首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The cell cycle has checkpoint systems, which control G1/S, G2/M and G0/G1 phase transitions. When a normal cell suffers from DNA-damage, the signal transduction of DNA-damage causes the cell cycle arrest by using the checkpoint systems. Therefore, the elucidation of interaction between the signal transduction of DNA-damage and the checkpoint systems is an important problem. In this study, we constructed a novel mathematical model (proposed model) which integrated G1/S-checkpoint model with a signal transduction of DNA damage model and performed some numerical simulations. The proposed model realized some biological findings of G1/S phase with or without DNA-damage, which suggested that proposed model is biologically appropriate. Moreover, the results of sensitivity analysis of the proposed model indicated the predominant factors of G1/S phase and some factors concerned with the transformation of cells.  相似文献   

2.
Cancer stem cells: the lessons from pre-cancerous stem cells   总被引:1,自引:0,他引:1  
How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of "clonal evolution" for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of precancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the "clonal evolution" is not contradictory to the CSC hypothesis, but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respects to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumor stromal components such as tumor vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumor-initiating cells (TIC) --> pCSC --> CSC --> cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) --> precancerous lesions (pCSC) --> malignant lesions (CSC --> cancer). The embryonic stem (ES) cell and germline stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC --> pCSC --> CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC can not be made at this time. However this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer.  相似文献   

3.
The 4E-binding proteins (4E-BPs) regulate the cap-dependent eukaryotic initiation factor 4E (eIF4E). The level of 4E-BP protein is regulated during early development of sea urchin embryos. Fertilization leads to the rapid disappearance of the protein that reappears later in development. We show that two important cellular stresses, hypoxia and bleomycin prolonged checkpoint mobilization provoked the overexpression of the protein 4E-BP in developing sea urchin embryos. Hypoxia resulted after 1 h in a reversible gradual increase in the protein 4E-BP level. At 20 h, the protein 4E-BP had reached the level existing in the unfertilized eggs. Bleomycin used as a DNA-damaging agent for checkpoint activation, provoked cell cycle inhibition and after prolonged exposure (20 h), induced the expression of the protein 4E-BP. The effect of bleomycin on 4E-BP protein overexpression was dose-dependent between 0.4 and 1.2 mM. The role of the overexpression of the protein 4E-BP is discussed in relation with cellular stress responses.  相似文献   

4.
The cell cycle is driven by the activity of cyclin/cdk complexes. In somatic cells, cyclin E/cdk2 oscillates throughout the cell cycle and has been shown to promote S-phase entry and initiation of DNA replication. In contrast, cyclin E/cdk2 activity remains constant throughout the early embryonic development of the sea urchin and localizes to the sperm nucleus following fertilization. We now show that cyclin E localization to the sperm nucleus following fertilization is not unique to the sea urchin, but also occurs in the surf clam, and inhibition of cyclin E/cdk2 activity by roscovitine inhibits the morphological changes indicative of male pronuclear maturation in sea urchin zygotes. Finally, we show that inhibition of cyclin E/cdk2 activity does not block DNA replication in the early cleavage cycles of the sea urchin. We conclude that cyclin E/cdk2 activity is required for male pronuclear maturation, but not for initiation of DNA replication in early sea urchin development.  相似文献   

5.
Recent findings suggested that the role of cysteine proteases would not be limited to protein degradation in lysosomes but would also play regulatory functions in more specific cell mechanisms. We analyzed here the role of these enzymes in the control of cell cycle during embryogenesis. The addition of the potent cysteine protease inhibitor E64d to newly fertilized sea urchin eggs disrupted cell cycle progression, affecting nuclear as well as cytoplasmic characteristic events. Monitoring BrdU incorporation in E64d treated eggs demonstrated that DNA replication is severely disturbed. Moreover, this drug treatment inhibited male histones degradation, a step that is necessary for sperm chromatin remodeling and precedes the initiation of DNA replication in control eggs. This inhibition likely explains the DNA replication disturbance and suggests that S phase initiation requires cysteine protease activity. In turn, activation of the DNA replication checkpoint could be responsible for the consecutive block of nuclear envelope breakdown (NEB). However, in sea urchin early embryos this checkpoint doesn't control the mitotic cytoplasmic events that are not tightly coupled with NEB. Thus the fact that microtubule spindle is not assembled and cyclin B-cdk1 not activated under E64d treatment more likely rely on a distinct mechanism. Immunofluorescence experiments indicated that centrosome organization was deficient in absence of cysteine protease activity. This potentially accounts for mitotic spindle disruption and for cyclin B mis-localization in E64d treated eggs. We conclude that cysteine proteases are essential to trigger S phase and to promote M phase entry in newly fertilized sea urchin eggs.  相似文献   

