resistance development of H. armigera to Bt cotton.  相似文献   

6.
Abstract Helicoverpa armigera is a major pest of Australian cotton crops. To assess the impact of ant predation on H. armigera populations, the behaviour of four common ant taxa was observed in cotton crops in northern New South Wales over the 1999−2000 and 2001−02 seasons. Areas of cotton were artificially stocked with H. armigera eggs prior to observation. Pheidole spp. were the most frequently observed ants within the crop canopy in 1999−2000 and took the most H. armigera eggs. Iridomyrmex spp. were more frequently observed than Pheidole spp. in 2001−02 and also took some H. armigera eggs. Neither Paratrechina spp. nor Rhytidoponera metallica (Smith) took any H. armigera eggs, although both were seen in the crop canopy. Irrigation, cultivation and insecticide application disrupted foraging ants and limited their impact on H. armigera populations.  相似文献   

7.
Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a key insect pest of cotton in Xinjiang cotton-planting region of northwest China. In this region, cotton is grown on average ≈ 1.65 million ha (1.53 ≈ 1.80 million ha) annually in largely monoculture agricultural landscapes, similarly to cropping systems in the United States or Australia. Under such cropping regimes, naturally occurring refuges (with non-Bt crops) may be insufficient to prevent H. armigera resistance development to Bt toxins. Therefore, we assessed frequency of alleles conferring resistance to Cry1Ac toxin of F(1) and F(2) offspring of H. armigera isofemale lines from two distinct localities in the region during 2005-2009. More specifically, a total of 224 isofemale lines was collected from Korla County (≈ 70% Bt cotton adoption) and 402 lines from Shache County (≈ 5% Bt cotton planting). Subsequent offspring was screened on Cry1Ac artificial diet. From 2005 to 2009, resistance gene frequency in Korla fluctuated between 0.0000 and 0.0040, while being 0.0000-0.0008 in individuals collected from Shache, and there were no significant increases in both counties from 2005 to 2009. Relative average development rates (RADRs) of larvae in F(1) tests showed significant increases from Korla, but not in Shache. RADR of F(1) larvae is significantly correlated with RADR of F(2) offspring, indicating genetic variation in response to toxin in field H. armigera population. Although the occurrence of Cry1Ac resistance alleles was low in Xinjiang cotton-planting region of China, particular attention should be given to H. armigera resistance development in Korla County.  相似文献   

8.
The noctuid Helicoverpa armigera (Hübner) is a major insect pest of chickpea Cicer arietinum L., pigeonpea Cajanus cajan (L.) Millsp., peanut Arachis hypogaea L., and cotton Gossypium spp., and host plant resistance is an important component for managing this pest in different crops. Because of variations in insect density and staggered flowering of the test material, it is difficult to identify cultivars with stable resistance to H. armigera across seasons and locations. To overcome these problems, we standardized the detached leaf assay to screen for resistance to this pest in chickpea, pigeonpea, peanut, and cotton under uniform insect pressure under laboratory conditions. Terminal branch (three to four fully expanded leaves) of chickpea, first fully expanded leaf of cotton, trifoliate of pigeonpea, or quadrifoliate of peanut, embedded in 3% agar-agar in a plastic cup/jar of appropriate size (250-500-ml capacity) infested with 10-20 neonate larvae can be used to screen for resistance to H. armigera. This technique keeps the leaves in a turgid condition for approximately 1 wk. The experiments can be terminated when the larvae have caused > 80% leaf damage in the susceptible check or when differences in leaf feeding between the resistant and susceptible checks are maximum. Detached leaf assay can be used as a rapid screening technique to evaluate germplasm, segregating breeding materials, and mapping populations for resistance to H. armigera in a short span of time with minimal cost, and under uniform insect infestation. It also provides useful information on antibiosis component of resistance to the target insect pest.  相似文献   

9.
Helicoverpa armigera is an important pest of cotton and other agricultural crops in the Old World. Its wide host range, high mobility and fecundity, and the ability to adapt and develop resistance against all common groups of insecticides used for its management have exacerbated its pest status. An understanding of the population genetic structure in H. armigera under Indian agricultural conditions will help ascertain gene flow patterns across different agricultural zones. This study inferred the population genetic structure of Indian H. armigera using five Exon-Primed Intron-Crossing (EPIC)-PCR markers. Nested alternative EPIC markers detected moderate null allele frequencies (4.3% to 9.4%) in loci used to infer population genetic structure but the apparently genome-wide heterozygote deficit suggests in-breeding or a Wahlund effect rather than a null allele effect. Population genetic analysis of the 26 populations suggested significant genetic differentiation within India but especially in cotton-feeding populations in the 2006–07 cropping season. In contrast, overall pair-wise F ST estimates from populations feeding on food crops indicated no significant population substructure irrespective of cropping seasons. A Baysian cluster analysis was used to assign the genetic make-up of individuals to likely membership of population clusters. Some evidence was found for four major clusters with individuals in two populations from cotton in one year (from two populations in northern India) showing especially high homogeneity. Taken as a whole, this study found evidence of population substructure at host crop, temporal and spatial levels in Indian H. armigera, without, however, a clear biological rationale for these structures being evident.  相似文献   

