首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of ion-exchange chromatography, preparative electrophoresis and gel filtration chromatography allowed a 1209-fold purification of one of the two major digestive alpha-amylases from larvae of the larger grain borer, Prostephanus truncatus Horn. The purified enzyme showed a molecular mass of 60.2 kDa, an isoelectric point of 4.7 and an optimal pH for activity of 6.0. The enzyme was heat labile and it was recognized by proteinaceous inhibitors from amaranth seeds (Amaranthus hypochondriacus), whereas extracts from maize (Zea mays) and tepary bean (Phaseolus acutifolius) produced very low inhibition. When the enzyme was measured at different stages of development, maximal activity was found in the second instar larvae. Activity drastically decreased to a very low level during the pupae stage and increased again at the adult stage. A zymogram of the different developmental stages showed two main bands of alpha-amylase activity, which almost disappeared at the pupae stage to increase again during the adult stage, revealing a new, smaller band. This new band may be required for a better adaptation of the adult insect to its new environment.  相似文献   

2.
The adult coffee berry borer (Hypothenemus hampei Ferrari [Coleoptera: Scolytidae]), a major insect pest of coffee, has two major digestive alpha-amylases that can be separated by isoelectric focusing. The alpha-amylase activity has a broad pH optimum between 4.0 and 7.0. Using pH indicators, the pH of the midgut was determined to be between 4.5 and 5.2. At pH 5.0, the coffee berry borer alpha-amylase activity is inhibited substantially (80%) by relatively low levels of the amylase inhibitor (alphaAI-1) from the common bean, Phaseolus vulgaris L., and much less so by the amylase inhibitor from Amaranthus. We used an in-gel zymogram assay to demonstrate that seed extracts can be screened to find suitable inhibitors of amylases. The prospect of using the genes that encode these inhibitors to make coffee resistant to the coffee berry borer via genetic engineering is discussed.  相似文献   

3.
从野生苋属植物 (Amaranthuspaniculatus)籽实中分离纯化出α淀粉酶的一种新型蛋白质类抑制剂 .该抑制剂被命名为WAI 1 .MALDI TOF质谱测得其分子量为 986 5 ,是目前报道的α 淀粉酶的蛋白质类抑制剂中分子量最小的 .初步的组成和结构分析结果表明 ,WAI 1由 9个氨基酸残基组成 ,其N端为焦谷氨酸 .直接用RP HPLC纯化后 ,WAI 1能在弱酸性条件下 ,以非竞争性抑制作用方式有效抑制美洲蜚蠊消化道α淀粉酶的活性 ,最适抑制pH 6 0 ,但对人唾液淀粉酶活性无影响 .WAI 1在 37℃下与酶预温浴约 30min后显示最大抑制活性 .当α淀粉酶用量一定时 ,α淀粉酶活性的抑制率在约 5 0 %的范围内随抑制剂 酶比例的增大而呈线性增加 ,超过 5 0 %后 ,抑制率随抑制剂 酶比例的增大而缓慢上升 ,最终达到最大值 (约 6 5 % ) .  相似文献   

