首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pin2/TRF1 was independently identified as a telomeric DNA binding protein (TRF1) [1] and as a protein (Pin2) that can bind the mitotic kinase NIMA and suppress its ability to induce mitotic catastrophe [2, 3]. Pin2/TRF1 has been shown to bind telomeric DNA as a dimer [3-7] and to negatively regulate telomere length [8-11]. Interestingly, Pin2/TRF1 levels are regulated during the cell cycle, being increased in late G2 and mitosis and degraded as cells exit from mitosis [3]. Furthermore, overexpression of Pin2/TRF1 induces mitotic entry and then apoptosis [12]. This Pin2/TRF1 activity can be significantly potentiated by the microtubule-disrupting agent nocodazole [12] but is suppressed by phosphorylation of Pin2/TRF1 by ATM; this negative regulation is important for preventing apoptosis upon DNA damage [13]. These results suggest a role for Pin2/TRF1 in mitosis. However, nothing is known about how Pin2/TRF1 is involved in mitotic progression. Here, we describe a surprising physical interaction between Pin2/TRF1 and microtubules in a cell cycle-specific manner. Both expressed and endogenous Pin2/TRF1 proteins were localized to the mitotic spindle during mitosis. Furthermore, Pin2/TRF1 directly bound microtubules via its C-terminal domain. Moreover, Pin2/TRF1 also promoted microtubule polymerization in vitro. These results demonstrate for the first time a specific interaction between Pin2/TRF1 and microtubules in a mitosis-specific manner, and they suggest a new role for Pin2/TRF1 in modulating the function of microtubules during mitosis.  相似文献   

2.
3.
The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor.   总被引:38,自引:0,他引:38  
X Z Zhou  K P Lu 《Cell》2001,107(3):347-359
Telomerase activity is critical for normal and transformed human cells to escape from crisis and is implicated in oncogenesis. Here we describe a novel Pin2/TRF1 binding protein, PinX1 that inhibits telomerase activity and affects tumorigenicity. PinX1 and its small TID domain bind the telomerase catalytic subunit hTERT and potently inhibit its activity. Overexpression of PinX1 or its TID domain inhibits telomerase activity, shortens telomeres, and induces crisis, whereas depletion of endogenous PinX1 increases telomerase activity and elongates telomeres. Depletion of PinX1 also increases tumorigenicity in nude mice, consistent with its chromosome localization at 8p23, a region with frequent loss of heterozygosity in a number of human cancers. Thus, PinX1 is a potent telomerase inhibitor and a putative tumor suppressor.  相似文献   

4.
Vertebrate telomeres consist of tandem repeats of T2AG3 and associated proteins including the telomeric DNA-binding proteins, TRF1 and TRF2. It has been proposed that telomeres assume two interswitchable states, the open state that is accessible to various trans-acting factors and the closed state that excludes those factors. TRF1 and TRF2 are believed to promote the formation of the closed state. However, little is known about how those two states influence DNA replication. We analyzed the effects of TRF1 and TRF2 on telomeric replication both in vitro and in vivo. By exploiting the in vitro replication system of linear SV40 DNA, we found that telomeric repeats are a poor replication template. Moreover, the addition of recombinant TRF1 and TRF2 significantly stalled the replication fork progression at telomeric repeats. When TRF1 was overexpressed in HeLa cells, cells with 4N DNA content were accumulated. Furthermore, cytological analyses revealed that the replication focus overlapped with telomere signals at a significantly higher frequency in TRF1-overexpressing cells than in control cells. The results suggest that TRF1 and TRF2 exert inhibitory effects on replication fork progression.  相似文献   

