首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This review describes current research on the preventive effect of dietary vitamin B(6) against colon tumorigenesis and its possible mechanisms. Studies in cell culture have demonstrated that high levels of vitamin B(6) suppress growth of some cancer cells. From these studies it has been considered that supraphysiological doses of vitamin B(6) suppress tumor growth and metastasis. However, recent rodent study has indicated that azoxymethane-induced colon tumorigenesis in mice is suppressed by moderate doses of dietary vitamin B(6.) Epidemiological studies also support an inverse relationship between vitamin B(6) intake and colon cancer risk. Potential mechanisms underlying the preventive effect of dietary vitamin B(6) have been suggested to include the suppression of cell proliferation, oxidative stress, nitric oxide (NO) synthesis, and angiogenesis.  相似文献   

2.
The effects of vitamin B(6) deficiency on metabolic activities of brain structures were studied. Male Sprague-Dawley weanling rats received one of the following diets: (1) 7 mg pyridoxine HCl/kg (control group); (2) 0 mg pyridoxine HCl/kg (vitamin B(6)-deficient group); or (3) 7 mg pyridoxine HCl/kg with food intake restricted in quantity to that consumed by the deficient group (pair-fed control group). After 8 weeks of dietary treatment, rats in all three groups received an intravenous injection of 2-deoxy-[(14)C] glucose (100 microCi/kg). Vitamin B(6) status was evaluated by plasma pyridoxal 5'-phosphate concentrations. The vitamin B(6)-deficient group had significantly lower levels of plasma pyridoxal 5'-phosphate than did the control and pair-fed groups. The local cerebral glucose utilization rates in structures of the limbic system, basal ganglia, sensory motor system, and hypothalamic system were determined. The local cerebral glucose utilization rates in each of the four brain regions in the deficient animals were approximately 50% lower (P < 0.05) than in the control group. Results of the present study suggest that serious cognitive deficit may occur in vitamin B(6)-deficient animals.  相似文献   

3.
The objectives of the current study included the characterization of the temporal changes in indices of sulphur amino acid metabolism in piglets in response to vitamin B6 deficiency and repletion with graded levels of pyridoxine hydrochloride. In Experiment 1, 12 piglets (average initial weight = 5.3 kg; n = 6 per group) were fed a semi-purified diet containing either 0 (deficiency group) or 3 mg (control group) pyridoxine·HCl/kg diet, using a pair-feeding design, for 6 weeks. Piglets consuming vitamin B6-deficient diets exhibited decreased average daily gains on the 4th week and feed conversion efficiency from the 4th week until the end of the trial (P < 0.05). Plasma pyridoxal-5'-phosphate (PLP), in pigs consuming vitamin B6-deficient diets, was significantly lower than controls throughout the experiment (P < 0.01), reaching a nadir of 14% of the control animals' value by the end of the trial. Indices of sulphur amino acid metabolism, including activities of hepatic cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CGL) and serine hydroxymethyltransferase, as well as hepatic-free cysteine concentrations were markedly decreased after 6 weeks of B6 deficiency (P < 0.05). Total hepatic mRNA expressions for CBS and CGL were not affected. Concurrently, hepatic-free homocysteine concentrations increased by more than eight-fold (P < 0.01) at the end of the trial. An examination of plasma total homocysteine and cysteine concentrations revealed significant (P < 0.05) differences between treatments, with evidence of an abrupt shift in concentrations at 3 weeks post-initiation of dietary treatments (>25-fold increase in homocysteine; halving of cysteine values). At the end of Experiment 1, vitamin B6 deficiency significantly increased plasma methionine and serine levels, but decreased plasma glycine concentrations (P < 0.05). In Experiment 2, 20 pigs of 14 days old (initial BW = 5.0 kg) were subjected to a 4-week vitamin B6 depletion protocol, based on results obtained in Experiment 1. After the depletion period and assessment of baseline status (four pigs), remaining pigs were allocated to one of four dietary vitamin B6 repletion treatments: 0.75, 1.5, 2.25 and 3 mg/kg diet as pyridoxine·HCl (n = 4 per level) for 14 days. Significant dose-dependent increases in plasma PLP and cysteine, and decreases in homocysteine were observed, and these were sensitive to the duration of repletion. In conclusion, data from the current studies support the use of both plasma PLP and homocysteine as sensitive indices of vitamin B6 status in the pig. Additionally, the observed patterns of responses in vitamin B6-sensitive metabolites are supportive of an inclusion level of 2.25 mg/kg diet, as pyridoxine·HCl, in diets for young pigs.  相似文献   