4.
Plant-insect interaction is a dynamic system, subjected to continual variation and change. In order to reduce insect attack, plants developed different defence mechanisms including chemical and physical barriers such as the induction of defensive proteins, volatiles that attract predators of the insect herbivores and secondary metabolites. Proteinaceous inhibitors of alpha-amylase and proteases are widely distributed in cereals, legumes and some other plants. Because of the possible importance of these inhibitors in plant physiology and animal nutrition, extensive research has been conducted on their properties and biological effects. Sunn pest like other insect pests of wheat lives on a polysaccharide-rich diet and depends to a large extent on effectiveness of their alpha-amylases for survival, a-amylase (1-4-alpha-D-glucan glucanohydrolase) hydrolyses starch, and related polysaccharides by randomly cleaving internal alpha-1,4-glucosidic linkages and has a major role in the utilization of polysaccharides. The enzyme inhibitors act on key insect gut digestive hydrolyses, alpha-amylase. Several kinds of a-amylase inhibitors present in seeds and vegetative organs of plant, act to regulate number of phytophagous insects. Therefore, the aim of the current study is to study cereal proteinaceous inhibitors of insect digestive enzymes and their potential use as resistance factors against Sunn pest. The proteinaceous inhibitors from different cereal species including barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) were extracted and tested in in vitro condition against Sunn pest alpha-amylase. Extraction was made with NaCl (0.15 M) at room temperature and further purification was done by ammonium sulphate precipitation. It was found that fractions obtained from barley had more inhibitory effect on amylase activity of Sunn pest than fractions obtained from wheat. Knowledge gained through these studies can be used to select resistant plant against insect pest.  相似文献   

5.
The primary structure and proteolytic processing of the alpha-amylase isoinhibitor alpha AI-1 from common bean (Phaseolus vulgaris cv. Magna) was determined by protein chemistry techniques. The inhibitory specificity of alphaAI-1 was screened with a panel of the digestive alpha-amylases from 30 species of insects, mites, gastropod, annelid worm, nematode and fungal phytopathogens with a focus on agricultural pests and important model species. This in vitro analysis showed a selective inhibition of alpha-amylases from three orders of insect (Coleoptera, Hymenoptera and Diptera) and an inhibition of alpha-amylases of the annelid worm. The inhibitory potential of alphaAI-1 against several alpha-amylases was found to be modulated by pH. To understand how alphaAI-1 discriminates among closely related alpha-amylases, the sequences of the alpha-amylases sensitive, respectively, insensitive to alphaAI-1 were compared, and the critical determinants were localized on the spatial alpha-amylase model. Based on the in vitro analysis of the inhibitory specificity of alphaAI-1, the in vivo activity of the ingested alphaAI-1 was demonstrated by suppression of the development of the insect larvae that expressed the sensitive digestive alpha-amylases. The first comprehensive mapping of alphaAI-1 specificity significantly broadens the spectrum of targets that can be regulated by alpha-amylase inhibitors of plant origin, and points to potential application of these protein insecticides in plant biotechnologies.  相似文献   

6.
Abstract  Bitter gourd ( Momordica charantia L.) seeds contain several squash-type serine proteinase inhibitors (PIs), which inhibit the digestive proteinases of the polyphagous insect pest Helicoverpa armigera . In the present work isolation of a DNA sequence encoding the mature peptide of a trypsin inhibitor McTI-II, its cloning and expression as a recombinant protein using Pichia pastoris have been reported. Recombinant McTI-II inhibited bovine trypsin at 1: 1 molar ratio, as expected, but did not inhibit chymotrypsin or elastase. McTI-II also strongly inhibited trypsin-like proteinases (81% inhibition) as well as the total proteolytic activity of digestive proteinases (70% inhibition) from the midgut of H. armigera larvae. The insect larvae fed with McTI-II-incorporated artificial diet suffered over 70% reduction in the average larval weight after 12 days of feeding. Moreover, ingestion of McTI-II resulted in 23% mortality in the larval population. The strong antimetabolic activity of McTI-II toward H. armigera indicates its probable use in developing insect tolerance in susceptible plants.  相似文献   

7.
A new alpha-amylase (EC 3.2.1.1) from Bacillus subtilis was purified by affinity chromatography. The molecular weight of the purified enzyme, estimated from sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, was 93000, which is very different from the molecular weights of two well-characterized amylases from B. subtilis. Electrofocusing showed an isoelectric point of 5. Amylase shows a broad maximum of activity between pH 6 and 7; maximal inhibition of enzyme by wheat-protein alpha-amylase inhibitors is displayed at pH 7.  相似文献   