5.
Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2   总被引:3,自引:1,他引:2  
The ends of linear chromosomes are capped by protein–DNA complexes termed telomeres. Telomere repeat binding factors 1 and 2 (TRF1 and TRF2) bind specifically to duplex telomeric DNA and are critical components of functional telomeres. Consequences of telomere dysfunction include genomic instability, cellular apoptosis or senescence and organismal aging. Mild oxidative stress induces increased erosion and loss of telomeric DNA in human fibroblasts. We performed binding assays to determine whether oxidative DNA damage in telomeric DNA alters the binding activity of TRF1 and TRF2 proteins. Here, we report that a single 8-oxo-guanine lesion in a defined telomeric substrate reduced the percentage of bound TRF1 and TRF2 proteins by at least 50%, compared with undamaged telomeric DNA. More dramatic effects on TRF1 and TRF2 binding were observed with multiple 8-oxo-guanine lesions in the tandem telomeric repeats. Binding was likewise disrupted when certain intermediates of base excision repair were present within the telomeric tract, namely abasic sites or single nucleotide gaps. These studies indicate that oxidative DNA damage may exert deleterious effects on telomeres by disrupting the association of telomere-maintenance proteins TRF1 and TRF2.  相似文献   

6.
Cells derived from patients with the human genetic disorder ataxia-telangiectasia (A-T) display many abnormalities, including telomere shortening, premature senescence, and defects in the activation of S phase and G(2)/M checkpoints in response to double-strand DNA breaks induced by ionizing radiation. We have previously demonstrated that one of the ATM substrates is Pin2/TRF1, a telomeric protein that binds the potent telomerase inhibitor PinX1, negatively regulates telomere elongation, and specifically affects mitotic progression. Following DNA damage, ATM phosphorylates Pin2/TRF1 and suppresses its ability to induce abortive mitosis and apoptosis (Kishi, S., Zhou, X. Z., Nakamura, N., Ziv, Y., Khoo, C., Hill, D. E., Shiloh, Y., and Lu, K. P. (2001) J. Biol. Chem. 276, 29282-29291). However, the functional importance of Pin2/TRF1 in mediating ATM-dependent regulation remains to be established. To address this question, we directly inhibited the function of endogenous Pin2/TRF1 in A-T cells by stable expression of two different dominant-negative Pin2/TRF1 mutants and then examined their effects on telomere length and DNA damage response. Both the Pin2/TRF1 mutants increased telomere length in A-T cells, as shown in other cells. Surprisingly, both the Pin2/TRF1 mutants reduced radiosensitivity and complemented the G(2)/M checkpoint defect without inhibiting Cdc2 activity in A-T cells. In contrast, neither of the Pin2/TRF1 mutants corrected the S phase checkpoint defect in the same cells. These results indicate that inhibition of Pin2/TRF1 in A-T cells is able to bypass the requirement for ATM in specifically restoring telomere shortening, the G(2)/M checkpoint defect, and radiosensitivity and demonstrate a critical role for Pin2/TRF1 in the ATM-dependent regulation of telomeres and DNA damage response.  相似文献   

7.
Human telomeres consist of tandem arrays of TTAGGG sequence repeats that are specifically bound by two proteins, TRF1 and TRF2. They bind to DNA as preformed homodimers and have the same architecture in which the DNA-binding domains (Dbds) form independent structural units. Despite these similarities, TRF1 and TRF2 have different functions at telomeres. The X-ray crystal structures of both TRF1- and TRF2-Dbds in complex with telomeric DNA (2.0 and 1.8 angstroms resolution, respectively) show that they recognize the same TAGGGTT binding site by means of homeodomains, as does the yeast telomeric protein Rap1p. Two of the three G-C base pairs that characterize telomeric repeats are recognized specifically and an unusually large number of water molecules mediate protein-DNA interactions. The binding of the TRF2-Dbd to the DNA double helix shows no distortions that would account for the promotion of t-loops in which TRF2 has been implicated.  相似文献   