4.
Copper (Cu) deficiency decreases the activity of Cu-dependent antioxidant enzymes such as Cu,zinc-superoxide dismutase (Cu,Zn-SOD) and may be associated with increased susceptibility to oxidative stress. Iron (Fe) overload represents a dietary oxidative stress relevant to overuse of Fe-containing supplements and to hereditary hemochromatosis. In a study to investigate oxidative stress interactions of dietary Cu deficiency with Fe overload, weanling male Long–Evans rats were fed one of four sucrose-based modified AIN-93G diets formulated to differ in Cu (adequate 6 mg/kg diet vs. deficient 0.5 mg/kg) and Fe (adequate 35 mg/kg vs. overloaded 1500 mg/kg) in a 2×2 factorial design for 4 weeks prior to necropsy. Care was taken to minimize oxidation of the diets prior to feeding to the rats. Liver and plasma Cu content and liver Cu,Zn-SOD activity declined with Cu deficiency and liver Fe increased with Fe overload, confirming the experimental dietary model. Liver thiobarbituric acid reactive substances were significantly elevated with Fe overload (pooled across Cu treatments, 0.80±0.14 vs. 0.54±0.08 nmol/mg protein; P<.0001) and not affected by Cu deficiency. Liver cytosolic protein carbonyl content and the concentrations of several oxidized cholesterol species in liver tissue did not change with these dietary treatments. Plasma protein carbonyl content decreased in Cu-deficient rats and was not influenced by dietary Fe overload. The various substrates (lipid, protein and cholesterol) appeared to differ in their susceptibility to the in vivo oxidative stress induced by dietary Fe overload, but these differences were not exacerbated by Cu deficiency.  相似文献   

5.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2013,37(4):632-639
试验采用单因素试验设计, 以饲料中吡哆醇浓度为影响因素, 研究了团头鲂幼鱼的适宜吡哆醇需求量。试验共配置了7组等氮等能的半纯化饲料, 其吡哆醇的实际含量分别为0、1.04、1.99、4.07、5.91、7.96和9.22 mg/kg。选用840尾均重:(6.810.17) g团头鲂幼鱼, 随机分为7组, 每组4重复, 每重复30尾鱼, 日投饵3次, 养殖期为8周。结果表明, 当饲料中吡哆醇含量由0升高至5.91 mg/kg时, 团头鲂的增重率、特定生长率、饲料利用率、成活率、蛋白效率比和氮保留率均得到显著改善(P0.05); 当吡哆醇含量进一步升高至9.22 mg/kg时, 蛋白效率比和氮保留率均显著下降(P0.05), 而其他指标则无显著变化(P0.05)。饲料中的吡哆醇含量显著影响团头鲂的肝体比(P0.05)且以5.91 mg/kg组为最低, 但对肥满度和胴体率均无显著影响(P0.05)。当饲料吡哆醇含量由0升高至5.91 mg/kg时, 肝脏谷草转氨酶和谷丙转氨酶活性以及吡哆醇含量均显著升高(P0.05); 当吡哆醇含量进一步升高至9.22 mg/kg时, 三者均无显著变化(P0.05)。以肝脏中的谷丙和谷草转氨酶活性以及吡哆醇含量为评价指标, 拟合折线模型得到团头鲂幼鱼的适宜吡哆醇的需求量为4.175.02 mg/kg。    相似文献   