8.
The endophytic bruchid pest Callosobruchus maculatus causes severe damage to storage cowpea seeds, leading to economical losses. For this reason the use of alpha-amylase inhibitors to interfere with the pest digestion process has been an interesting alternative to control bruchids. With this aim, alpha-amylase inhibitors from baru seeds (Dipteryx alata) were isolated by affinity chromatographic procedures, causing enhanced inhibition of C. maculatus and Anthonomus grandis alpha-amylases. To attempt further purification, this fraction was applied onto a reversed-phase HPLC column, generating four peaks with remarkable inhibition toward C. maculatus alpha-amylases. SDS-PAGE and MALDI-ToF analysis identified major proteins of approximately 5.0, 11.0, 20.0 and 55 kDa that showed alpha-amylase inhibition. Results of in vivo bioassays using artificial seeds containing 1.0% (w/w) of baru crude extract revealed 40% cowpea weevil larvae mortality. These results provide evidence that several alpha-amylase inhibitors classes, with biotechnological potential, can be isolated from a single plant species.  相似文献   

9.
Wheat production in Iran has changed substantially over the past one or two decades with development of higher-yielding cultivars and improved methods of planting. Sunn pest, Eurygaster integriceps (Heteroptera: Pentatomidae), is the most important cereal pest in Iran. Sunn pest like other insect pests of wheat lives on a polysaccharide-rich diet and depends to a large extent on effectiveness of their alpha-amylases for survival. alpha-amylase (1-4-alpha-D-glucan glucanohydrolase) hydrolyses starch, and related polysaccharides by randomly cleaving internal alpha-1,4-glucosidic linkages and has a major role in the utilization of polysaccharides. The recent increase in study of insect digestive enzymes seems to make sense in the realization that the gut is the major interface between the insect and its environment. Hence, an understanding of digestive enzyme function is essential when developing methods of insect control such as the use of enzyme inhibitor's and transgenic plants to control phytophagous insects. The aim of the current study is to identify and characterize alpha-amylase activity in order to gain a better understanding of its digestive physiology, which hopefully will lead to new strategies of the insect control. In order to analyze a-amylase activity adult and different nymphal stages were collected from wheat field from Karaj area and midgut complex from these individuals were dissected under a light microscope in ice-cold saline buffer (0.006M NaCl). After homogenization in buffer, homogenate was centrifuged at 15000 g for 20 min at 4 degrees C. The supernatant was pooled and stored at -20 degrees C for subsequent analysis. alpha-amylase activity was assayed by the dinitrosalicylic acid (DNS) procedure using soluble starch as substrate (starch 1%). Our result showed that enzyme activities in different nymphal stages (first, second, third, fourth and fifth stadium) were 0.19, 0.78, 1.21, 1.23, 1.25 units/mg protein, respectively.  相似文献   

10.
Insect pests and pathogens (fungi, bacteria and viruses) are responsible for severe crop losses. Insects feed directly on the plant tissues, while the pathogens lead to damage or death of the plant. Plants have evolved a certain degree of resistance through the production of defence compounds, which may be aproteic, e.g. antibiotics, alkaloids, terpenes, cyanogenic glucosides or proteic, e.g. chitinases, beta-1,3-glucanases, lectins, arcelins, vicilins, systemins and enzyme inhibitors. The enzyme inhibitors impede digestion through their action on insect gut digestive alpha-amylases and proteinases, which play a key role in the digestion of plant starch and proteins. The natural defences of crop plants may be improved through the use of transgenic technology. Current research in the area focuses particularly on weevils as these are highly dependent on starch for their energy supply. Six different alpha-amylase inhibitor classes, lectin-like, knottin-like, cereal-type, Kunitz-like, gamma-purothionin-like and thaumatin-like could be used in pest control. These classes of inhibitors show remarkable structural variety leading to different modes of inhibition and different specificity profiles against diverse alpha-amylases. Specificity of inhibition is an important issue as the introduced inhibitor must not adversely affect the plant's own alpha-amylases, nor the nutritional value of the crop. Of particular interest are some bifunctional inhibitors with additional favourable properties, such as proteinase inhibitory activity or chitinase activity. The area has benefited from the recent determination of many structures of alpha-amylases, inhibitors and complexes. These structures highlight the remarkable variety in structural modes of alpha-amylase inhibition. The continuing discovery of new classes of alpha-amylase inhibitor ensures that exciting discoveries remain to be made. In this review, we summarize existing knowledge of insect alpha-amylases, plant alpha-amylase inhibitors and their interaction. Positive results recently obtained for transgenic plants and future prospects in the area are reviewed.  相似文献   