8.
Telomeres, the nucleoprotein complexes located at the ends of chromosomes, are involved in chromosome protection and genome stability. Telomeric repeat binding factor 1 (TRF1) and telomeric repeat binding factor 2 (TRF2) are the two telomeric proteins that bind to duplex telomeric DNA through interactions between their C-terminal domain and several guanines of the telomeric tract. Since the antitumour drug cisplatin binds preferentially to two adjacent guanines, we have investigated whether cisplatin adducts could affect the binding of TRF1 and TRF2 to telomeric DNA and the property of TRF2 to stimulate telomeric invasion, a process that is thought to participate in the formation of the t-loop. We show that the binding of TRF1 and TRF2 to telomeric sequences selectively modified by one GG chelate of cisplatin is markedly affected by cisplatin but that the effect is more drastic for TRF2 than for TRF1 (3–5-fold more sensitivity for TRF2 than for TRF1). We also report that platinum adducts cause a decrease in TRF2-dependent stimulation of telomeric invasion in vitro. Finally, in accordance with in vitro data, analysis of telomeric composition after cisplatin treatment reveals that 60% of TRF2 dissociate from telomeres.  相似文献   

9.
Role of Pin2/TRF1 in telomere maintenance and cell cycle control   总被引:4,自引:0,他引:4  
Telomeres are specialized structures found at the extreme ends of chromosomes, which have many functions, including preserving genomic stability, maintaining cell proliferative capacity, and blocking the activation of DNA-damage cell cycle checkpoints. Deregulation of telomere length has been implicated in cancer and ageing. Telomere maintenance is tightly regulated by telomerase and many other telomere-associated proteins and is also closely linked to cell cycle control, especially mitotic regulation. However, little is known about the identity and function of the signaling molecules connecting telomere maintenance and cell cycle control. Pin2/TRF1 was originally identified as a protein bound to telomeric DNA (TRF1) and as a protein involved in mitotic regulation (Pin2). Pin2/TRF1 negatively regulates telomere length and importantly, its function is tightly regulated during the cell cycle, acting as an important regulator of mitosis. Recent identification of many Pin2/TRF1 upstream regulators and downstream targets has provided important clues to understanding the dual roles of Pin2/TRF1 in telomere maintenance and cell cycle control. These results have led us to propose that Pin2/TRF1 functions as a key molecule in connecting telomere maintenance and cell cycle control.  相似文献   

10.
More than two decades of genetic research have identified and assigned main biological functions of shelterin proteins that safeguard telomeres. However, a molecular mechanism of how each protein subunit contributes to the protecting function of the whole shelterin complex remains elusive. Human Repressor activator protein 1 (Rap1) forms a multifunctional complex with Telomeric Repeat binding Factor 2 (TRF2). Rap1–TRF2 complex is a critical part of shelterin as it suppresses homology-directed repair in Ku 70/80 heterodimer absence. To understand how Rap1 affects key functions of TRF2, we investigated full-length Rap1 binding to TRF2 and Rap1–TRF2 complex interactions with double-stranded DNA by quantitative biochemical approaches. We observed that Rap1 reduces the overall DNA duplex binding affinity of TRF2 but increases the selectivity of TRF2 to telomeric DNA. Additionally, we observed that Rap1 induces a partial release of TRF2 from DNA duplex. The improved TRF2 selectivity to telomeric DNA is caused by less pronounced electrostatic attractions between TRF2 and DNA in Rap1 presence. Thus, Rap1 prompts more accurate and selective TRF2 recognition of telomeric DNA and TRF2 localization on single/double-strand DNA junctions. These quantitative functional studies contribute to the understanding of the selective recognition of telomeric DNA by the whole shelterin complex.  相似文献   

11.
TRF1 and TRF2 are key components of vertebrate telomeres. They bind to double-stranded telomeric DNA as homodimers. Dimerization involves the TRF homology (TRFH) domain, which also mediates interactions with other telomeric proteins. The crystal structures of the dimerization domains from human TRF1 and TRF2 were determined at 2.9 and 2.2 A resolution, respectively. Despite a modest sequence identity, the two TRFH domains have the same entirely alpha-helical architecture, resembling a twisted horseshoe. The dimerization interfaces feature unique interactions that prevent heterodimerization. Mutational analysis of TRF1 corroborates the structural data and underscores the importance of the TRFH domain in dimerization, DNA binding, and telomere localization. A possible structural homology between the TRFH domain of fission yeast telomeric protein Taz1 with those of the vertebrate TRFs is suggested.  相似文献   

12.
Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1, only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices, and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1, in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains, we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2.  相似文献   

