首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the paternal population history of New Guinea, 183 individuals from 11 regional populations of West New Guinea (WNG) and 131 individuals from Papua New Guinea (PNG) were analyzed at 26 binary markers and seven short-tandem-repeat loci from the nonrecombining part of the human Y chromosome and were compared with 14 populations of eastern and southeastern Asia, Polynesia, and Australia. Y-chromosomal diversity was low in WNG compared with PNG and with most other populations from Asia/Oceania; a single haplogroup (M-M4) accounts for 75% of WNG Y chromosomes, and many WNG populations have just one Y haplogroup. Four Y-chromosomal lineages (haplogroups M-M4, C-M208, C-M38, and K-M230) account for 94% of WNG Y chromosomes and 78% of all Melanesian Y chromosomes and were identified to have most likely arisen in Melanesia. Haplogroup C-M208, which in WNG is restricted to the Dani and Lani, two linguistically closely related populations from the central and western highlands of WNG, was identified as the major Polynesian Y-chromosome lineage. A network analysis of associated Y-chromosomal short-tandem-repeat haplotypes suggests two distinct population expansions involving C-M208--one in New Guinea and one in Polynesia. The observed low levels of Y-chromosome diversity in WNG contrast with high levels of mtDNA diversity reported for the same populations. This most likely reflects extreme patrilocality and/or biased male reproductive success (polygyny). Our data further provide evidence for primarily female-mediated gene flow within the highlands of New Guinea but primarily male-mediated gene flow between highland and lowland/coastal regions.  相似文献   

2.
Melanesian origin of Polynesian Y chromosomes   总被引:16,自引:0,他引:16  
BACKGROUND: Two competing hypotheses for the origins of Polynesians are the 'express-train' model, which supposes a recent and rapid expansion of Polynesian ancestors from Asia/Taiwan via coastal and island Melanesia, and the 'entangled-bank' model, which supposes a long history of cultural and genetic interactions among Southeast Asians, Melanesians and Polynesians. Most genetic data, especially analyses of mitochondrial DNA (mtDNA) variation, support the express-train model, as does linguistic and archaeological evidence. Here, we used Y-chromosome polymorphisms to investigate the origins of Polynesians. RESULTS: We analysed eight single nucleotide polymorphisms (SNPs) and seven short tandem repeat (STR) loci on the Y chromosome in 28 Cook Islanders from Polynesia and 583 males from 17 Melanesian, Asian and Australian populations. We found that all Polynesians belong to just three Y-chromosome haplotypes, as defined by unique event polymorphisms. The major Y haplotype in Polynesians (82% frequency) was restricted to Melanesia and eastern Indonesia and most probably arose in Melanesia. Coalescence analysis of associated Y-STR haplotypes showed evidence of a population expansion in Polynesians, beginning about 2,200 years ago. The other two Polynesian Y haplotypes were widespread in Asia but were also found in Melanesia. CONCLUSIONS: All Polynesian Y chromosomes can be traced back to Melanesia, although some of these Y-chromosome types originated in Asia. Together with other genetic and cultural evidence, we propose a new model of Polynesian origins that we call the 'slow-boat' model: Polynesian ancestors did originate from Asia/Taiwan but did not move rapidly through Melanesia; rather, they interacted with and mixed extensively with Melanesians, leaving behind their genes and incorporating many Melanesian genes before colonising the Pacific.  相似文献   

3.
We examined genetic affinities of Aboriginal Australian and New Guinean populations by using nucleotide variation in the two hypervariable segments of the mtDNA control region (CR). A total of 318 individuals from highland Papua New Guinea (PNG), coastal PNG, and Aboriginal Australian populations were typed with a panel of 29 sequence-specific oligonucleotide (SSO) probes. The SSO-probe panel included five new probes that were used to type an additional 1,037 individuals from several Asian populations. The SSO-type data guided the selection of 78 individuals from Australia and east Indonesia for CR sequencing. A gene tree of these CR sequences, combined with published sequences from worldwide populations, contains two previously identified highland PNG clusters that do not include any Aboriginal Australians; the highland PNG clusters have coalescent time estimates of approximately 80,000 and 122,000 years ago, suggesting ancient isolation and genetic drift. SSO-type data indicate that 84% of the sample of PNG highlander mtDNA belong to these two clusters. In contrast, the Aboriginal Australian sequences are intermingled throughout the tree and cluster with sequences from multiple populations. Phylogenetic and multidimensional-scaling analyses of CR sequences and SSO types split PNG highland and Aboriginal Australian populations and link Aboriginal Australian populations with populations from the subcontinent of India. These mtDNA results do not support a close relationship between Aboriginal Australian and PNG populations but instead suggest multiple migrations in the peopling of Sahul.  相似文献   

