首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Otx2 plays essential roles in each site at each step of head development. We previously identified the AN1 enhancer at 91 kb 5' upstream for the Otx2 expressions in anterior neuroectoderm (AN) at neural plate stage before E8.5, and the FM1 enhancer at 75 kb 5' upstream and the FM2 enhancer at 122 kb 3' downstream for the expression in forebrain/midbrain (FM) at brain vesicle stage after E8.5. The present study identified a second AN enhancer (AN2) at 88 kb 5' upstream; the AN2 enhancer also recapitulates the endogenous Otx2 expression in choroid plexus, cortical hem and choroidal roof. However, the enhancer mutants indicated the presence of another AN enhancer. The study also identified a third FM enhancer (FM3) at 153 kb 5' upstream. Thus, the Otx2 expressions in anterior neuroectoderm and forebrain/midbrain are regulated by more than six enhancers located far from the coding region. The enhancers identified are differentially conserved among vertebrates; none of the AN enhancers has activities in caudal forebrain and midbrain at brain vesicle stage after E8.5, nor do any of the FM enhancers in anterior neuroectoderm at neural plate stage before E8.5.  相似文献   

2.
The mouse homeobox gene Otx2 plays essential roles at each step and in every tissue during head development. We have previously identified a series of enhancers that are responsible for driving the Otx2 expression in these contexts. Among them the AN enhancer, existing 92 kb 5' upstream, directs Otx2 expression in anterior neuroectoderm (AN) at the headfold stage. Analysis of the enhancer mutant Otx2(DeltaAN/-) indicated that Otx2 expression under the control of this enhancer is essential to the development of AN. This study demonstrates that the AN enhancer is promoter-dependent and regulated by acetylated YY1. YY1 binds to both the AN enhancer and promoter region. YY1 is acetylated in the anterior head, and only acetylated YY1 can bind to the sequence in the enhancer. Moreover, YY1 binding to both of these two sites is essential to Otx2 expression in AN. These YY1 binding sites are highly conserved in AN enhancers in tetrapods, coelacanth and skate, suggesting that establishment of the YY1 regulation coincides with that of OTX2 function in AN development in an ancestral gnathostome.  相似文献   

3.
Otx2 expression in the forebrain and midbrain was found to be regulated by two distinct enhancers (FM and FM2) located at 75 kb 5' upstream and 115 kb 3' downstream. The activities of these two enhancers were absent in anterior neuroectoderm earlier than E8.0; however, at E9.5 their regions of activity spanned the entire mesencephalon and diencephalon with their caudal limits at the boundary with the metencephalon or isthmus. In telencephalon, activities were found only in the dorsomedial aspect. Potential binding sites of OTX and TCF were essential to FM activity, and TCF sites were also essential to FM2 activity. The FM2 enhancer appears to be unique to rodent; however, the FM enhancer region is deeply conserved in gnathostomes. Studies of mutants lacking FM or FM2 enhancer demonstrated that these enhancers indeed regulate Otx2 expression in forebrain and midbrain. Development of mesencephalic and diencephalic regions was differentially regulated in a dose-dependent manner by the cooperation between Otx1 and Otx2 under FM and FM2 enhancers: the more caudal the structure the higher the OTX dose requirement. At E10.5 Otx1-/-Otx2DeltaFM/DeltaFM mutants, in which Otx2 expression under the FM2 enhancer remained, exhibited almost complete loss of the entire diencephalon and mesencephalon; the telencephalon did, however, develop.  相似文献   

4.
Otx2 is expressed in each step and site of head development. To dissect each Otx2 function we have identified a series of Otx2 enhancers. The Otx2 expression in the anterior neuroectoderm is regulated by the AN enhancer and the subsequent expression in forebrain and midbrain later than E8.5 by FM1 and FM2 enhancers; the Otx1 expression takes place at E8.0. In telencephalon later than E9.5 Otx1 continues to be expressed in the entire pallium, while the Otx2 expression is confined to the most medial pallium. To determine the Otx functions in forebrain and midbrain development we have generated mouse mutants that lack both FM1 and FM2 enhancers (DKO: Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) and examined the TKO (Otx1/Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) phenotype. The mutants develop normally until E8.0, but subsequently by E9.5 the diencephalon, including thalamic eminence and prethalamus, and the mesencephalon are caudalized into metencephalon consisting of isthmus and rhombomere 1; the caudalization does not extend to rhombomere 2 and more caudal rhombomeres. In rostral forebrain, neopallium, ganglionic eminences and hypothalamus in front of prethalamus develop; we propose that they become insensitive to the caudalization with the switch from the Otx2 expression under the AN enhancer to that under FM1 and FM2 enhancers. In contrast, the medial pallium requires Otx1 and Otx2 for its development later than E9.5, and the Otx2 expression in diencepalon and mesencephalon later than E9.5 is also directed by an enhancer other than FM1 and FM2 enhancers.  相似文献   