10.
新疆北部棉区作物景观多样性对棉铃虫种群的影响   总被引:1,自引:0,他引:1  
吕昭智  潘卫林  张鑫  李贤超  张娟 《生态学报》2012,32(24):7925-7931
如何从景观尺度上实现对害虫的科学管理已经成为昆虫生态学的研究热点.利用频振式杀虫灯诱集技术,从2007-2009年在新疆北部棉区16-17个农场近240km2作物范围内,监测和评估棉田周边作物景观对棉铃虫种群的影响.结果表明:农业景观多样化显著地影响棉铃虫种群数量,复杂作物系统中(棉花比例<50%作物面积)棉铃虫成虫数量明显大于简单作物系统(棉花比例≥50%作物面积;棉铃虫种群数量与景观多样性指数(Simpson's Reciprocal Index)呈正相关;同时棉铃虫成虫与加工番茄、玉米和小麦的比例成正相关,但与棉花比例呈负相关.研究结果为转基因棉花抗性管理提供科学依据,同时农田景观多样性指标可作为修正棉区棉铃虫预测模型的重要指标.  相似文献   

11.
Top-down suppression of herbivores is a fundamental ecological process and a critical service in agricultural landscapes. Adoption of bioenergy cropping systems is likely to become an increasingly important driver causing loss or gain of this service in coming decades. We measured natural pest suppression potential in ten model bioenergy crops in a long-term experimental array by deploying plasticine sentinel caterpillar mimics, which record imprints from predator attacks. Cropping systems included three intensive annual row crop systems and a range of simple perennial monocultures and more complex polycultures. We compared attack rates across the ten cropping systems and assessed differences over time within a growing season and between the ground level and canopy. We found strong differences in attack rates across cropping systems, usually with more attacks in perennial crops than annuals. However, outcomes varied in space and time, both within and among cropping systems. Birds and small mammals were responsible for most, and sometimes all, attacks in annual crops and were most important early in the season. Chewing arthropod attacks increased over the course of the growing season and were responsible for most attack events in perennial systems. In late summer there were almost no attacks in annual crop canopies, while attack rates in perennial canopies at the same time were quite high and were carried out almost entirely by chewing arthropods. Our results underscore the lack of trophic complexity in annual bioenergy cropping systems relative to perennials. They also illustrate the dramatic changes in predator activity and predation intensity that occur both seasonally and between the ground and plant canopy. Policies and practices that increase the footprint of annual crops for bioenergy are likely to cause a deficit in pest suppression services at local and landscape scales.  相似文献   

12.
NuCOTN 33B, a Bt transgenic variety of upland cotton (Gossypium hirsutum L.) expressing the insecticidal protein Cry1Ac from Bacillus thuringiensis Berliner sp. kurstaki, was evaluated for resistance to Helicoverpa armigera (Hübner) during 1998-2000 in northern China. The results indicated that there was no significant difference in egg densities between NuCOTN 33B and three nontransgenic varieties (DP5415, Zhongmian12, and Shiyuan321) during the season, although the survival of larvae on NuCOTN 33B seemed significantly reduced. High larval densities observed on non-Bt cotton appeared in great contrast to the low larval populations observed on NuCOTN 33B plants during the seasons. In an environment without insecticide sprays, the annual ginned cotton yields in NuCOTN 33B plots, ranging from 1391.17 to 1511.35 kg/ha, were significantly higher than those in non-Bt cotton (340.34-359.58 kg/ha). These high levels of field efficacy for NuCOTN 33B against H. armigera in northern China may pave the way for reduced pesticide applications and an expansion of alternative pest-control strategies.  相似文献   