11.
The alpha-amylases in the salivary glands of Lygus hesperus Knight and L. lineolaris (Palisot de Beauvois) were isolated and purified by ion exchange chromatography, and by isoelectric focusing, respectively. The alpha-amylase from L. hesperus had an isoelectric point (pI) of 6.25, and a pH optimum of 6.5. The specific activity of alpha-amylases in the salivary glands of L. hesperus was 1.2 U/mg/ml. The alpha-amylase from L. lineolaris had a pI of 6.54, and a pH optimum of 6.5. The specific activity of alpha-amylase from L. lineolaris was 1.7 U/mg/ml. The activity of alpha-amylase in both species was significantly inhibited by alpha-amylase inhibitor from wheat and also by EDTA and SDS. Sodium chloride enhanced alpha-amylase activity for both species. The enzyme characteristics and relative activities are discussed in the context of differences phytophagous versus zoophagous habits in these two congeneric species.  相似文献   

12.
Lin KF  Lee TR  Tsai PH  Hsu MP  Chen CS  Lyu PC 《Proteins》2007,68(2):530-540
The structure of a novel plant defensin isolated from the seeds of the mung bean, Vigna radiate, has been determined by (1)H nuclear magnetic resonance spectroscopy. The three-dimensional structure of VrD2, the V. radiate plant defensin 2 protein, comprises an alpha-helix and one triple-stranded anti-parallel beta-sheet stabilized by four disulfide bonds. This protein exhibits neither insecticidal activity nor alpha-amylase inhibitory activity in spite of showing a similar global fold to that of VrD1, an insecticidal plant defensin that has been suggested to function by inhibiting insect alpha-amylase. Our previous study proposed that loop L3 of plant defensins is important for this inhibition. Structural analyses and surface charge comparisons of VrD1 and VrD2 revealed that the charged residues of L3 correlate with the observed difference in inhibitory activities of these proteins. A VrD2 chimera that was produced by transferring the proposed functional loop of VrD1 onto the structurally equivalent loop of VrD2 supported this hypothesis. The VrD2 chimera, which differs by only five residues compared with VrD2, showed obvious activity against Tenebrio molitor alpha-amylase. These results clarify the mode of alpha-amylase inhibition of plant defensins and also represent a possible approach for engineering novel alpha-amylase inhibitors. Plant defensins are important constituents of the innate immune system of plants, and thus the application of protein engineering to this protein family may provide an efficient method for protecting against crop losses.  相似文献   

13.
Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the alpha-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13,756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional alpha-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus alpha-amylases was observed. The inhibitor is more effective against insect alpha-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional alpha-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.  相似文献   

14.
Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Five alpha-amylase inhibitors of the structural 0.19 family were isolated from wheat kernels, and assayed against three insect alpha-amylases and porcine pancreatic alpha-amylase, revealing several intriguing differences in inhibition profiles, even between proteins sharing sequence identity of up to 98%. Inhibition of the enzyme from a commercially important pest, the bean weevil Acanthoscelides obtectus, is observed for the first time. Using the crystal structure of an insect alpha-amylase in complex with a structurally related inhibitor, models were constructed and refined of insect and human alpha-amylases bound to 0.19 inhibitor. Four key questions posed by the differences in biochemical behaviour between the five inhibitors were successfully explained using these models. Residue size and charge, loop lengths, and the conformational effects of a Cys to Pro mutation, were among the factors responsible for observed differences in specificity. The improved structural understanding of the bases for the 0.19 structural family inhibitor specificity reported here may prove useful in the future for the rational design of inhibitors possessing altered inhibition characteristics.  相似文献   