4.
DNA variation on the non-recombining portion of the Y chromosome was examined in 610 male samples from 14 global populations in north, east, and southeast Asia, and other regions of the world. Eight haplotypes were observed by analyses of seven biallelic polymorphic markers ( DYS257(108), DYS287, SRY(4064), SRY(10831), RPS4Y(711), M9, and M15) and were unevenly distributed among the populations. Maximum parsimony tree for the eight haplotypes showed that these haplotypes could be classified into four distinct lineages characterized by three key mutations: an insertion of the Y Alu polymorphic (YAP) element at DYS287, a C-to-G transversion at M9, and a C-to-T transition at RPS4Y(711). Of the four lineages, three major lineages (defined by the allele of YAP(+), M9-G, and RPS4Y-T, respectively) accounted for 98.6% of the Asian populations studied, indicating that these three paternal lineages have contributed to the formation of modern Asian populations. Moreover, phylogenetic analysis revealed three monophyletic Asian clusters, which consisted of north Asian, Japanese, and Han Chinese/southeast Asian populations, respectively. Coalescence analysis in the haplotype tree showed that the estimated ages for three key mutations ranged from 53,000 to 95,000 years, suggesting that the three lineages were separated from one another during early stages of human evolutionary history. The distribution patterns of the Y-haplotypes and mutational ages for the key markers suggest that three major groups with different paternal ancestries separately migrated to prehistoric east and southeast Asia.  相似文献   

5.
Y-chromosomal short tandem repeats (STRs) are used for the study of male aspects of human evolution as well as for forensic applications and paternity testing. Both applications require an understanding of the underlying mutational mechanisms that create variability. We describe complex mutations at the substructured DYS390 STR locus in 97 natives of the New Guinea/Australian region. Sequencing of short alleles in these populations indicates multirepeat deletions. All samples are further characterized using the five additional Y-STR loci DYS19, DXYS156-Y, DYS391, DYS392, and DYS393. Phylogenetic analysis of the resulting haplotypes yields ethnically specific clusters predating the settlement of Australia and Papua New Guinea (although archaic Homo sapiens or Homo erectus lineages are absent). The phylogeny confirms that DYS390 violates the stepwise mutation model and demonstrates that the DYS390 locus mutates relatively rapidly and retains its variability after structural change.   相似文献   

6.
Genomewide analysis of genetic divergence is critically important in understanding the genetic processes of allopatric speciation. We sequenced RAD tags of 131 Asian seabass individuals of six populations from South‐East Asia and Australia/Papua New Guinea. Using 32 433 SNPs, we examined the genetic diversity and patterns of population differentiation across all the populations. We found significant evidence of genetic heterogeneity between South‐East Asian and Australian/Papua New Guinean populations. The Australian/Papua New Guinean populations showed a rather lower level of genetic diversity. FST and principal components analysis revealed striking divergence between South‐East Asian and Australian/Papua New Guinean populations. Interestingly, no evidence of contemporary gene flow was observed. The demographic history was further tested based on the folded joint site frequency spectrum. The scenario of ancient migration with historical population size changes was suggested to be the best fit model to explain the genetic divergence of Asian seabass between South‐East Asia and Australia/Papua New Guinea. This scenario also revealed that Australian/Papua New Guinean populations were founded by ancestors from South‐East Asia during mid‐Pleistocene and were completely isolated from the ancestral population after the last glacial retreat. We also detected footprints of local selection, which might be related to differential ecological adaptation. The ancient gene flow was examined and deemed likely insufficient to counteract the genetic differentiation caused by genetic drift. The observed genomic pattern of divergence conflicted with the ‘genomic islands’ scenario. Altogether, Asian seabass have likely been evolving towards allopatric speciation since the split from the ancestral population during mid‐Pleistocene.  相似文献   

7.
Genetic variation of the Y chromosome in five Chibchan tribes (Bribri, Cabecar, Guaymi, Huetar, and Teribe) of Costa Rica and Panama was analyzed using six microsatellite loci (DYS19, DYS389A, DYS389B, DYS390, DYS391, and DYS393), the Y-chromosome-specific alphoid system (alphah), the Y-chromosome Alu polymorphism (YAP), and a specific pre-Columbian transition (C-->T) (M3 marker) in the DYS 199 locus that defines the Q-M3 haplogroup. Thirty-nine haplotypes were found, resulting in a haplotype diversity of 0.937. The Huetar were the most diverse tribe, probably because of their high levels of interethnic admixture. A candidate founder Y-chromosome haplotype was identified (15.1% of Chibchan chromosomes), with the following constitution: YAP-, DYS199*T, alphah-II, DYS19*13, DYS389A*17, DYS389B*10, DYS390*24, DYS391*10, and DYS393*13. This haplotype is the same as the one described previously as one of the most frequent founder paternal lineages in native American populations. Analysis of molecular variance indicated that the between-population variation was smaller than the within-population variation, and the comparison with mtDNA restriction data showed no evidence of differential structuring between maternally and paternally inherited genes in the Chibchan populations. The mismatch-distribution approach indicated estimated coalescence times of the Y chromosomes of the Q-M3 haplogroup of 3,113 and 13,243 years before present; for the mtDNA-restriction haplotypes the estimated coalescence time was between 7,452 and 9,834 years before present. These results are compatible with the suggested time for the origin of the Chibchan group based on archeological, linguistic, and genetic evidence.  相似文献   