6.
The effect of vitamin B6 on cytotoxic immune responses of T cells, natural killer (NK) cells, cytotoxic antibody production, and macrophage phagocytosis was assessed in 5-week-old female C57B1/6 mice. Mice were fed 20% casein diets with pyridoxine (PN) added at 7, 1, 0.1, or 0 mg/kg diet, which represents 700, 100, 10, and 0% of requirement, respectively. Compared to mice fed 7 or 1 mg PN diet, animals fed 0 or 0.1 mg PN diet showed significantly reduced primary splenic and peritoneal T-cell-mediated cytotoxicity (CMC). Animals fed 0 mg PN diet also showed significantly depressed secondary T CMC of splenic and peritoneal lymphocytes against P815 tumor cells. Complement-dependent antibody-mediated cytotoxicity against P815 cells, phagocytosis of SRBC by macrophages, and native and interferon-induced NK cell activities against YAC cells were not affected by the level of vitamin B6 intake. The percentage of macrophages present in the peritoneal exudate cells was increased in animals fed the 0 mg PN diet. The immune responses were not enhanced or altered by the excess intake of vitamin B6 (7 mg PN). It appears that vitamin B6 is an essential nutrient for maintenance of normal T-cell function in vivo.  相似文献   

7.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(6):1069-1075
为研究叶酸和VB12协同作用对中华绒螯蟹(Eriocheir sinensis)幼蟹生长、非特异性免疫和抗病力的影响,选取初始体重为(2.570.03) g的幼蟹600只,随机分成4组,每组5个重复,每个重复30只幼蟹,分别投喂对照组(不添加叶酸和VB12),单一VB12组(0.2 mg/kg),单一叶酸组(2.3 mg/kg)和联合处理组(0.2 mg/kg VB12 +2.3 mg/kg叶酸)的饲料8周。在养殖实验结束后,先统计成活率和称重,然后从每个处理组随机选取30只幼蟹,用2108 CFU/mL的嗜水气单胞菌注射攻毒2周。实验结果表明:幼蟹的增重率、特定生长率、饲料效率和存活率在联合处理组最高,显著高于对照组(P0.05),但与单一叶酸或VB12组相比不存在显著差异(P0.05)。联合处理组的血清酚氧化酶活性显著高于对照组(P0.05),但与单一叶酸或VB12组也无显著性差异(P0.05)。同时,联合处理组的血清酸性磷酸酶、碱性磷酸酶、溶菌酶活性和血细胞总数等指标最高,其次是单一叶酸组和VB12组,而对照组最低。投喂联合处理组饲料幼蟹的肝胰腺超氧化物歧化酶活性最高,而丙二醛含量和累积死亡率最低。以上结果表明,叶酸和VB12对幼蟹的生长、生理代谢和免疫性能均可能有互补和协同作用,养殖生产中建议饲料中叶酸和VB12添加量分别为2.3 mg/kg和0.2 mg/kg。    相似文献   

8.
Two experiments were conducted: Expt 1 determined the optimal allowance of vitamin E in the diet for broiler chicks aged 0–3 weeks; Expt 2 investigated the effects of different dietary levels of vitamin E (α-tocopherol) on the performance and the oxidative stability of thigh meat of broiler chicks during storage. In Expt 1, 1-day-old 900 broiler chicks were allocated to five treatments, each with six replicates (cages) of 22 as-hatched chicks for performance evaluation, and another cage of 45 male chicks for determining plasma and hepatic α-tocopherol and thiobarbituric acid reactive substances (TBARS) concentration in blood and liver. The basal dietary α-tocopherol concentration was 13 mg/kg, and the five α-tocopherol acetate supplementation levels were 0, 5, 10, 50 and 100 mg/kg. For 0–3-week-old broiler chicks fed with maize–soya bean meal–soya oil type diet, supplementation of vitamin E did not influence the feed intake, but tended to improve growth and feed utilization, however there was no significant correlation between performance and vitamin E supplementation level. Significant positive correlations existed between dietary supplemental vitamin E level and plasma or hepatic α-tocopherol concentrations (P<0.05), and a negative correlation with hepatic TBARS levels no matter at what age (11, 16 and 21 days). In Expt 2, 2200 broiler chicks were randomly allocated to five treatments with four replicates (pens) in each. Chicks were fed ad libitum five pellet diets supplemented with vitamin E at 5, 10, 20, 50 and 100 mg/kg of diet, respectively. The basal dietary α-tocopherol level of grower and finisher diets were 7 and 6 mg/kg, respectively. Supplementation of vitamin E tended to improve growth and feed utilization of birds during 0–3 weeks of age, but the performance from 0 to 6 weeks of age were not influenced. The hepatic α-tocopherol concentrations of 6-week-old chicks linearly increased with the dietary vitamin E levels (R2=0.98, P<0.001). The content of TBARS in the thigh meat over 4 days of storage under 4°C was significantly decreased by increasing dietary vitamin E level (P<0.05). There was a significant inverse relationship between TBARS value in the thigh meat and the dietary vitamin E level (R2=0.93, P<0.01). Supplementation of vitamin E significantly improved the meat quality stability substantially against oxidative deterioration. Comparing the hepatic α-tocopherol levels of chicks in Expts 1 and 2, total allowance of dietary α-tocopherol of 20–30 mg/kg could sustain relatively constant hepatic α-tocopherol level at round about 2–2.5 μg/kg.  相似文献   