15.
Germination of barley seeds was inhibited by 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) at concentrations greater than 0.03mmol/L, and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) and benzoxazolin-2(3H)-one (BOA) at concentrations greater than 0.1mmol/L. These benzoxazinoids also inhibited the induction of alpha-amylase activity in the barley seeds, and inhibited gibberellin-induced alpha-amylase activity in de-embryonated barley seeds. Significant inhibition in the germination and alpha-amylase induction were observed as concentrations of DIMBOA, DIBOA, MBOA and BOA increased. These results suggest that DIMBOA, DIBOA, MBOA and BOA may inhibit the germination of barley seeds by inhibiting the gibberellin-induced process, leading to alpha-amylase production. The inhibitory activities of germination and alpha-amylase induction of DIMBOA and DIBOA were greater than those of their degraded substances MBOA and BOA, respectively, and the inhibitory activities of DIMBOA and MBOA were greater than those of their demethoxylated analogues DIBOA and BOA, respectively.  相似文献   

16.
Extracts of resting pine seeds inhibited the proteinase activities present in extracts of endosperms of germinating seeds (hydrolysis of haemoglobin at pH 3.7 and hydrolysis of casein at pH 5.4 and 7.0). Heating the extracts of resting seeds at 60°C destroyed their own proteinase activity but their proteinase inhibitor activity decreased by only 25 to 30%. Some properties of the inhibitor(s) were studied using extracts treated at 60°C. The inhibitor activities were non-dialysable. the inhibition increased linearly with increasing inhibitor concentration up to 80% of total proteinase activity, and the maximal inhibition was 80% at pH 3.7. 90% at pH 5.4. and 97% at pH 7.0. The extracts of resting seeds did not inhibit the pepsin-like acid pine proteinase that accounts for a minor part of the proteolytic activity of endosperm extracts at pH 3.7. Neither did they have any effect on the acid pine carboxypeptidase or trypsin and chymotrypsin. Fresh extracts of endosperms of germinating seeds contained relatively high proteinase activity (assayed directly) and moderate inhibitor activity (assayed after treatment at 60°C). When fresh extracts were dialysed at 50°C for 48 h their proteinase activities increased considerably while the corresponding inhibitor activities disappeared. It is concluded that the decrease of inhibitors during dialysis is due to enzymatic inactivation and that the corresponding increase of proteinase activities is at least partly due to the destruction of the inhibitors.  相似文献   

17.
Leguminous plants in the tropical rainforests are a rich source of proteinase inhibitors and this work illustrates isolation of a serine proteinase inhibitor from the seeds of Archidendron ellipticum (AeTI), inhabiting Great Nicobar Island, India. AeTI was purified to homogeneity by acetone and ammonium sulfate fractionation, and ion exchange, size exclusion and reverse phase chromatography (HPLC). SDS-PAGE of AeTI revealed that it is constituted by two polypeptide chains (alpha-chain, M(r) 15,000 and beta-chain, M(r) 5000), the molecular weight being approximately 20 kDa. N-terminal sequence showed high homology with other serine proteinase inhibitors belonging to the Mimosoideae subfamily. Both Native-PAGE as well as isoelectric focussing showed four isoinhibitors (pI values of 4.1, 4.55, 5.27 and 5.65). Inhibitory activity of AeTI remained unchanged over a wide range of temperatures (0-60 degrees C) and pH (1-10). The protein inhibited trypsin in the stoichiometric ratio of 1:1, but lacked similar stoichiometry against chymotrypsin. Also, AeTI-trypsin complex was stable to SDS unlike the SDS unstable AeTI-chymotrypsin complex. AeTI, which possessed inhibition constants (K(i)) of 2.46 x 10(-10) and 0.5 x 10(-10)M against trypsin and chymotrypsin activity, respectively, retained over 70% of inhibitory activity after being stored at -20 degrees C for more than a year. Initial studies on the insecticidal properties of AeTI indicate it to be a very potent insect anti-feedant.  相似文献   

