首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
In the model plant Arabidopsis thaliana, the establishment of organ polarity leads to the expression of FILAMENTOUS FLOWER (FIL) and YABBY3 (YAB3) on one side of an organ. One important question that has remained unanswered is how does this positional information lead to the correct spatial activation of genes controlling tissue identity? We provide the first functional link between polarity establishment and the regulation of tissue identity by showing that FIL and YAB3 control the non-overlapping expression patterns of FRUITFULL (FUL) and SHATTERPROOF (SHP), genes necessary to form stripes of valve margin tissue that allow the fruit to shatter along two defined borders and disperse the seeds. FIL and YAB3 activate FUL and SHP redundantly with JAGGED (JAG), a gene that also promotes growth in organs, indicating that several pathways converge to regulate these genes. These activities are negatively regulated by REPLUMLESS (RPL), which divides FIL/JAG activity, creating two distinct stripes of valve margin.  相似文献   

9.
10.
A key innovation in leaf evolution is the acquisition of a flat lamina with adaxial-abaxial polarity, which optimizes the primary function of photosynthesis. The developmental mechanism behind leaf adaxial-abaxial polarity specification and flat lamina formation has long been of interest to biologists. Surgical and genetic studies proposed a conceptual model wherein a signal derived from the shoot apical meristem is necessary for adaxial-abaxial polarity specification, and subsequent lamina outgrowth is promoted at the juxtaposition of adaxial and abaxial identities. Several distinct regulators involved in leaf adaxial-abaxial polarity specification and lamina outgrowth have been identified. Analyses of these genes demonstrated that the mutual antagonistic interactions between adaxial and abaxial determinants establish polarity and define the boundary between two domains, along which lamina outgrowth regulators function. Evolutionary developmental studies on diverse leaf forms of angiosperms proposed that alteration to the adaxial-abaxial patterning system can be a major driving force in the generation of diverse leaf forms, as represented by 'unifacial leaves', in which leaf blades have only the abaxial identity. Interestingly, unifacial leaf blades become flattened, in spite of the lack of adaxial-abaxial juxtaposition. Modification of the adaxial-abaxial patterning system is also utilized to generate complex organ morphologies, such as stamens. In this review, we summarize recent advances in the genetic mechanisms underlying leaf adaxial-abaxial polarity specification and lamina outgrowth, with emphasis on the genetic basis of the evolution and diversification of leaves.  相似文献   

11.
12.
13.
Developmental gene families have diversified during land plant evolution. The primary role of YABBY gene family is promoting abaxial fate in model eudicot, Arabidopsis thaliana. However recent results suggest that roles of YABBY genes are not conserved in the angiosperms. In this paper, a rice YABBY gene was isolated, and its expression patterns were analyzed in detail. Sequence characterization and phylogenetic analyses showed the gene is OsYABBY4, which is group-classified into FIL/YAB3 subfamily. Beta-glucuronidase reporter assay and in situ analysis consistently revealed that OsYABBY4 was expressed in the meristems and developing vascular tissue of rice, predominantly in the phloem tissue, suggesting that the function of the rice gene is different from those of its counterparts in eudicots. OsYABBY4 may have been recruited to regulate the development of vasculature in rice. However, transgenic Arabidopsis plants ectopically expressing OsYABBY4 behaved very like those over-expressing FIL or YAB3 with abaxialized lateral organs, suggesting the OsYABBY4 protein domain is conserved with its Arabidopsis counterparts in sequences. Our results also indicate that the functional diversification of OsYABBY4 may be associated with the divergent spatial-temporal expression patterns, and YABBY family members may have preserved different expression regulatory systems and functions during the evolution of different kinds of species.  相似文献   

14.
15.
叶发育的遗传调控机理研究进展   总被引:1,自引:0,他引:1  
叶是植物进行光合作用的主要器官。高等植物叶原基起始于顶端分生组织的周边区,在一系列基因精确调控下,叶原基建立近一远轴、基一顶轴和中.侧轴极性,引导原基细胞朝着特定的方向分裂和分化,最终发育戍一定形态和大小的叶片。近年来分子遗传学研究结果表明,数个转录因子家族基因、小分子RNA和细胞增殖相关因子组成一个复杂的遗传控制网络,调节叶片极性建成过程。此外,复叶的形态建成还受到另外一些转录因子的调控。本文对近年来叶发育遗传调控机理研究的新进展做简要介绍。  相似文献   