13.
POT1 and TRF2 cooperate to maintain telomeric integrity   总被引:17,自引:0,他引:17       下载免费PDF全文
Mammalian telomeric DNA contains duplex TTAGGG repeats and single-stranded overhangs. POT1 (protection of telomeres 1) is a telomere-specific single-stranded DNA-binding protein, highly conserved in eukaryotes. The biological function of human POT1 is not well understood. In the present study, we demonstrate that POT1 plays a key role in telomeric end protection. The reduction of POT1 by RNA interference led to the loss of telomeric single-stranded overhangs and induced apoptosis, chromosomal instability, and senescence in cells. POT1 and TRF2 interacted with each other to form a complex with telomeric DNA. A dominant negative TRF2, TRF2(DeltaBDeltaM), bound to POT1 and prevented it from binding to telomeres. POT1 overexpression protected against TRF2(DeltaBDeltaM)-induced loss of telomeric single-stranded overhangs, chromosomal instability, and senescence. These results demonstrate that POT1 and TRF2 share in part in the same pathway for telomere capping and suggest that POT1 binds to the telomeric single-stranded DNA in the D-loop and cooperates with TRF2 in t-loop maintenance.  相似文献   

14.
ATM mutations are responsible for the genetic disease ataxia-telangiectasia (A-T). ATM encodes a protein kinase that is activated by ionizing radiation-induced double strand DNA breaks. Cells derived from A-T patients show many abnormalities, including accelerated telomere loss and hypersensitivity to ionizing radiation; they enter into mitosis and apoptosis after DNA damage. Pin2 was originally identified as a protein involved in G(2)/M regulation and is almost identical to TRF1, a telomeric protein that negatively regulates telomere elongation. Pin2 and TRF1, probably encoded by the same gene, PIN2/TRF1, are regulated during the cell cycle. Furthermore, up-regulation of Pin2 or TRF1 induces mitotic entry and apoptosis, a phenotype similar to that of A-T cells after DNA damage. These results suggest that ATM may regulate the function of Pin2/TRF1, but their exact relationship remains unknown. Here we show that Pin2/TRF1 coimmunoprecipitated with ATM, and its phosphorylation was increased in an ATM-dependent manner by ionizing DNA damage. Furthermore, activated ATM directly phosphorylated Pin2/TRF1 preferentially on the conserved Ser(219)-Gln site in vitro and in vivo. The biological significance of this phosphorylation is substantiated by functional analyses of the phosphorylation site mutants. Although expression of Pin2 and its mutants has no detectable effect on telomere length in transient transfection, a Pin2 mutant refractory to ATM phosphorylation on Ser(219) potently induces mitotic entry and apoptosis and increases radiation hypersensitivity of A-T cells. In contrast, Pin2 mutants mimicking ATM phosphorylation on Ser(219) completely fail to induce apoptosis and also reduce radiation hypersensitivity of A-T cells. Interestingly, the phenotype of the phosphorylation-mimicking mutants is the same as that which resulted from inhibition of endogenous Pin2/TRF1 in A-T cells by its dominant-negative mutants. These results demonstrate for the first time that ATM interacts with and phosphorylates Pin2/TRF1 and suggest that Pin2/TRF1 may be involved in the cellular response to double strand DNA breaks.  相似文献   

15.
The regulation of mitotic spindle function   总被引:5,自引:0,他引:5  
The process of mitosis includes a series of morphological changes in the cell in which the directional movements of chromosomes are the most prominent. The presence of a microtubular array, known as the spindle or mitotic apparatus, provides at least a scaffold upon which these movements take place. The precise mechanism for chromosome movement remains obscure, but new findings suggest that the kinetochore may play a key role in chromosome movement toward the spindle pole, and that sliding interactions between or among adjacent microtubules may provide the mechanochemical basis for spindle elongation. The physiological regulation of the anaphase motors and of spindle operation either before or after anaphase remains equally elusive. Elicitors that may serve as controlling elements in spindle function include shifts in cytosolic calcium activity and perhaps the activation or inactivation of protein kinases, which in turn produce changes in the state of phosphorylation of specific spindle components.  相似文献   