9.
This study was conducted to evaluate the effects of dietary vitamin K (menadione) on bone quality in cage-raised broilers. Three hundred and sixty male broilers were randomly allotted to one of six treatments, with six replicate pens per treatment and 10 chicks per pen. Broilers were fed one of six diets including a control diet or the control diet plus graded levels of vitamin K (0.5 mg/kg, 2 mg/kg, 8 mg/kg, 32 mg/kg and 128 mg/kg). Water and feed were provided ad libitum during the 7-week experimental period. Results indicated that vitamin K supplementation of broilers diets significantly effected bone quality and feed efficiency. The treatment containing vitamin K at 8 mg/kg improved growth performance (during weeks 6 - 7) and bone quality (during weeks 0 - 3). In our study, hydroxyapatite binding capacity of serum osteocalcin (during weeks 0 - 3), bone breaking strength, bone flexibility, bone ash weight increased linearly (P < 0.05) and bone mineral density, bone mineral content increased quadratically (P < 0.05) with increasing supplementation of vitamin K. In conclusion, to gain optimum bone quality and broiler performance, our studies suggest that the concentration of vitamin K in broilers diets should be 8 mg/kg, 2 mg/kg, and 2 mg/kg, for the starter, grower and finisher phases, respectively. Furthermore, it was shown that the starter period is an important phase for improving bone quality. In addition, this study validated the mechanism of vitamin K effects on bone quality. Vitamin K boosts the carboxylation of osteocalcin and decreases the concentration of serum undercarboxylated osteocalcin enhancing hydroxyapatite binding capacity of serum osteocalcin and improving bone quality.  相似文献   

10.
This study was done to discover the underlying mechanism of the inhibitory effect of sericin against colon tumorigenesis. Mice were fed a diet with 30 g/kg sericin for 115 d, and given a weekly injection of 1,2-dimethylhydrazine (10 mg/kg body weight) for the initial 10 wk. Dietary supplemental sericin caused a 62% reduction in the incidence of colonic adenoma (P<0.05), but did not affect the incidence of colonic adenocarcinoma. Sericin intake significantly reduced the number of colon adenomas. Consumption of sericin significantly reduced the BrdU labeling index of colonic proliferating cells and the expression of colonic c-myc and c-fos. The levels of colonic 8-hydroxydeoxyguanosine, 4-hydroxynonenal, and inducible nitric oxide synthase protein were significantly suppressed by sericin. The results suggest that dietary sericin suppresses the development of colon tumors by reducing oxidative stress, cell proliferation, and nitric oxide production.  相似文献   