8.
Y-chromosome-specific microsatellite variation in Australian aboriginals   总被引:3,自引:0,他引:3  
The frequency distributions of 4 highly polymorphic Y-chromosome-specific microsatellites (DYS19, DYS390, DYS391, and DYS392) were determined in 79 unrelated Australian Aboriginal males from the Northern Territory. These results are compared with those observed in worldwide populations at both the locus and the haplotype level. Common alleles in Aboriginals are DYS19*15 (49%), DYS19*14 (28%), DYS390*19 (39%), DYS390*24 (20%), DYS391*10 (72%), DYS392*11 (63%), and DYS392*13 (28%). No evidence of reduced gene diversity was observed for these Y-chromosome alleles. DYS390 exhibits the most complex arrangement, displaying a bimodal distribution composed of common alleles (*22-*26), and rare short alleles (*18-*20), with an intermediate allele (*21) being absent. DYS390*20, previously reported only in Papuans and Samoans, is observed for the first time in Aboriginals. Compared with a recent study of Aboriginals, our sample exhibits considerable diversity in the haplotypes associated with the rare DYS390*19 allele, indicating that this allele is of considerable antiquity, if it arose as a single deletion event. Combining all 4 Y-chromosome-linked microsatellites produced 41 unique haplotypes, which were linked using a median-joining network. This network shows that most (78%) of our Aboriginal haplotypes fall into 2 distinct clusters, which likely represent 2 separate lineages. Seven haplotypes are shared with haplotypes found in a recent study of Aboriginals, and 7 are shared with a Spanish population. The cluster of Aboriginal haplotypes associated with the short DYS390 alleles does not share any haplotypes with the Spanish, indicating that this cluster of haplotypes is unique to Australian Aboriginals. Limited data from 4 worldwide populations used to construct haplotypes based on 3 loci (DYS19, DYS390, DYS392) show that only 4 of these haplotypes are seen in Australian Aboriginals. Shared haplotypes may be the result of admixture and/or recurrent mutation at these loci. Expanding the haplotype analysis to include biallelic markers on the Y chromosome will resolve this issue.  相似文献   

9.
Population Genetics of Y-Chromosome Short Tandem Repeats in Humans   总被引:8,自引:0,他引:8  
Eight human short tandem repeat polymorphisms (STRs) also known as microsatellites—DYS19, DYS388, DYS390, DYS391, DYS392, DYS393, DYS389I, and DYS389II, mapping in the Y chromosome—were analyzed in two Iberian samples (Basques and Catalans). Allele frequency distributions showed significant differences only for DYS392. Fst and gene diversity index (D) were estimated for the Y STRs. The values obtained are comparable to those of autosomal STR if corrections for the smaller effective population size on the Y chromosome are taken into account. This suggests that Y-chromosome microsatellites might be as useful as their autosomal counterparts to both human population genetics and forensics. Our results also reinforce the hypothesis that selective sweeps in the Y chromosome in recent times are unlikely. Haplotypes combining five of the loci were constructed for 71 individuals, showing 29 different haplotypes. A haplotype tree was constructed, from which an estimate of 7,000 to 60,000 years for the age of the Y-chromosome variation in Iberia was derived, in accordance with previous estimates obtained with mtDNA sequences and nuclear markers. Received: 3 January 1997 / Accepted: 25 April 1997  相似文献   

10.
ABSTRACT

These essays explore three contemporary forms of order in Papua New Guinea: improvised village courts, a nursing school curriculum including village practicums, and student boycotts and strikes. My comments assess these new sorts of order as reflected against earlier ethnographic accounts of Papua New Guinean societies as well as those elsewhere in Melanesia. This often has taken the region’s social groups and lineages, religions and belief systems, and most recently the Melanesian state itself to be weak, messy, and inconstant. I ask how culturally ‘Melanesian’ are these contemporary examples of order and disorder, and find significant continuities in their underlying nostalgia for an imagined, more orderly past, in beliefs about causes of disorder, and in strategies and remedies to order and reorder everyday life.  相似文献   

