首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carpal bones have experienced numerous changes during marsupial evolution, even though their diversity and development remain poorly studied. The aim of this work was to document adult form and the pattern of mesenchymal tissue condensation and formation of chondrification and ossification centers in the hand of two marsupials. Two fundamental questions were asked: whether the loss of embryonic precursors was associated with the loss of adult elements, or whether there were developmental signs of ancestral mammalian elements that have been fused or lost in marsupial taxa. We were also interested to find out whether there is sexual dimorphismus in the carpals, as has been reported for some didelphids. Histological sections, cleared and stained specimens and macerated skeletons representing an ontogenetic series of Monodelphis domestica were used to document carpal development. Comparisons were made with perinatal stages of Caluromys philander and with adult specimens of other marsupials. A prenatal M. domestica in the 13th day after conception has a cell condensation that because of its position is homologized with a centrale, which is at birth already lost or fused. Neonatal M. domestica and C. philander have the number and arrangement of their adult carpal anatomy. Trapezium and trapezoid start ossification later than most other carpals, while pisiform and prepollex are the last to do so. Adult males of M. domestica have relatively larger and more robust pisiforms, compared to other carpals, than females. This sexual dimorphism develops relatively late as it was not recorded in male specimens around 160 days old. An extra sesamoid bone located just distal to the radius and proximo-palmar to the scaphoid was recorded in specimens of C. philander, C. derbianus and Didelphis virginiana.  相似文献   

2.
The vomeronasal organ (VNO) is a chemosensory structure of the nasal septum found in most tetrapods. Although potential behavioural correlates of VNO function have been shown in two of the three elephant species, its morphology in Loxodonta africana has not been studied. The development of the VNO and its associated structures in the African elephant are described in detail using serially sectioned material from fetal stages. The results show that many components of the VNO complex (e.g. neuroepithelium, receptor‐free epithelium, vomeronasal nerve, paravomeronasal ganglia, blood vessels, vomeronasal cartilage) are well developed even in a 154‐day‐old fetus, in which the VNO opens directly into the oral cavity with only a minute duct present. However, the vomeronasal glands and their ducts associated with the VNO were developed only in the 210‐day‐old fetus. Notably, in this fetus, the vomeronasal–nasopalatine duct system had acquired a pathway similar to that described in the adult Asian elephant; the VNOs open into the oral cavity via the large palatal parts of the nasopalatine ducts, which are lined by a stratified squamous epithelium. The paired palatal ducts initially coursed anteriorly at an angle of 45° from the oral recess and/or the oral cavity mucosa, and merged into the vomeronasal duct. This study confirms the unique characteristics of the elephant VNO, such as its large size, the folded epithelium of the VNO tube, and the dorsomedial position of the neuroepithelium. The palatal position and exclusive communication of the VNO with the oral cavity, as well as the partial reduction of the nasopalatine duct, might be related to the unique elephantid craniofacial morphogenesis, especially the enormous growth of the tusk region, and can be seen as autapomorphies.  相似文献   