11.
Mark D. Finke 《Zoo biology》2003,22(2):147-162
A variety of commercially raised insects are fed to insectivorous reptiles, but information concerning appropriate diets used to feed these insects is limited. In the present study, house crickets (Acheta domesticus adults and nymphs), mealworms (Tenebrio molitor larvae), and silkworms (Bombyx mori larvae) were fed diets containing graded levels of calcium (Ca) and/or vitamin A–nutrients that are low or absent in most insects. Diets and insects were analyzed for moisture, Ca, phosphorus (P), and vitamin A. For adult crickets and cricket nymphs, body Ca and vitamin A concentrations increased in a linear fashion with increasing levels of dietary Ca or vitamin A. Ca concentrations of silkworms also increased in a linear fashion with increasing levels of dietary Ca. For mealworms, body Ca and vitamin A concentrations increased in a nonlinear fashion with increasing levels of dietary Ca or vitamin A. These regression equations, in conjunction with insect nutrient composition, allow for the calculation of the optimum nutrient concentration for gut‐loading diets. Final recommendations were based on National Research Council (NRC) requirements for rats, adjustments for the energy content of the insects, and nutrient overages as appropriate. Gut‐loading diets for crickets (adults and nymphs) should be supplemented to contain the following nutrients, respectively: Ca (51 and 32 g/kg), vitamin A (8,310 and 5,270 µg retinol/kg), vitamin D (300 and 190 µg cholecalciferol/kg), vitamin E (140 and 140 mg RRR‐α‐tocopherol/kg), thiamin (31 and 21 mg/kg), and pyridoxine (20 and 10 mg/kg). Gut‐loading diets for mealworms should be supplemented to contain the following nutrients: Ca (90 g/kg), iron (51 mg/kg), manganese (31 mg/kg), vitamin A (13,310 µg retinol/kg), vitamin D (460 µg cholecalciferol/kg), vitamin E (660 mg RRR‐α‐tocopherol/kg), thiamin (5 mg/kg), vitamin B12 (650 µg/kg), and methionine (29 g/kg). Gut‐loading diets for silkworms should be supplemented to contain the following nutrients: Ca (23 g/kg), iodine (0.7 mg/kg), vitamin D (140 µg cholecalciferol/kg), vitamin E (70 mg RRR‐α‐tocopherol/kg), and vitamin B12 (226 µg/kg). Zoo Biol 22:147–162, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

12.
This study was done to discover the underlying mechanism of the inhibitory effect of sericin against colon tumorigenesis. Mice were fed a diet with 30 g/kg sericin for 115 d, and given a weekly injection of 1,2-dimethylhydrazine (10 mg/kg body weight) for the initial 10 wk. Dietary supplemental sericin caused a 62% reduction in the incidence of colonic adenoma (P<0.05), but did not affect the incidence of colonic adenocarcinoma. Sericin intake significantly reduced the number of colon adenomas. Consumption of sericin significantly reduced the BrdU labeling index of colonic proliferating cells and the expression of colonic c-myc and c-fos. The levels of colonic 8-hydroxydeoxyguanosine, 4-hydroxynonenal, and inducible nitric oxide synthase protein were significantly suppressed by sericin. The results suggest that dietary sericin suppresses the development of colon tumors by reducing oxidative stress, cell proliferation, and nitric oxide production.  相似文献   

13.
14.
以初始体质量(7.270.40) g的青鱼为研究对象, 采用维生素E(VE)有效含量分别为14.36(对照组)、25.14、37.66、62.97、113.92和210.45 mg/kg 6种等氮等能的实验饲料, 饲养青鱼幼鱼8周后, 根据生长情况选取对照组、62.97和210.45 mg/kg VE组进行24h氨氮胁迫(20 mg/L), 研究VE对青鱼幼鱼生长、免疫及抗氨氮胁迫能力的影响。结果表明: 以特定生长率为指标, 折线模型分析表明青鱼有效维生素E需要量为45.00 mg/kg。肌肉、肝脏和血清VE含量与饲料中VE含量呈明显正相关, 当饲料VE含量超过113.92 mg/kg时, 肌肉和肝脏VE含量均达到饱和。VE对鳃丝Na+/K+-ATP酶活性(NKA)和血清皮质醇(COR)无显著影响, 但随着饲料VE含量的升高, 过氧化氢酶(CAT)和总超氧化物歧化酶活性(T-SOD)呈上升趋势, 丙二醛含量(MDA)呈下降趋势。氨氮胁迫对各处理组肌肉VE含量和血清CAT活性无影响, 但肝脏VE含量均显著降低(P0.05), 且62.97和210.4 5 mg/kg VE组血清VE水平有所升高。在胁迫后, 对照组血清T-SOD、鳃丝NKA活性显著降低, 皮质醇含量显著增加(P0.05)。与对照组相比, 62.97和210.45 mg/kg VE组T-SOD、NKA活性和皮质醇含量在胁迫前后无显著变化。各处理组MDA含量在胁迫后虽均显著升高, 但210.45 mg/kg VE组在胁迫后MDA含量仍显著低于对照组(P0.05)。以上结果说明, 青鱼幼鱼获得最大生长的有效维生素E需求量为45.00 mg/kg, 且较高VE能有效提高青鱼机体免疫力, 缓解氨氮胁迫对青鱼机体的负面影响。    相似文献   