13.
Transgenic cotton, Gossypium hirsutum L., expressing the crylAc and cry2Ab genes from Bacillus thuringiensis (Bt) Berliner variety kurstaki in a pyramid (Bollgard II) was widely planted for the first time in Australia during the 2004-2005 growing season. Before the first commercial Bollgard II crops, limited amounts of cotton expressing only the crylAc gene (Ingard) was grown for seven seasons. No field failures due to resistance to CrylAc toxin were observed during that period and a monitoring program indicated that the frequency of genes conferring high level resistance to the CrylAc toxin were rare in the major pest of cotton, Helicoverpa armigera (Htibner) (Lepidoptera: Noctuidae). Before the deployment of Bollgard II, an allele conferring resistance to Cry2Ab toxin was detected in field-collected H. armigera. We established a colony (designated SP15) consisting of homozygous resistant individuals and examined their characteristics through comparison with individuals from a Bt-susceptible laboratory colony (GR). Through specific crosses and bioassays, we established that the resistance present in SP15 was due to a single autosomal gene. The resistance was recessive. Homozygotes were highly resistant to Cry2Ab toxin, so much so, that we were unable to induce significant mortality at the maximum concentration of toxin available. Homozygotes also were unaffected when fed leaves of a cotton variety expressing the cry2Ab gene. Although cross-resistant to Cry2Aa toxin, SP15 was susceptible to CrylAc and to the Bt product DiPel.  相似文献   

14.
Discriminating doses of fenvalerate, cypermethrin, quinalphos, and endosulfan were determined with an insecticide-susceptible Helicoverpa armigera (Hübner) strain. In-season changes in insecticide resistance were monitored with discriminating dose assays at weekly intervals throughout the cropping season for 6 yr from 1993 to 1999 in central India. Resistance to pyrethroids was high throughout all seasons. Resistance to 0.75 microg of quinalphos was consistent, with seasonal averages ranging from 23 to 27% survival over the 6 yr. Resistance to 10.0 microg of endosulfan was moderately high at an average of 40-47% survival during 1993-1994 and in 1997-1998. It was lower in 1996-1997 at 27%, and in 1998-1999 at 33%. The weekly monitoring data for all seasons were pooled and the consolidated 6-yr seasonal average profile indicated that resistance to quinalphos and endosulfan was low during September at 21 and 27% survival, respectively, but increased to 28 and 37% by the end of November. Resistance levels to organophosphates and endosulfan increased during the season, depending on the use of these compounds. At almost all monitoring sites, the within-season changes in quinalphos resistance for all seasons through the study period followed a trend similar to that of endosulfan. The results suggest the possibility of cross-resistance between these compounds. Based on this study and the existing information on cotton pest management, we have developed a "window strategy" for cotton pest management with specific emphasis on the management of insecticides for effective control of H. armigera. This strategy has contributed to improved control at reduced costs in extensive trials.  相似文献   

15.
Transgenic cotton that produces insecticidal proteins from Bacillus thuringiensis (Bt), often referred to as Bt cotton, is widely grown in many countries. Bt cotton with a single cry1A gene and stacked also with cry2A gene has provided satisfactory protection against the damage by the lepidopteran bollworms, especially the cotton bollworm, Helicoverpa armigera (Hübner) which is considered as a key pest. The baseline susceptibility of the larvae of H. armigera to Cry1Ac and other toxins carried out in many countries has provided a basis for monitoring resistance. There is no evidence of development of field-level resistance in H. armigera leading to the failure of Bt cotton crop anywhere in the world, despite the fact that Bt cotton was grown on the largest ever area of 12.1 million hectares in 2006 and its cumulative cultivation over the last 11 years has surpassed the annual cotton area in the world. Nevertheless, the Bt resistance management has become a necessity to sustain Bt cotton and other transgenic crops in view of potential of the target insects to evolve Cry toxin resistance.  相似文献   

16.
In the mid-1990 s the Australian Cotton industry adopted an insect-resistant variety of cotton (Ingard) which expresses the Bt toxin Cry1Ac that is specific to a group of insects including the target Helicoverpa armigera. A conservative resistance management plan (RMP), that restricted the area planted to Ingard, was implemented to preserve the efficacy of Cry1Ac until two-gene transgenic cotton was available. In 2004/05 Bollgard II replaced Ingard as the transgenic cotton available in Australia. It improves on Ingard by incorporating an additional insecticidal protein (Cry2Ab). If an appropriate refuge is grown, there is no restriction on the area planted to Bollgard II. In 2004/05 and 2005/06 the Bollgard II acreage represented approximately 80 of the total area planted to cotton in Australia. The sensitivity of field-collected populations of H. armigera to Bt products was assayed before and subsequent to the widespread deployment of Ingard cotton. In 2002 screens against Cry2Ab were developed in preparation for replacement of Ingard with Bollgard II. There have been no reported field failures of Bollgard II due to resistance. However, while alleles that confer resistance to H. armigera in the field are rare for Cry1Ac, they are surprisingly common for Cry2Ab. We present an overview of the current approach adopted in Australia to monitor and adaptively manage resistance to Bt-cotton in field populations of H. armigera and discuss the implications of our findings to date. We also highlight future challenges for resistance management in Australia, many of which extend to other Bt-crop and pest systems.  相似文献   