5.
6.
Previous analysis employing chimeric and transgenic rescue experiments has suggested that Otx2 is required in the neuroectoderm for development of the forebrain region. In order to elucidate the precise role of Otx2 in forebrain development, we attempted to generate an allelic series of Otx2 mutations by Flp- and Cre-mediated recombination for the production of conditional knock-out mice. Unexpectedly, the neo-cassette insertion created a hypomorphic Otx2 allele; consequently, the phenotype of compound mutant embryos carrying both a hypomorphic and a null allele (Otx2(frt-neo/-)) was analyzed. Otx2(frt-neo/-) mutant mice died at birth, displaying rostral head malformations. Molecular marker analysis demonstrated that Otx2(frt-neo/-) mutant embryos appeared to undergo anterior-posterior axis generation and induction of anterior neuroectoderm normally; however, these mutants subsequently failed to correctly specify the forebrain region. As the rostral margin of the neural plate, termed the anterior neural ridge (ANR), plays crucial roles with respect to neural plate specification, we examined expression of molecular markers for the ANR and the neural plate; moreover, neural plate explant studies were performed. Analyses revealed that telencephalic gene expression did not occur in mutant embryos due to defects of the neural plate; however, the mutant ANR bore normal induction activity on gene expression. These results further suggest that Otx2 dosage may be crucial in the neural plate with respect to response to inductive signals primarily from the ANR for forebrain specification.  相似文献   

7.
8.
The anterior visceral endoderm (AVE) has attracted recent attention as a critical player in mouse forebrain development and has been proposed to act as "head organizer" in mammals. However, the precise role of the AVE in induction and patterning of the anterior neuroectoderm is not yet known. Here we identified a 5'-flanking region of the mouse Otx2 gene (VEcis) that governs the transgene expression in the visceral endoderm. In transgenic embryos, VEcis-active cells were found in the distal visceral endoderm at 5.5 days postcoitus (dpc), had begun to move anteriorly at 5.75 dpc, and then became restricted to the AVE prior to gastrulation. The VEcis-active visceral endoderm cells exhibited ectodermal morphology distinct from that of the other endoderm cells and consisted of two cell layers at 5.75 dpc. In the Otx2(-/-) background, the VEcis-active endoderm cells remained distal even at 6.5 dpc when a primitive streak was formed; anterior definitive endoderm was not formed nor were any markers of anterior neuroectoderm ever induced. The Otx2 cDNA transgene under the control of the VEcis restored these Otx2(-/-) defects, demonstrating that Otx2 is essential to the anterior movement of distal visceral endoderm cells. In germ-layer explant assays between ectoderm and visceral endoderm, the AVE did not induce anterior neuroectoderm markers, but instead suppressed posterior markers in the ectoderm; Otx2(-/-) visceral endoderm lacked this activity. Thus Otx2 is also essential for the AVE to repress the posterior character. These results suggest that distal visceral endoderm cells move to the future anterior side to generate a prospective forebrain territory indirectly, by preventing posteriorizing signals.  相似文献   

9.
In an effort to identify Otx2 targets in mouse anterior neuroectoderm we identified a gene, mShisa, which is homologous to xShisa1 that we previously reported as a head inducer in Xenopus. mShisa encodes an antagonist against both Wnt and Fgf signalings; it inhibits these signalings cell-autonomously as xShisa1 does. The mShisa expression is lost or greatly reduced in Otx2 mutant visceral endoderm, anterior mesendoderm and anterior neuroectoderm. However, mShisa mutants exhibited no defects in head development. Shisa is composed of five subfamilies, but normal head development in mShisa mutants is unlikely to be explained in terms of the compensation of mShisa deficiency by its paralogues or by known Wnt antagonists in anterior visceral endoderm and/or anterior mesendoderm.  相似文献   