3.
This study is based on the examination of histological sections of specimens of different ages and of adult ossicles from macerated skulls representing a wide range of taxa and aims at addressing several issues concerning the evolution of the ear ossicles in marsupials. Three-dimensional reconstructions of the ear ossicles based on histological series were done for one or more stages of Monodelphis domestica, Caluromys philander, Sminthopsis virginiae, Trichosurus vulpecula, and Macropus rufogriseus. Several common trends were found. Portions of the ossicles that are phylogenetically older develop earlier than portions representing more recent evolutionary inventions (manubrium of the malleus, crus longum of the incus). The onset of endochondral ossification in the taxa in which this was examined followed the sequence; first malleus, then incus, and finally stapes. In M. domestica and C. philander at birth the yet precartilaginous ossicles form a supportive strut between the lower jaw and the braincase. The cartilage of Paauw develops relatively late in comparison with the ear ossicles and in close association to the tendon of the stapedial muscle. A feeble artery traverses the stapedial foramen of the stapes in the youngest stages of M. domestica, C. philander, and Sminthopsis virginiae examined. Presence of a large stapedial foramen is reconstructed in the groundplan of the Didelphidae and of Marsupialia. The stapedial foramen is absent in all adult caenolestids, dasyurids, Myrmecobius, Notoryctes, peramelids, vombatids, and phascolarctids. Pouch young of Perameles sp. and Dasyurus viverrinus show a bicrurate stapes with a sizeable stapedial foramen. Some didelphids examined to date show a double insertion of the Tensor tympani muscle. Some differences exist between M. domestica and C. philander in adult ossicle form, including the relative length of the incudal crus breve and of the stapes. Several differences exist between the malleus of didelphids and that of some phalangeriforms, the latter showing a short neck, absence of the lamina, and a ventrally directed manubrium. Hearing starts in M. domestica at an age in which the external auditory meatus has not yet fully developed, the ossicles are not fully ossified, and the middle ear space is partially filled with loose mesenchyme. The ontogenetic changes in hearing abilities in M. domestica between postnatal days 30 and 40 may be at least partially related to changes in middle ear structures.  相似文献   

4.
The solum nasi of Microcebus murinus is characterized by the presence of a zona annularis, continuity between the anterior transverse lamina and the paraseptal cartilage, a continuous paraseptal cartilage, a palatine cartilage and a posterior transverse lamina. It lacks a fibula reuniens and possibly a cartilage of the nasopalatine duct as well as a palatine papillary cartilage. The morphology in M. murinus closely resembles that seen in Tupaia and Galago. This affinity results from the retention of primitive traits. However, Galago is reported to lack a zona annularis, thus displaying a specialization not shared with M. murinus. Therefore, the zona annularis provides a useful trait for distinguishing between the ontogenies of M. murinus and Galago.  相似文献   

5.
Most primates typically use a diagonal-sequence footfall pattern during walking. This footfall pattern, which is unusual for mammals, is believed to have originated in ancestral primates in association with the use of grasping extremities for movement and foraging on thin, flexible branches. This theory was tested by comparing gait parameters between the grey short-tailed opossum Monodelphis domestica and the woolly opossum Caluromys philander , two didelphid marsupials that are strongly differentiated in grasping morphology of the extremities and in their reliance on foraging strategies involving thin branches. One hundred and thirty gait cycles were analysed quantitatively from videotapes of subjects moving quadrupedally on a runway and on poles of different diameters (7 and 28 mm). Duty factor (i.e. duration of the stance phase as a percentage of the stride period) for the forelimb and hindlimb, as well as diagonality (i.e. phase relationship between the forelimb and hindlimb cycles), were calculated for each of these symmetrical gait cycles. We found that the highly terrestrial Monodelphis , like most other non-primate mammals, relies primarily on lateral-sequence walking gaits on both runway and poles, and has relatively higher forelimb duty factors. Like primates, the highly arboreal Caluromys uses primarily diagonal-sequence walking gaits on the runway and pole, with relatively higher hindlimb duty factors and diagonality. The fact that the woolly opossum, a marsupial with primate-like feet that moves and forages mainly on thin branches, uses primarily diagonal-sequence gaits when walking supports the view that primate gaits evolved to meet the demands of locomotion on narrow supports. This also demonstrates the functional role of a grasping foot, in association with relatively higher hindlimb duty factors, protraction, and substrate reaction forces, in the production of such walking gaits.  相似文献   

6.
Oxygen consumption (VO(2)), body temperature (T(b)) and wet thermal conductance (C(wet)), under resting conditions, exposure to low ambient temperature (T(a)) and during sustained exercise (treadmill running) were measured in three phylogenetic related (same family; Didelphidae) South American marsupials possessing similar body masses: Caluromys philander (arboreal/fruit and insect eating), Philander opossum (terrestrial and arboreal/omnivore), and Metachirus nudicaudatus (terrestrial/omnivore). Our measurements of VO(2) and C(wet) under resting conditions agree with those previously reported for other marsupials. We expected that C. philander would show a lower maximal sustained VO(2), compared to the other two species, based on its more reduced skeletal muscle mass. However, the values obtained for C. philander were not statistically different (ANOVA) from those obtained for the other two species. When exposed to low ambient temperature (12 degrees C), differences among the three species were detected, i.e., M. nudicaudatus did not survive, while the other two species were able to reduce their T(b) under such conditions. C. philander gradually decreases its T(b) when cold exposed, and P. opossum shows a more pronounced T(b) drop only when exposure to low ambient temperatures occurs for a more prolonged period of time.  相似文献   