6.
The cancer stem cell (CSC) model states that tumors contain a reservoir of self-renewing cells that maintain the heterogeneous cell population of the tumor. These cells appear to be resistant to therapy and can therefore survive to repopulate the tumor during progression to therapy resistant disease. The biology of CSCs is still not definitive since it is difficult to isolate them from solid tumors and analyze their characteristics in vitro. Another challenge is to correlate these characteristics with tumor development and progression in vivo. Using the prostate CSC as a model, this review presents the CSC hypothesis, reviews the origin, identification and functions of prostate CSCs, and discusses the clinical implications and therapeutic challenges CSCs have for cancer therapy.  相似文献   

7.
Inflamm-aging is a relatively new terminology used to describe the age-related increase in the systemic pro-inflammatory status of humans. Here, we represent inflamm-aging as a breakdown in the multi-shell cytokine network, in which stem cells and stromal fibroblasts (referred to as the stem cell niche) become pro-inflammatory cytokine over-expressing cells due to the accumulation of DNA damage. Inflamm-aging self-propagates owing to the capability of pro-inflammatory cytokines to ignite the DNA-damage response in other cells surrounding DNA-damaged cells. Macrophages, the major cellular player in inflamm-aging, amplify the phenomenon, by broadcasting pro-inflammatory signals at both local and systemic levels. On the basis of this, we propose that inflamm-aging is a major contributor to the increase in cancer incidence and progression in aged people. Breast cancer will be presented as a paradigmatic example for this relationship.  相似文献   

8.
The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint   总被引:2,自引:0,他引:2  
In response to DNA damage in G2, mammalian cells must avoid entry into mitosis and instead initiate DNA repair. Here, we show that, in response to genotoxic stress in G2, the phosphatase Cdc14B translocates from the nucleolus to the nucleoplasm and induces the activation of the ubiquitin ligase APC/C(Cdh1), with the consequent degradation of Plk1, a prominent mitotic kinase. This process induces the stabilization of Claspin, an activator of the DNA-damage checkpoint, and Wee1, an inhibitor of cell-cycle progression, and allows an efficient G2 checkpoint. As a by-product of APC/C(Cdh1) reactivation in DNA-damaged G2 cells, Claspin, which we show to be an APC/C(Cdh1) substrate in G1, is targeted for degradation. However, this process is counteracted by the deubiquitylating enzyme Usp28 to permit Claspin-mediated activation of Chk1 in response to DNA damage. These findings define a novel pathway that is crucial for the G2 DNA-damage-response checkpoint.  相似文献   

9.
Although the cancer stem cell (CSC) hypothesis has become an attractive model to account for tumor recurrence, failure to define a cell of origin has created the need to explore alternative models for cancer initiation and maintenance. Recent studies have linked an embryonic stem cell (ESC)-like gene signature with poorly defined high-grade tumors. Here, we review advances in the ESC field with an emphasis on how human pluripotent stem cells (hPSCs) can be used to define early tumorigenic events, including potential miRNA and epigenetic targets, as well as proto-oncogene and tumor suppressor networks that might facilitate hierarchal transformation. These studies allow for investigation of cancer initiation in a manner that cannot be achieved using primary tumors, where only retrospective evaluation of CSC development is possible. By comparing transformed hPSCs with their normal counterparts, we hope to develop novel cell-specific therapies that selectively target CSCs.  相似文献   

10.
11.
The fate of the small micromeres in sea urchin development   总被引:6,自引:0,他引:6  
We show that in sea urchin embryos, the daughter cells of the small micromeres become part of the coelomic sacs, in contrast to the long-held view that these sacs are purely of macromere origin. In addition, after prolonged mitotic quiescence, and following their incorporation into the coelomic sacs, these cells resume dividing, contrary to the previous view that they do not divide. Since coelomic sac cells give rise to much of the adult urchin, our results indicate that the small micromeres are founders of cell lineages involved in the formation of adult tissues. The setting aside of these cells in a nondividing state may be analogous to a phenomenon in Drosophila development, in which primordial imaginal and germ cells divide approximately once after the blastoderm stage and do not resume dividing until the larval stage.  相似文献   