16.
Establishment of adaxial-abaxial polarity is essential for lateral organ development. The mechanisms underlying the polarity establishment in the stamen remain unclear, whereas those in the leaf are well understood. Here, we investigated a rod-like lemma (rol) mutant of rice (Oryza sativa), in which the development of the stamen and lemma is severely compromised. We found that the rod-like structure of the lemma and disturbed anther patterning resulted from defects in the regulation of adaxial-abaxial polarity. Gene isolation indicated that the rol phenotype was caused by a weak mutation in SHOOTLESS2 (SHL2), which encodes an RNA-dependent RNA polymerase and functions in trans-acting small interfering RNA (ta-siRNA) production. Thus, ta-siRNA likely plays an important role in regulating the adaxial-abaxial polarity of floral organs in rice. Furthermore, we found that the spatial expression patterns of marker genes for adaxial-abaxial polarity are rearranged during anther development in the wild type. After this rearrangement, a newly formed polarity is likely to be established in a new developmental unit, the theca primordium. This idea is supported by observations of abnormal stamen development in the shl2-rol mutant. By contrast, the stamen filament is likely formed by abaxialization. Thus, a unique regulatory mechanism may be involved in regulating adaxial-abaxial polarity in stamen development.  相似文献   

17.
18.
In plants, cell proliferation and polarized cell differentiation along the adaxial-abaxial axis in the primordium is critical for leaf morphogenesis, while the temporal-spatial relationships between these two processes remain largely unexplored. Here, it is reported that microRNA396 (miR396)-targeted Arabidopsis growth-regulating factors (AtGRFs) are required for leaf adaxial-abaxial polarity in Arabidopsis. Reduction of the expression of AtGRF genes by transgenic miR396 overexpression in leaf polarity mutants asymmetric leaves1 (as1) and as2 resulted in plants with enhanced leaf adaxial-abaxial defects, as a consequence of reduced cell proliferation. Moreover, transgenic miR396 overexpression markedly decreased the cell division activity and the expression of cell cycle-related genes, but resulted in an increased percentage of leaf cells with a higher ploidy level, indicating that miR396 negatively regulates cell proliferation by controlling entry into the mitotic cell cycle. miR396 is mainly expressed in the leaf cells arrested for cell division, coinciding with its roles in cell cycle regulation. These results together suggest that cell division activity mediated by miR396-targeted AtGRFs is important for polarized cell differentiation along the adaxial-abaxial axis during leaf morphogenesis in Arabidopsis.  相似文献   

19.
Plants leaves develop proximodistal, dorsoventral (adaxial-abaxial), and mediolateral patterns following initiation. The Myb domain gene PHANTASTICA (PHAN) is required for adaxial fate in many plants , but the Arabidopsis ortholog ASYMMETRIC LEAVES1 (AS1) has milder effects, suggesting that alternate or redundant pathways exist . We describe enhancers of as1 with more elongate and dissected leaves. As well as RDR6, an RNA-dependent RNA polymerase previously proposed to influence as1 through microRNA , these enhancers disrupt ARGONAUTE7 (AGO7)/ZIPPY, SUPPRESSOR OF GENE SILENCING3 (SGS3), and DICER-LIKE4 (DCL4), which instead regulate trans-acting small interfering RNA (ta-siRNA) . Microarray analysis revealed that the AUXIN RESPONSE FACTOR genes ETTIN (ETT)/ARF3 and ARF4 were upregulated in ago7, whereas FILAMENTOUS FLOWER (FIL) was upregulated only in as1 ago7 double mutants. RDR6 and SGS3 likewise repress these genes, which specify abaxial fate . We show that the trans-acting siRNA gene TAS3, which targets ETT and ARF4, is expressed in the adaxial domain, and ett as1 ago7 triple mutants resemble as1. Thus FIL is downregulated redundantly by AS1 and by TAS3, acting through ETT, revealing a role for ta-siRNA in leaf polarity. RDR6 and DCL4 are required for systemic silencing, perhaps implicating ta-siRNA as a mobile signal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号