7.
The anatomy of the vomeronasal complex and, in connection with this, the structures of the rostral palate were studied in different species of mammals, namely members of the order Marsupialia, Scandentia, Insectivora, Primates, Rodentia, and Lagomorpha. The following results were obtained: The organs of Jacobson of all forms studied are well-developed. The organ of Jacobson is situated at the base of the nasal septum and opens rostrally, always closely connected to the nasopalatine duct. Even in rodents, lagomorphs and Solenodon, where the openings of the organs are positioned rostral to the ductus, both systems are nevertheless connected by means of special furrows. Accordingly the organs of Jacobson are functionally much more closely related to the oral cavity than to the nasal cavity, which they actually belong to. This can be emphasized by the peculiar structures of the rostral palate inclosing the papilla palatina and with it the oral openings of the nasopalatine ducts. In all species studied, the anterior part of the upper jaw presents a very interesting situation because the median furrow of the rhinarium communicates directly or indirectly with the sulcus papillae palatinae, thus forming a very distinct system of grooves which preserves a connection between the nasopalatine ducts and the preoral surroundings. In rodents, lagomorphs, and Solenodon, we find in this part of the palate a special situation because of their unusually arranged incisors, which are not separated by a diastema. However, also in these cases, there are distinct connecting passages between the papilla palatina and the extraoral surroundings. The conditions found in Ratufa bicolor and in early stages of the rat demonstrate that the extraordinary topography of the rostral palate in rodents is a secondary formation by means of ontogeny and phylogeny. Cebus apella, a platyrrhine simian, shows already a clear reduction of palatal structures compared to those found in prosimians. In Setifer setosus and Echinops telfairi, we find the papilla palatina and with it the oral openings of the nasopalatine ducts overgrown by a bipartite caudal branch of the rhinarium. The neonate Setifer allows us to reconstruct the mechanism of this overgrowing procedure. We find a similar situation in Erinaceus, where the papilla palatina remains uncovered, however. Because of contradictory bibliographical data, some elements of the vomeronasal complex in mammals needed to be carefully analysed in regard to structure and nomenclature: in many species the paraseptal cartilage bifurcates rostrally into a dorsal and a ventral branch.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
An attempt to determine the locomotor activities of Mayulestes ferox (Borhyaenoidea) and Pucadelphys andinus (Didelphoidea) from the early Paleocene site of Tiupampa (Bolivia) is presented. The functional anatomy of the forelimbs of these South American marsupials is compared to that of some living didelphids: Caluromys philander, Micoureus demerarae, Marmosa murina, Didelphis marsupialis, Monodelphis brevicaudata and Metachirus nudicaudatus. Deductions from bone morphology to myology and locomotor behavior in the fossils are inferred from the comparisons with living forms. Some features of the postcranial skeleton, indicative of arboreal adaptations, are found in the extinct marsupials: anteriorly projected acromion, hemispherical head of the humerus, extended humeral lateral epicondylar ridge, medially protruding humeral entepicondyle, proximal ulnar posterior convexity, and deep flexor fossa on the medial side of the ulna. But other features are related to a more terrestrial pattern: the well-developed tubercles of the humeral head, the elongated olecranon process of the ulna, and the oval shape of the radial head. Mayulestes had clear arboreal abilities, but, as a predaceous mammal, probably hunted on the ground. Pucadelphys was less specialized, close to the living Monodelphis, a terrestrial insectivorous form with some skeletal features related to arboreal locomotion that are probably plesiomorphic for marsupials.  相似文献   