12.
13.
Microtubule assembly is required for the formation of the male and female pronuclei during mouse, but not sea urchin, fertilization. In mouse oocytes, 50 μM colcemid prevents the decondensation of the maternal meiotic chromosomes and of the incorporated sperm nucleus during in vitro fertilization. Nuclear lamins do not associate with either of the parental chromatin sets although peripherin, the PI nuclear peripheral antigen, appears on both. DN A synthesis docs not occur in these fertilized, colcemid-arrested oocytes. This effect is limited to the first hours after ovulation, since colcemid added 4–6 hours later no longer prevents pronuclear development, lamin acquisition, or DNA synthesis. Neither microtubule stabilization with 10 μM taxol nor microfilament inhibition with 10 μM cytochalasin D or 2.2 μg/ml lalrunculin A prevent these pronuclear events; these drugs will inhibit the apposition of the pronuclei at the egg center. In sea urchin eggs, colcemid or griseofulvin treatment doe? not result in the same effect and the male pronucleus forms with the attendant accumulation of the nuclear lamins. The differences in the requirement for microtubule assembly during pronucleus formation may be related to the cell cycle: In mice the sperm enters a meiotic cytoplasm, whereas in sea urchin eggs it enters an interphase cytoplasm. Refertilization of mitotic sea urchin eggs was performed to test the possibility that this phenomenon is related to whether the sperm enters a meiotic/mitotic cytoplasm or one at interphase; during refertilization at first mitosis, the incorporated sperm nucleus is unable to decondense and acquire lamins. These results indicate a requirement for microtubule assembly for the progression from meiosis to first interphase during mouse fertilization and suggest that the cytoskeleton is required for changes in nuclear architecture necessary during fertilization and the cell cycle.  相似文献   

14.
Caffeine inhibits the checkpoint kinase ATM.   总被引:29,自引:0,他引:29  
The basis of many anti-cancer therapies is the use of genotoxic agents that damage DNA and thus kill dividing cells. Agents that cause cells to override the DNA-damage checkpoint are predicted to sensitize cells to killing by genotoxic agents. They have therefore been sought as adjuncts in radiation therapy and chemotherapy. One such compound, caffeine, uncouples cell-cycle progression from the replication and repair of DNA [1] [2]. Caffeine therefore servers as a model compound in establishing the principle that agents that override DNA-damage checkpoints can be used to sensitize cells to the killing effects of genotoxic drugs [3]. But despite more than 20 years of use, the molecular mechanisms by which caffeine affects the cell cycle and checkpoint responses have not been identified. We investigated the effects of caffeine on the G2/M DNA-damage checkpoint in human cells. We report that the radiation-induced activation of the kinase Cds1 [4] (also known as Chk2 [5]) is inhibited by caffeine in vivo and that ATM kinase activity is directly inhibited by caffeine in vitro. Inhibition of ATM provides a molecular explanation of the attenuation of DNA-damage checkpoint responses and for the increased radiosensitivity of caffeine-treated cells [6] [7] [8].  相似文献   

15.
Under the cancer stem cell (CSC) hypothesis, sustained metastatic growth requires the dissemination of a CSC from the primary tumour followed by its re-establishment in a secondary site. The epithelial-mesenchymal transition (EMT), a differentiation process crucial to normal development, has been implicated in conferring metastatic ability on carcinomas. Balancing these two concepts has led researchers to investigate a possible link between EMT and the CSC phenotype—indeed, recent evidence indicates that, following induction of EMT in human breast cancer and related cell lines, stem cell activity increased, as judged by the presence of cells displaying the CD44high/CD24low phenotype and an increase in the ability of cells to form mammospheres. We mathematically investigate the nature of this increase in stem cell activity. A stochastic model is used when small number of cells are under consideration, namely in simulating the mammosphere assay, while a related continuous model is used to probe the dynamics of larger cell populations. Two scenarios of EMT-mediated CSC enrichment are considered. In the first, differentiated cells re-acquire a CSC phenotype—this model implicates fully mature cells as key subjects of de-differentiation and entails a delay period of several days before de-differentiation occurs. In the second, pre-existing CSCs experience accelerated division and increased proportion of self-renewing divisions; a lack of perfect CSC biomarkers and cell sorting techniques requires that this model be considered, further emphasizing the need for better characterization of the mammary (cancer) stem cell hierarchy. Additionally, we suggest the utility of comparing mammosphere data to computational mammosphere simulations in elucidating the growth characteristics of mammary (cancer) stem cells.  相似文献   