10.
Otx2 and Gbx2 are among the earliest genes expressed in the neuroectoderm, dividing it into anterior and posterior domains with a common border that marks the mid-hindbrain junction. Otx2 is required for development of the forebrain and midbrain, and Gbx2 for the anterior hindbrain. Furthermore, opposing interactions between Otx2 and Gbx2 play an important role in positioning the mid-hindbrain boundary, where an organizer forms that regulates midbrain and cerebellum development. We show that the expression domains of Otx2 and Gbx2 are initially established independently of each other at the early headfold stage, and then their expression rapidly becomes interdependent by the late headfold stage. As we demonstrate that the repression of Otx2 by retinoic acid is dependent on an induction of Gbx2 in the anterior brain, molecules other than retinoic acid must regulate the initial expression of Otx2 in vivo. In contrast to previous suggestions that an interaction between Otx2- and Gbx2-expressing cells may be essential for induction of mid-hindbrain organizer factors such as Fgf8, we find that Fgf8 and other essential mid-hindbrain genes are induced in a correct temporal manner in mouse embryos deficient for both Otx2 and Gbx2. However, expression of these genes is abnormally co-localized in a broad anterior region of the neuroectoderm. Finally, we find that by removing Otx2 function, development of rhombomere 3 is rescued in Gbx2(-/-) embryos, showing that Gbx2 plays a permissive, not instructive, role in rhombomere 3 development. Our results provide new insights into induction and maintenance of the mid-hindbrain genetic cascade by showing that a mid-hindbrain competence region is initially established independent of the division of the neuroectoderm into an anterior Otx2-positive domain and posterior Gbx2-positive domain. Furthermore, Otx2 and Gbx2 are required to suppress hindbrain and midbrain development, respectively, and thus allow establishment of the normal spatial domains of Fgf8 and other genes.  相似文献   

11.
In mouse Otx2 plays essential roles in anterior-posterior axis formation and head development in anterior visceral endoderm and anterior mesendoderm. The Otx2 expression in these sites is regulated by VE and CM enhancers at the 5' proximal to the translation start site, and we proposed that these enhancers would have been established in ancestral sarcoptergians after divergence from actinopterigians for the use of Otx2 as the head organizer gene (Kurokawa et al., 2010). This would make doubtful an earlier proposal of ours that a 1.1 kb fragment located at +14.4 to +15.5 kb 3' (3'En) of fugu Otx2a gene harbors enhancers phylogenetically and functionally homologous to mouse VE and CM enhancers (Kimura-Yoshida et al., 2007). In the present study, we demonstrate that fugu Otx2a is not expressed in the dorsal margin of blastoderm, shield and early anterior mesendoderm, and that the fugu Otx2a 3'En do not exhibit activities at these sites of fugu embryos. We conclude that the fugu Otx2a 3'En does not harbor an organizer enhancer, but encodes an enhancer for the expression in later anterior mesendodermal tissues. Instead, in fugu embryos Otx2b is expressed in the dorsal margin of blastoderm at blastula stage and shield at 50% epiboly, and this expression is directed by an enhancer, 5'En, located at -1000 to -800 bp, which is uniquely conserved among teleost Otx2b orthologues.  相似文献   

12.
The development of the mammalian antero-posterior (A-P) axis is proposed to be established by distinct anterior and posterior signaling centers, anterior visceral endoderm and primitive streak, respectively. Knock-out studies in mice have shown that Otx2 and Cripto have crucial roles in the generation and/or functions of these anterior and posterior centers, respectively. In both Otx2 and Cripto single mutants, the initial formation of the A-P axis takes place in a proximal-distal (P-D) orientation, but subsequent axis rotation fails to occur. To examine the developmental consequences of the lack of these two genes, we have analyzed the Otx2(-/-);Cripto(-/-) double homozygous mutant phenotype. In the double mutants, the expression of the A-P axis markers Cer-l, Lim1, and Wnt3 was not induced, while expression of Fgf8 and T was expanded throughout the epiblast, indicating that the double mutants could not form the A-P axis even in its initial P-D orientation. In addition, the double mutants displayed defects in differentiation of the visceral endoderm overlying the epiblast, as well as in the extraembryonic ectoderm. Furthermore, differentiation of neuroectoderm was accelerated as judged by the reduction of Oct4 expression and emergence of Sox1 and Gbx2 expression in the double mutant epiblast. The resulting ectoderm only displayed characteristics of anterior hindbrain, implicating it as a ground state in the mammalian body plan. Our results indicate that complementary functions of Otx2 and Cripto are essential for initial patterning of the A-P axis in the mouse embryo.  相似文献   