17.
Mahon RJ  Downes SJ  James B 《PloS one》2012,7(6):e39192
Crops engineered to produce insecticidal crystal (Cry) proteins from the soil bacterium Bacillus thuringiensis (Bt) have revolutionised pest control in agriculture. However field-level resistance to Bt has developed in some targets. Utilising novel vegetative insecticidal proteins (Vips), also derived from Bt but genetically distinct from Cry toxins, is a possible solution that biotechnical companies intend to employ. Using data collected over two seasons we determined that, before deployment of Vip-expressing plants in Australia, resistance alleles exist in key targets as polymorphisms at frequencies of 0.027 (n = 273 lines, 95% CI = 0.019-0.038) in H. armigera and 0.008 (n = 248 lines, 0.004-0.015) in H. punctigera. These frequencies are above mutation rates normally encountered. Homozygous resistant neonates survived doses of Vip3A higher than those estimated in field-grown plants. Fortunately the resistance is largely, if not completely, recessive and does not confer resistance to the Bt toxins Cry1Ac or Cry2Ab already deployed in cotton crops. These later characteristics are favourable for resistance management; however the robustness of Vip3A inclusive varieties will depend on resistance frequencies to the Cry toxins when it is released (anticipated 2016) and the efficacy of Vip3A throughout the season. It is appropriate to pre-emptively screen key targets of Bt crops elsewhere, especially those such as H. zea in the USA, which is not only closely related to H. armigera but also will be exposed to Vip in several varieties of cotton and corn.  相似文献   

18.
Abstract:  The parasitic wasp, Campoletis chlorideae is an important larval parasitoid of Helicoverpa armigera a serious pest of cotton, grain legumes and cereals. Large-scale deployment of Bt -transgenic crops with resistance to H. armigera may have potential consequences for the development and survival of C. chlorideae . Therefore, we studied the tritrophic interactions of C. chlorideae involving eight insect host species and six host crops under laboratory conditions. The recovery of H. armigera larvae following release was greater on pigeonpea and chickpea when compared with cotton, groundnut and pearl millet. The parasitism by C. chlorideae females was least with reduction in cocoon formation and adult emergence on H. armigera larvae released on chickpea. Host insects also had significant effect on the development and survival of C. chlorideae . The larval period of C. chlorideae was prolonged by 2–3 days on Spodoptera exigua , Mythimna separata and Achaea janata when compared with H. armigera , Helicoverpa assulta and Spodoptera litura . Maximum cocoon formation and adult emergence were recorded on H. armigera (82.4% and 70.5%, respectively) than on other insect hosts. These studies have important implications on development and survival of C. chlorideae on alternate insect hosts on non-transgenic crop plants, when there is paucity of H. armigera larvae on transgenic crops expressing Bt -toxins.  相似文献   

19.
20.
Transgenic crops that produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) grew on >62 million ha worldwide from 1996 to 2002. Despite expectations that pests would rapidly evolve resistance to such Bt crops, increases in the frequency of resistance caused by exposure to Bt crops in the field have not yet been documented. In laboratory and greenhouse tests, however, at least seven resistant laboratory strains of three pests (Plutella xylostella [L.], Pectinophora gossypiella [Saunders], and Helicoverpa armigera [Hübner]) have completed development on Bt crops. In contrast, several other laboratory strains with 70- to 10,100-fold resistance to Bt toxins in diet did not survive on Bt crops. Monitoring of field populations in regions with high adoption of Bt crops has not yet detected increases in resistance frequency. Resistance monitoring examples include Ostrinia nubilalis (Hübner) in the United States (6 yr), P. gossypiella in Arizona (5 yr), H. armigera in northern China (3 yr), and Helicoverpa zea (Boddie) in North Carolina (2 yr). Key factors delaying resistance to Bt crops are probably refuges of non-Bt host plants that enable survival of susceptible pests, low initial resistance allele frequencies, recessive inheritance of resistance to Bt crops, costs associated with resistance that reduce fitness of resistant individuals relative to susceptible individuals on non-Bt hosts ("fitness costs"), and disadvantages suffered by resistant strains on Bt hosts relative to their performance on non-Bt hosts ("incomplete resistance"). The relative importance of these factors varies among pest-Bt crop systems, and violations of key assumptions of the refuge strategy (low resistance allele frequency and recessive inheritance) may occur in some cases. The success of Bt crops exceeds expectations of many, but does not preclude resistance problems in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号