16.
Xue Y  Rushton MD  Maringele L 《PLoS genetics》2011,7(12):e1002417
Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA-damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular "band-aid" for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA-dependent DNA-damage responses in eukaryotic cells.  相似文献   

17.
Cleavage in embryos of the sea urchin Arbacia punctulata consists of eight very rapid divisions that require continual protein synthesis to sustain them. This synthesis is programmed by stored maternal mRNAs, which code for three or four particularly abundant proteins whose synthesis is barely if at all detectable in the unfertilized egg. One of these proteins is destroyed every time the cells divide. Eggs of the sea urchin Lytechinus pictus and oocytes of the surf clam Spisula solidissima also contain proteins that only start to be made after fertilization and are destroyed at certain points in the cell division cycle. We propose to call these proteins the cyclins.  相似文献   

18.
Egg volume of a tropical sea urchin Echinometra mathaei is about one half that of other well-known species. We asked whether such a small size of eggs affected the timings of early developmental events or not. Cleavages became asynchronous from the 7th cleavage onward, and embryos hatched out before completion of the 9th cleavage. These timings were one cell cycle earlier than those in well-known sea urchins, raising the possibility that much earlier events, such as the increase in adhesiveness of blastomeres or the specification of dorso-ventral axis (DV-axis), would also occur earlier by one cell cycle. By examining the pseudopodia formation in dissociated blastomeres, it was elucidated that blastomeres in meso- and macromere lineages became adhesive after the 4th and 5th cleavages, respectively. From cell trace experiments, it was found that the first or second cleavage plane was preferentially employed as the median plane of embryo; the DV-axis was specified mainly at the 16-cell stage. Timings of these events were also one cell cycle earlier than those in Hemicentrotus pulcherrimus. The obtained results suggest that most of the early developmental events in sea urchin embryos do not depend on cleavage cycles, but on other factors, such as the nucleo-cytoplasmic ratio.  相似文献   

19.
Vasa is a DEAD-box RNA helicase that functions in translational regulation of specific mRNAs. In many animals it is essential for germ line development and may have a more general stem cell role. Here we identify vasa in two sea urchin species and analyze the regulation of its expression. We find that vasa protein accumulates in only a subset of cells containing vasa mRNA. In contrast to vasa mRNA, which is present uniformly throughout all cells of the early embryo, vasa protein accumulates selectively in the 16-cell stage micromeres, and then is restricted to the small micromeres through gastrulation to larval development. Manipulating early embryonic fate specification by blastomere separations, exposure to lithium, and dominant-negative cadherin each suggest that, although vasa protein accumulation in the small micromeres is fixed, accumulation in other cells of the embryo is inducible. Indeed, we find that embryos in which micromeres are removed respond by significant up-regulation of vasa protein translation, followed by spatial restriction of the protein late in gastrulation. Overall, these results support the contention that sea urchins do not have obligate primordial germ cells determined in early development, that vasa may function in an early stem cell population of the embryo, and that vasa expression in this embryo is restricted early by translational regulation to the small micromere lineage.  相似文献   

20.
Cancer stem cells (CSC) were postulated to exist many years ago as cells within a tumor that regenerate the tumor following treatment. A stochastic clonal evolution model was used to explain observed tumor heterogeneity. Recently, xenotransplantation studies have demonstrated that prospectively identifiable subpopulations from human cancers can initiate tumors in immune deficient mice, and these results along with recent advances in stem cell biology have generated much excitement in the cancer field. The modern CSC theory posits a hierarchy of cells analogous to normal stem cell development. Some controversy remains, however, as to whether these tumor initiating cells truly represent CSC, and whether the modern CSC field can live up to the promise of providing improved cancer treatments based on a novel model of cancer biology. Recent data from CSC investigators are discussed critically. J. Cell. Biochem. 106: 745–749, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号