15.
Effects of dietary fatty acids on burn-induced immunosuppression   总被引:2,自引:0,他引:2  
Previous studies from our laboratory established that low-fat diets prevent immunosuppression and reduce oxidative stress after a thermal injury. The purpose of the present study was to test the hypothesis that the type of dietary fatty acid influences splenocyte proliferation and oxidative stress following a burn injury. Female C3H/HeN mice were fed ad libitum six experimental diets (5% w/w lipids) differing in fatty acid composition for 10 days following a burn injury. Compared to the controls, burned mice fed whichever diet showed lower lymphoproliferative responses to concanavalin-A (Con-A) and lipopolysaccharide (LPS) (p<0.01), but not to an anti-T cell receptor monoclonal antibody (H-57). In burned animals, nitric oxide (NO) concentration was negatively correlated to the proliferation induced by Con-A (p<0.01) or LPS (p<0.05). These results suggest that: (1) dietary fatty acid type does not influence the splenocyte proliferation or oxidative stress and (2) NO production is involved in the immunosuppression following burn injury.  相似文献   

16.
We previously observed that pyridoxine (vitamin B6) significantly increased cell proliferation and neuroblast differentiation without any neuronal damage in the hippocampus. In this study, we investigated the effects of sodium butyrate, a histone deacetylase (HDAC) inhibitor which serves as an epigenetic regulator of gene expression, on pyridoxine-induced neural proliferation and neurogenesis induced by the increase of neural proliferation in the mouse dentate gyrus. Sodium butyrate (300 mg/kg, subcutaneously), pyridoxine (350 mg/kg, intraperitoneally), or combination with sodium butyrate were administered to 8-week-old mice twice a day and once a day, respectively, for 14 days. The administration of sodium butyrate significantly increased acetyl-histone H3 levels in the dentate gyrus. Sodium butyrate alone did not show the significant increase of cell proliferation in the dentate gyrus. But, pyridoxine alone significantly increased cell proliferation. Sodium butyrate in combination with pyridoxine robustly enhanced cell proliferation and neurogenesis induced by the increase of neural proliferation in the dentate gyrus, showing that sodium butyrate treatment distinctively enhanced development of neuroblast dendrites. These results indicate that an inhibition of HDAC synergistically promotes neurogenesis induced by a pyridoxine and increase of neural proliferation.  相似文献   

17.
A feeding trial was conducted to determine the dietary vitamin E (DL-alpha-tocopheryl acetate, dl-alpha-TOA) requirement and its effect on the non-specific immune responses of juvenile grass shrimp, Penaeus monodon. Purified diets with eight levels (0, 25, 50, 75, 100, 150, 200, 400 mg vitamin E kg diet-1) of supplemental dl-alpha-TOA were fed to P. monodon (mean initial weight 0.29 +/- 0.01 g) for eight weeks. Each diet was fed to three replicate groups of shrimp. Weight gains and total haemocyte count (THC) were higher (P < 0.05) in shrimp fed diets supplemented with 75 and 100 mg vitamin E kg diet-1 than in shrimp fed diets supplemented with 相似文献   