9.
Throughout their evolutionary histories, marsupial mammals have been taxonomically and morphologically less diverse than their sister taxa the placentals. Because of this, it has been proposed that the evolution of marsupials has been constrained by the functional requirements of their mode of reproduction. Marsupials give birth after short gestation times to immature neonates that immediately crawl, under the power of their precociously developed shoulder girdles, to the teat where they attach and complete their early development. Using a novel approach incorporating adult and embryological morphological data, this study is the first to both: (1) statistically support adult patterns of morphological divergence consistent with the constraint hypothesis, and (2) identify ontogenetic patterns of morphological change that demonstrate that the constraint was responsible, at least in part, for their formation. As predicted by the marsupial constraint, the shoulder girdles of adult marsupials are less diverse than those of adult placentals, and adult marsupial scapulae are less morphologically diverse than adult marsupial pelves. Furthermore, marsupials that complete an extensive crawl to the teat are restricted to a common pattern of ontogenetic scapular shape change, strongly supporting the hypothesis that the morphological development of the marsupial scapula has been limited evolutionarily by its obligate role in the crawl to the teat. Because this study establishes that ontogenetic and evolutionary morphological change is correlated within mammalian scapulae, it is probable that the marsupial constraint also restricted the morphological divergence of the scapula over evolutionary time by limiting ontogenetic change in the scapula. These findings, coupled with the importance of the shoulder girdle in mammalian locomotor specialization, support the conclusion that the low morphological diversity of marsupial forms over evolutionary time could be directly due to the constraint on marsupial morphological evolution caused by the functional requirements of the crawl to the teat.  相似文献   

10.
Nucleotide sequence data from the mitochondrial 12S rRNA gene were used to evaluate the phylogenetic relationships among the major groups of didelphimorph and paucituberculatan marsupials from South America, the microbiotheriid Dromiciops gliroides, and representatives of four orders of Australasian marsupials. Based on approximately 800 bp in 18 genera, we conclude that the didelphids constitute a monophyletic group with large-sized forms differentiated from small opossums, while Caluromys constitutes the sister taxon to didelphids. The peramelid Isoodon was recovered as the sister taxon to the paucituberculatans Caenolestes and Rhyncholestes, although it is in an uncertain phylogenetic position within the marsupial tree. Dromiciops was recovered as a well-differentiated lineage from South American opossums within the Australidelphian radiation of metatherians that include dasyurid, diprotodontian, and notoryctemorph marsupials.  相似文献   

11.
Morphological and developmental characteristics of the rhesus monkey nasopalatine duct system and associated primary palatal structures are described along with functional and phylogenetic considerations. Examination of five adult palates and coronal sections of 13 fetal palates together with dissections of a sixth adult specimen and of a 119-day-old fetal palate reveal that the lateral lobes of the tripartate incisive papilla cover clefts leading into the ducts. The ducts pierce the bony palate to enter the nasal fossae in proximity to the incisive suture. The ontogenetic stability of the duct path reflects the retention of ancient duct and primitive choanae relationships and functionally maintains an optimal oral odorant-to-receptor channel. Sixteen timed pregnancy specimens (35-100 days) provided histological material for documenting rostral nasopalatal development. Duct primordia, identified at 35 days, had by 40 days formed the medial duct walls (conjoined septum-papilla from the primary medial palatal component), the lateral duct walls (maxillary processes), and the rostral walls (fused maxillary-intermaxillary components). The caudal walls derive from the fusion of palatal shelves with the papilla (45 days), thus distinguishing primary and secondary fusion modes. Duct epithelial maturation occurs between 70 and 100 days. The absence of a vomeronasal system is attributed to reduction of olfaction in reproductive behavior, while the presence of the coevolved nasopalatine ducts is linked to the persistence of epiglottal-velar valving. The ducts serve as oral food-odor conduits in otherwise functionally separated respiratory and digestive tracts.  相似文献   