18.
Using soluble starch as a substrate five isoforms of alpha-amylase were identified in a crude extract of Morimus funereus larvae. The main alpha-amylase (termed AMF-3) was purified by gel filtration chromatography and anion exchange chromatography to obtain a single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Its enzymatic purity was confirmed by an in-gel activity assay after SDS-PAGE. The purity of AMF-3 was increased 112-fold with a 15.4% yield. AMF-3 had apparent molecular masses of 33 and 31 kDa when analysed using SDS-PAGE and Superdex 75 FPLC gel filtration chromatography, respectively and a calculated isoelectric point of 3.2. Purified AMF-3 showed maximal activity at pH 5.2 and had an optimum activity temperature of 45 degrees C. AMF-3 retained over 90% of its maximum activity at temperatures from 45 to 60 degrees C. AMF-3 exhibited a high affinity towards soluble starch with a K(m) value of 0.43 mg/mL. Maximal AMF-3 activity was achieved in the presence of 0.1 mM CaCl(2), while at higher concentrations its activity decreased. AMF-3 activity increased with increasing NaCl concentration. AMF-3 activity was significantly inhibited by alpha-amylase wheat inhibitor. Using a number of raw starch substrates maximum AMF-3 activity was achieved with horse-radish starch, in contrast to undetectable activity towards potato starch.  相似文献   

19.
A proteinaceous substance that inhibited the activity of papain (EC 3.4.22.2) was found in seeds of rice, Oryza sativa L. japonica. This cysteine proteinase inhibitor (CPI) was purified by a series of purification procedures including CM-Sephadex C-50, Sephadex G-75, and DEAE- Sephadex A-50 chromatography. The CPI was a single polypeptide with a molecular weight of about 12,000, with an isoelectric point at pH 5.3. The CPI was stable below 100°C and between pH 2.2 ~ 9.0. The inhibition of papain by the CPI was non-competitive, with a Ki value of 2.44 × 10-8 m. The complete inhibition of papain was reached by an equimolar concentration of the CPI.  相似文献   

20.
The cigarette beetle, Lasioderma serricorne (Fabricius), is a common pest of stored foods. A study of digestive proteinases in L. serricorne was performed to identify potential targets for proteinaceous biopesticides, such as proteinase inhibitors. Optimal casein hydrolysis by luminal proteinases of L. serricorne was in pH 8.5-9.0 buffers, although the pH of luminal contents was slightly acidic. Results from substrate and inhibitor analyses indicated that the primary digestive proteinases were serine proteinases. The most effective inhibitors of caseinolytic hydrolysis were from soybean (both Bowman Birk and Kunitz), with some inhibition by chymostatin, N-tosyl-L-phenylalanine chloromethyl ketone, and leupeptin. Casein zymogram analysis identified at least eight proteolytic activities. Activity blot analyses indicated one major proteinase activity that hydrolysed the trypsin substrate N-alpha-benzoyl-L-arginine rho-nitroanilide, and three major proteinase activities that hydrolysed the chymotrypsin substrate N-succinyl ala-ala-pro-phe rho-nitroanilide. The absence of cysteine, aspartic, and metallo proteinases in L. serricorne digestion was evidenced by the lack of activation by thiol reagents, alkaline pH optima, and the results from class-specific proteinase inhibitors. The data suggest that protein digestion in L. serricorne is primarily dependent on trypsin- and chymotrypsin-like proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号