13.
Genetic and embryological experiments have demonstrated an essential role for the visceral endoderm in the formation of the forebrain; however, the precise molecular and cellular mechanisms of this requirement are poorly understood. We have performed lineage tracing in combination with molecular marker studies to follow morphogenetic movements and cell fates before and during gastrulation in embryos mutant for the homeobox gene Otx2. Our results show, first, that Otx2 is not required for proliferation of the visceral endoderm, but is essential for anteriorly directed morphogenetic movement. Second, molecules that are normally expressed in the anterior visceral endoderm, such as Lefty1 and Mdkk1, are not expressed in Otx2 mutants. These secreted proteins have been reported to antagonise, respectively, the activities of Nodal and Wnt signals, which have a role in regulating primitive streak formation. The visceral endoderm defects of the Otx2 mutants are associated with abnormal expression of primitive streak markers in the epiblast, suggesting that anterior epiblast cells acquire primitive streak characteristics. Taken together, our data support a model whereby Otx2 functions in the anterior visceral endoderm to influence the ability of the adjacent epiblast cells to differentiate into anterior neurectoderm, indirectly, by preventing them from coming under the influence of posterior signals that regulate primitive streak formation.  相似文献   

14.
Cer1 is the mouse homologue of the Xenopus Cerberus gene whose product is able to induce development of head structures during embryonic development. The Cer1 protein is a member of the cysteine knot superfamily and is expressed in anterior regions of the mouse gastrula. A segmental pattern of expression with nascent and newly formed somites is also seen. This suggests an additional role in development of the axial skeleton, musculature, or peripheral nervous system. Xenopus animal cap assays and mouse germ-layer explant recombination experiments indicate that the mouse protein can act as a patterning molecule for anterior development in Xenopus, including induction of Otx2 expression, and suggest it may have a similar role in mouse development. However, we present here genetic data that demonstrate that Cer1 is not necessary for anterior patterning, Otx2 expression, somite formation, or even normal mouse morphogenesis.  相似文献   

15.
16.
17.
To assess evolutional changes in the expression pattern of Otx paralogues, expression analyses were undertaken in fugu, bichir, skate and lamprey. Together with those in model vertebrates, the comparison suggested that a gnathostome ancestor would have utilized all of Otx1, Otx2 and Otx5 paralogues in organizer and anterior mesendoderm for head development. In this animal, Otx1 and Otx2 would have also functioned in specification of the anterior neuroectoderm at presomite stage and subsequent development of forebrain/midbrain at somite stage, while Otx5 expression would have already been specialized in epiphysis and eyes. Otx1 and Otx2 functions in anterior neuroectoderm and brain of the gnathostome ancestor would have been differentially maintained by Otx1 in a basal actinopterygian and by Otx2 in a basal sarcopterygian. Otx5 expression in head organizer and anterior mesendoderm seems to have been lost in the teleost lineage after divergence of bichir, and also from the amniotes after divergence of amphibians as independent events. Otx1 expression was lost from the organizer in the tetrapod lineage. In contrast, in a teleost ancestor prior to whole genome duplication, Otx1 and Otx2 would have both been expressed in the dorsal margin of blastoderm, embryonic shield, anterior mesendoderm, anterior neuroectoderm and forebrain/midbrain, at respective stages of head development. Subsequent whole genome duplication and the following genome changes would have caused different Otx paralogue usages in each teleost lineage. Lampreys also have three Otx paralogues; their sequences are highly diverged from gnathostome cognates, but their expression pattern is well related to those of skate Otx cognates.  相似文献   

18.
19.
20.
Understanding the molecular mechanism controlling induction and maintenance of signals required for specifying anterior territory (forebrain and midbrain) of the central nervous system is a major task of molecular embryology. The current view indicates that in mouse, early specification of the anterior patterning is established at the beginning of gastrulation by the anterior visceral endoderm, while maintenance and refinement of the early specification is under the control of epiblast-derived tissues corresponding to the axial mesendoderm and rostral neuroectoderm. In vertebrates a remarkable amount of data has been collected on the role of genes contributing to brain morphogenesis. Among these genes,the orthodenticle group is defined bythe Drosophila orthodenticle and the vertebrate Otx1 and Otx2 genes, which contain a bicoid-like homeodomain. Mouse models and chimera experiments have provided strong evidence that Otx2 plays an important role in the specification and maintenance of the rostral neuroectoderm destined to become forebrain and midbrain. In evolutionary terms, some of these findings lead us to hypothesize a fascinating and crucial contribution of the Otx genes to the genetic program underlying the establishment of the mammalian brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号