12.
An examination of 2 feline embryos in different stages of development (overall length 60 and 115 mm respectively) reveals a well developed vomeronasal complex in each case. Jacobson's Organs embedded within the paraseptal cartilage form long blind tubes at the base of the septum nasi. The cartilage is caudally tub-shaped and embraces rostrally completely the organ over a considerable length. In this manner a long, nearly tunnel-like tube is formed which represents a modified form of the original outer bar and which has not been described so far in cats. It stretches rostro-ventrally across the branching region of the paraseptal cartilage as far as the mouth of Jacobson's Organ. The dorsal branch of the cartilago paraseptalis on the other hand forms a vertically oriented strip which connects to the lamina transversalis anterior. The ductus nasopalatinus passing through the palate is laterally supported by a cartilago ductus nasopalatini which rostrally to the mouth of Jacobson's Organ forms a unified element with the ventral branch of the cartilago paraseptalis. In the case of the younger cat embryo, this cartilago ductus nasopalatini is yet weakly developed. The ductus nasopalatini of the embryos studied are in an amazingly retarded state of development. The ductus, which are blocked in the early stages of the embryonic development during secondary palate formation, form predominantly solid strands of epithelium. By dissolving the cemented epithelium, the ductus are open. But even in the case of the older embryo of the cat, this process is not completed yet. The short duct connecting Jacobson's Organ with the ductus nasopalatinus is also still closed in both embryos. Such cemented sections of epithelium of the younger embryo reveals an interesting relation between the ductus nasopalatinus and the ductus nasolacrimalis which so far has not been pointed out for mammals. From the point of view of phylogenetics, the locally specialized vomeronasal complex of cats exhibits all the criteria of a progressive development of characteristics.  相似文献   

13.
Chiropteran vomeronasal complex and the interfamilial relationships of bats   总被引:2,自引:0,他引:2  
Within the extant orders of living mammals, the distribution of the vomeronasal organ (VNO) and associated structures is very stable, being universally present in the vast majority or universally absent in cetaceans and sirenians. Chiroptera is the most noteworthy exception, with variation in the absence or presence of the vomeronasal complex occurring even at the species level in some instances. The VNO and/or its component structures, such as the accessory olfactory bulb, were studied in serially sectioned snouts and brains from 114 genera and 292 species representing all extant chiropteran families except Myzopodidae and Antrozoidae. Taxa were scored for the following characters: (1) degree of formation of the vomeronasal epithelial tube, (2) shape of the vomeronasal cartilage, (3) occurrence of the nasopalatine duct, and (4) occurrence of the accessory olfactory bulb. To reconstruct the evolutionary history of the bat vomeronasal complex, the distributions of these four characters were mapped, using the computer program MacClade, onto chiropteran phylogenies in the literature derived from other data sets. In all phylogenies, these four characters exhibit a high degree of homoplasy, only part of which is accounted for by several polymorphic taxa. However, perhaps the most remarkable result is that in the most parsimonious solutions the absence of the vomeronasal epithelial tube and accessory olfactory bulb is identified as primitive for Chiroptera, with both structures reevolving numerous times: such a scenario would be unique to bats among mammals. An alternative, though less parsimonious interpretation, which does not require reevolution of this very complex system, is that a well-developed vomeronasal epithelial tube is primitive for Chiroptera, as in nearly all other orders of mammals, but has been reduced or lost in the majority of families. Explication of the peculiar evolutionary history of the vomeronasal system in bats awaits studies on the adult morphology in the more than 630 species not yet examined and, in particular, on ontogeny, which to date is known for only a handful of taxa.A preliminary account of this research was presented at the Tenth International Bat Research Conference and Twenty-Fifth North American Bat Research Symposium held at Boston University, Massachusetts, on 6–11 August 1995.  相似文献   