16.
A major issue in telomere research is to understand how the integrity of chromosome ends is preserved. A recent study shows that expression of a dominant-negative form of the human telomeric protein TRF2 increases the number of chromosome fusions in immortalized cells and decreases the quantity of G-rich telomeric DNA 3' overhang, the G tail.(1) Consequently, TRF2 appears to control the structure of the very end of the chromosomal DNA molecule and to prevent recombination between two telomeres. Remarkably, the same study reveals a potential role of TRF2 in cell division control. BioEssays 20:879–883, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

17.
TRF1 and TRF2 are key proteins in human telomeres, which, despite their similarities, have different behaviors upon DNA binding. Previous work has shown that unlike TRF1, TRF2 condenses telomeric, thus creating consequential negative torsion on the adjacent DNA, a property that is thought to lead to the stimulation of single-strand invasion and was proposed to favor telomeric DNA looping. In this report, we show that these activities, originating from the central TRFH domain of TRF2, are also displayed by the TRFH domain of TRF1 but are repressed in the full-length protein by the presence of an acidic domain at the N-terminus. Strikingly, a similar repression is observed on TRF2 through the binding of a TERRA-like RNA molecule to the N-terminus of TRF2. Phylogenetic and biochemical studies suggest that the N-terminal domains of TRF proteins originate from a gradual extension of the coding sequences of a duplicated ancestral gene with a consequential progressive alteration of the biochemical properties of these proteins. Overall, these data suggest that the N-termini of TRF1 and TRF2 have evolved to finely regulate their ability to condense DNA.  相似文献   

18.
19.
DdLimE regulates cell motility and cytokinesis in Dictyostelium. To specify its function, we generated knock-out mutants and analyzed mitosis by marking the mitotic apparatus with GFP-alpha-tubulin. Characteristic of DdLimE-null cells is a late reversal of cytokinesis caused by backward movement of the incipient daughter cells. This process of "retro-cytokinesis" is accompanied by a delay in disassembly of the mitotic spindle. The length of interphase microtubules is increased and their depolymerization at prophase is impaired. These data indicate that DdLimE links the cortical actin network, where it is located, to the microtubule system, whose dynamics it regulates.  相似文献   

20.
TIN2 is a core component of the shelterin complex linking double-stranded telomeric DNA-binding proteins (TRF1 and TRF2) and single-strand overhang-binding proteins (TPP1-POT1). In vivo, the large majority of TRF1 and TRF2 exist in complexes containing TIN2 but lacking TPP1/POT1; however, the role of TRF1-TIN2 interactions in mediating interactions with telomeric DNA is unclear. Here, we investigated DNA molecular structures promoted by TRF1-TIN2 interaction using atomic force microscopy (AFM), total internal reflection fluorescence microscopy (TIRFM), and the DNA tightrope assay. We demonstrate that the short (TIN2S) and long (TIN2L) isoforms of TIN2 facilitate TRF1-mediated DNA compaction (cis-interactions) and DNA-DNA bridging (trans-interactions) in a telomeric sequence- and length-dependent manner. On the short telomeric DNA substrate (six TTAGGG repeats), the majority of TRF1-mediated telomeric DNA-DNA bridging events are transient with a lifetime of ~1.95 s. On longer DNA substrates (270 TTAGGG repeats), TIN2 forms multiprotein complexes with TRF1 and stabilizes TRF1-mediated DNA-DNA bridging events that last on the order of minutes. Preincubation of TRF1 with its regulator protein Tankyrase 1 and the cofactor NAD+ significantly reduced TRF1-TIN2 mediated DNA-DNA bridging, whereas TIN2 protected the disassembly of TRF1-TIN2 mediated DNA-DNA bridging upon Tankyrase 1 addition. Furthermore, we showed that TPP1 inhibits TRF1-TIN2L-mediated DNA-DNA bridging. Our study, together with previous findings, supports a molecular model in which protein assemblies at telomeres are heterogeneous with distinct subcomplexes and full shelterin complexes playing distinct roles in telomere protection and elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号