18.
We studied the effect of dietary vitamin C on growth, liver vitamin C and serum cortisol levels in stressed and unstressed juvenile soft-shelled turtles. Turtles were fed with vitamin C supplementation at dosages of 0, 250, 500, 2500, 5,000 or 10,000 mg/kg diet for 4 weeks. Vitamin C supplementation exerted significant effects on specific growth rate and liver vitamin C concentrations. The specific growth rate peaked in the group fed at 500 mg/kg diet, while liver vitamin C levels increased with increasing dietary vitamin C levels. Serum cortisol concentrations did not differ between groups of turtles fed diets supplemented with vitamin C in the range of 0-10,000 mg/kg. After acid stress, hepatic vitamin C levels were unaffected, while serum cortisol in the control group was significantly elevated (P<0.01). The other five groups of turtles did not show significant changes in serum cortisol compared with pre-stress levels.  相似文献   

19.
We tested the hypothesis of whether high dietary protein intake is linked to oxidative stress as measured by the concentration of reactive carbonyl residues in plasma proteins. Three groups of male Wistar rats ( approximately 230 g, n = 10) were fed either 15% (15C), 30% (30C), or 60% (60C) casein diets over a period of 18 weeks. For comparison, a vitamin E deficient diet (60C-E) based on diet 60C was given to an additional group to provoke oxidative stress. Concentrations of alpha-tocopherol in plasma and of reactive carbonyl residues in total plasma proteins were measured by high performance liquid chromatography using fluorescence and by diode array detection after 2,4-dinitrophenylhydrazine reaction, respectively. After 1 week the concentration of reactive carbonyl residues in plasma proteins was found to be significantly (P < 0.05) higher in the 60C and 60C-E groups ( approximately 2.7 nmol/mg protein) compared with the 15C and 30C groups ( approximately 1.7 nmol/mg protein). After 14 weeks the 15C (3.4 +/- 1.2 nmol/mg protein) and 60C-E groups (3.9 +/- 1.7 nmol/mg protein) showed a significantly increased concentration of reactive carbonyl residues in plasma protein compared with the 30C and 60C groups (2.5 +/- 1.0 nmol/mg protein; 2.6 +/- 0.8 nmol/mg protein). As expected, chronic vitamin E deficiency (60C-E) resulted in significantly decreased alpha-tocopherol concentrations (3.91 +/- 2.42 micromol/mL vs. 31.3 +/- 4.8 micromol/mL) and a higher concentration of reactive carbonyl residues in plasma proteins. These results do not support the hypothesis that a chronic intake of high-protein diets leads to oxidative stress in adult rats. However, in the non-adapted state (1 week) a high protein intake contributes to oxidative modifications of protein-bound amino acid residues.  相似文献   

20.
High iron consumption has been proposed to relate to an increase in the risk of colon cancer, whereas high levels of supplemental sodium phytate effectively reduce iron-induced oxidative injury and reverse iron-dependent augmentation of colorectal tumorigenesis. However, the protective role of intrinsic dietary phytate has not been determined. In this study, we examined the impact of removing phytate present in a corn-soy diet by supplemental microbial phytase on susceptibility of pigs to the oxidative stress caused by a moderately high dietary iron intake. Thirty-two weanling pigs were fed the corn-soy diets containing two levels of iron (as ferrous sulfate, 80 or 750 mg/kg diet) and microbial phytase (as Natuphos, BASF, Mt. Olive, NJ, 0 or 1200 units/kg). Pigs fed the phytase-supplemented diets did not receive any inorganic phosphorus to ensure adequate degradation of phytate. After 4 months of feeding, liver, colon, and colon mucosal scrapings were collected from four pigs in each of the four dietary groups. Colonic lipid peroxidation, measured as thiobarbituric acid reacting substances (TBARS), was increased by both the high iron (P< 0.0008) and phytase (P< 0.04) supplementation. Both TBARS and F2-isoprostanes, an in vivo marker of lipid peroxidation, in colonic mucosa were affected by dietary levels of iron (P< 0.03). Mean hepatic TBARS in pigs fed the phytase-supplemented, high iron diet was 43%-65% higher than that of other groups although the differences were nonsignificant. Moderately high dietary iron induced hepatic glutathione peroxidase activity (P= 0.06) and protein expression, but decreased catalase (P< 0.05) in the colonic mucosa. In conclusion, intrinsic phytate in corn and soy was protective against lipid peroxidation in the colon associated with a moderately high level of dietary iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号