14.
To determine accurately the rates of late Pleistocene megafaunal loss, it is fundamentally important to have accurate taxonomic information for every species. In Australia, accurate taxonomic information is lacking for several Pleistocene groups, including the largest marsupial ever to live, Diprotodon Owen, 1838. Diprotodon taxonomy has been complicated by early nomenclatural problems and by the occurrence of two distinct size classes of individuals that do not reflect an ontogenetic series. Traditionally, the two size classes have been regarded as separate species. However, a taxonomic investigation of large samples (> 1000 teeth) of Diprotodon material from several different fossil localities in Queensland, New South Wales, South Australia and Victoria suggests that there is little evidence for the discrimination of more than one morphospecies. Thus, Diprotodon is here considered a monotypic genus and the single morphospecies, D. optatum Owen, 1838 is considered to have been highly sexually dimorphic. By drawing analogy with extant sexually dimorphic megaherbivores and marsupials, the large form was probably male, and the small form was probably female. Diprotodon optatum probably moved in small, gender-segregated herds, and exhibited a polygynous breeding strategy. As a single morphospecies, D. optatum had a near-continental geographical distribution, similar to that of extant megaherbivores, possibly indicating its niche as a habitat generalist.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 153 , 389–417.  相似文献   

15.
Quantification of mammalian skull development has received much attention in the recent literature. Previous results in different lineages have shown an effect of historical legacy on patterns of skull growth. In marsupials, the skull of adults exhibits high variation across species, principally along a size axis. The development keys of the marsupial skull are fundamental to understanding the evolution of skull function in this clade. Its generally well-resolved phylogeny makes the group ideal for studying macroevolution of skull ontogeny. Here, we tested the hypothesis that ontogenetic similarity is correlated with phylogeny in New World marsupials, so that developmental patterns are expected to be conserved from ancestral opossums. We concatenated our previously published ontogenetic cranial data from several opossum species with new ontogenetic sequences and constructed an allometric space on the basis of a set of comparable cranial linear measurements. In this ontogenetic space, we determined the degree of correspondence of developmental patterns and the phylogeny of the group. In addition, we mapped ontogenetic trajectories onto the opossum phylogeny, treating the trajectories as composite, continuously varying characters. Didelphids differed widely in the magnitude of skull allometry across species. Splanchnocranial components exhibited all possible patterns of inter-specific variation, whereas mandibular variables were predominantly allometrically “positive” and neurocranial components were predominantly allometrically “negative.” The distribution of species in allometric space reflected the compounded effect of phylogeny and size variation characteristic of didelphids. The terminal morphology of related species differed in shape, so their ontogenetic trajectories deviated with respect to that of reconstructed common ancestors in varying degree. Phylogeny was the main factor structuring the allometric space of New World marsupials. Didelphids inherited an ancestral constellation of allometry coefficients without change and retained much of it throughout their lineage history. Conserved allometric values on the nodes splitting placental outgroups and marsupials suggest a developmental basis common to all therians.  相似文献   

16.
Placental mammals occupy a larger morphospace and are taxonomically more diverse than marsupials by an order of magnitude, as shown by quantitative and phylogenetic studies of several character complexes and clades. Many have suggested that life history acts as a constraint on the evolution of marsupial morphology. However, the frequent circumvention of constraints suggests that the pattern of morphospace occupation in marsupials is more a reflection of lack of ecological opportunity than one of biases in the production of variants during development. Features of marsupial physiology are a potential source of biases in the evolution of the group; these could be coupled with past macroevolutionary patterns that followed conditions imposed by global temperature changes. This is evident at the K/Pg boundary and at the Eocene/Oligocene boundary. The geographic pattern of taxonomic and morphological diversity in placental clades mirrors that of extant placentals as a whole versus marsupials: placentals of northern origin are more diverse those of southern one and include the clades that are outliers in taxonomic (rodents and bats) and ecomorphological (whales and bats) richness.  相似文献   

17.
In contrast to placentals, marsupials are born with forelimbs that are greatly developmentally advanced relative to their hind limbs. Despite significant interest, we still do not know why this is the case, or how this difference is achieved developmentally. Studies of prechondrogenic and chondrogenic limbs have supported the traditional hypothesis that marsupial forelimb development is accelerated in response to the functional requirements of the newborn's crawl to the teat. However, limb ossification studies have concluded that, rather than the forelimb being accelerated, hind limb development is delayed. By increasing the taxonomic coverage and number of prechondrogenic events relative to previous studies, and combining traditional phylogenetic analyses of event sequences with novel analyses of relative developmental rates, this study demonstrates that the timing of limb development in marsupials is more complex than commonly thought. The marsupial phenotype was derived through two independent evolutionary changes in developmental rate: (1) an acceleration of the forelimb's first appearance and (2) a delay of hind limb development from the bud stage onward. Surprisingly, this study also provides some support for an evolutionary acceleration of the marsupial hind limb's first appearance. Further study is needed on the developmental and genetic mechanisms driving these major evolutionary transitions.  相似文献   

18.
The development of the subarcuate fossa and the cerebellar paraflocculus was studied in an ontogenetic series ofMonodelphis domestica Wagner, 1842 The spatial relation between these structures was examined qualitatively in adult specimens of several marsupial taxa. The fossa is first formed without participation of the cerebellar paraflocculus, which fills the fossa first fully and then partially later in development. The correlation between the size of the petrosal lobule of the paraflocculus and the subarcuate fossa in adults is weak. The volume of the subarcuate fossa was measured in 68 specimens representing 19 species of recent marsupials. Its size is negatively allometric with respect to skull size. The didelphids examined (‘large opossums’) have relatively smaller subarcuate fossae than the other marsupials examined, andSarcophilus laniarius is the major outlier, with a very small fossa. Loss of the subarcuate fossa has occurred at least twice in metatherian evolution (some sparassodonts and wombats). All marsupials examined to date, with the exception of wombats, have a differentiated petrosal lobule of the paraflocculus.  相似文献   

19.
The structures of the rostral palate in regard to the vomeronasal complex of different species of mammals were studied. In all cases, we find a very interesting system of furrows which preserves a connection between the nasopalatine ducts and the preoral surroundings. For rodents, lagomorphs, Solenodon, Setifer, and Echinops, we find a special situation in this part of the palate. Here the incisors are not separated by a diastema nor the oral openings of the nasopalatine ducts are overgrown by a bipartite caudal branch of the rhinarium. The results of the anatomic studies of the vomeronasal complex and the rostral palate of the mammals investigated are discussed: First of all, some elements of the vomeronasal complex needed to be analysed in regard to structure and nomenclature, specifically the cartilago paraseptalis with its outer bar, the cartilago ductus nasopalatini and the cartilago palatina. Because of 2 criterions, the vomeronasal complex could be classified as either primitive or progressive. We find a primitive one in Didelphis, Tupaia, Solenodon, Oryctolagus, and all rodents. In contrast, the other insectivores studied and all primates show progressive structures at their vomeronasal complex. Finally, conclusions in regard to the function of the organs of Jacobson are derived from these studies. The significance of the "flehmen" mechanism for the functioning of the organs is questioned.  相似文献   

20.
The locomotion of primates differs from that of other mammals in three fundamental ways. During quadrupedal walking, primates use diagonal sequence gaits, protract their arms more at forelimb touchdown, and experience lower vertical substrate reaction forces on their forelimbs relative to their hindlimbs. It is widely held that the unusual walking gaits of primates represent a basal adaptation for movement on thin, flexible branches and reflect a major change in the functional role of the forelimb. However, little data on nonprimate arboreal mammals exist to test this notion. To that end, we examined the gait mechanics of the woolly opossum (Caluromys philander), a marsupial convergent with small-bodied prosimians in ecology, behavior, and morphology. Data on the footfall sequence, relative arm protraction, and peak vertical substrate reaction forces were obtained from videotapes and force records for three adult woolly opossums walking quadrupedally on a wooden runway and a thin pole. For all steps recorded on both substrates, woolly opossums always used diagonal sequence walking gaits, protracted their arms beyond 90 degrees relative to horizontal body axis, and experienced peak vertical substrate reaction forces on forelimbs that were significantly lower than on hindlimbs. The woolly opossum is the first nonprimate mammal to show locomotor mechanics that are identical to those of primates. This case of convergence between primates and a committed fine-branch, arboreal marsupial strongly implies that the earliest primates evolved gait specializations for fine-branch locomotion, which reflect important changes in forelimb function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号