11.
The genetic ancestry of Polynesians can be traced to both Asia and Melanesia, which presumably reflects admixture occurring between incoming Austronesians and resident non-Austronesians in Melanesia before the subsequent occupation of the greater Pacific; however, the genetic impact of the Austronesian expansion to Melanesia remains largely unknown. We therefore studied the diversity of nonrecombining Y chromosomal (NRY) and mitochondrial (mt) DNA in the Admiralty Islands, located north of mainland Papua New Guinea, and updated our previous data from Asia, Melanesia, and Polynesia with new NRY markers. The Admiralties are occupied today solely by Austronesian-speaking groups, but their human settlement history goes back 20,000 years prior to the arrival of Austronesians about 3,400 years ago. On the Admiralties, we found substantial mtDNA and NRY variation of both Austronesian and non-Austronesian origins, with higher frequencies of Asian mtDNA and Melanesian NRY haplogroups, similar to previous findings in Polynesia and perhaps as a consequence of Austronesian matrilocality. Thus, the Austronesian language replacement on the Admiralties (and elsewhere in Island Melanesia and coastal New Guinea) was accompanied by an incomplete genetic replacement that is more associated with mtDNA than with NRY diversity. These results provide further support for the "Slow Boat" model of Polynesian origins, according to which Polynesian ancestors originated from East Asia but genetically mixed with Melanesians before colonizing the Pacific. We also observed that non-Austronesian groups of coastal New Guinea and Island Melanesia had significantly higher frequencies of Asian mtDNA haplogroups than of Asian NRY haplogroups, suggesting sex-biased admixture perhaps as a consequence of non-Austronesian patrilocality. We additionally found that the predominant NRY haplogroup of Asian origin in the Admiralties (O-M110) likely originated in Taiwan, thus providing the first direct Y chromosome evidence for a Taiwanese origin of the Austronesian expansion. Furthermore, we identified a NRY haplogroup (K-P79, also found on the Admiralties) in Polynesians that most likely arose in the Bismarck Archipelago, providing the first direct link between northern Island Melanesia and Polynesia. These results significantly advance our understanding of the impact of the Austronesian expansion and human history in the Pacific region.  相似文献   

12.
The human settlement of the Pacific Islands represents one of the most recent major migration events of mankind. Polynesians originated in Asia according to linguistic evidence or in Melanesia according to archaeological evidence. To shed light on the genetic origins of Polynesians, we investigated over 400 Polynesians from 8 island groups, in comparison with over 900 individuals from potential parental populations of Melanesia, Southeast and East Asia, and Australia, by means of Y chromosome (NRY) and mitochondrial DNA (mtDNA) markers. Overall, we classified 94.1% of Polynesian Y chromosomes and 99.8% of Polynesian mtDNAs as of either Melanesian (NRY-DNA: 65.8%, mtDNA: 6%) or Asian (NRY-DNA: 28.3%, mtDNA: 93.8%) origin, suggesting a dual genetic origin of Polynesians in agreement with the "Slow Boat" hypothesis. Our data suggest a pronounced admixture bias in Polynesians toward more Melanesian men than women, perhaps as a result of matrilocal residence in the ancestral Polynesian society. Although dating methods are consistent with somewhat similar entries of NRY/mtDNA haplogroups into Polynesia, haplotype sharing suggests an earlier appearance of Melanesian haplogroups than those from Asia. Surprisingly, we identified gradients in the frequency distribution of some NRY/mtDNA haplogroups across Polynesia and a gradual west-to-east decrease of overall NRY/mtDNA diversity, not only providing evidence for a west-to-east direction of Polynesian settlements but also suggesting that Pacific voyaging was regular rather than haphazard. We also demonstrate that Fiji played a pivotal role in the history of Polynesia: humans probably first migrated to Fiji, and subsequent settlement of Polynesia probably came from Fiji.  相似文献   

13.
A short tandem repeat-based phylogeny for the human Y chromosome   总被引:9,自引:0,他引:9       下载免费PDF全文
Human Y-chromosomal short tandem repeat (STR) data provide a potential model system for the understanding of autosomal STR mutations in humans and other species. Yet, the reconstruction of STR evolution is rarely attempted, because of the absence of an appropriate methodology. We here develop and validate a phylogenetic-network approach. We have typed 256 Y chromosomes of indigenous descent from Africa, Asia, Europe, Australia, and highland Papua New Guinea, for the STR loci DYS19, DXYS156Y, DYS389, DYS390, DYS392, and DYS393, as well as for five ancient biallelic mutation events: two poly (A) length variants associated with the YAP insertion, two independent SRY-1532 mutations, and the 92R7 mutation. We have used our previously published pedigree data from 11,000 paternity-tested autosomal STR-allele transfers to produce a two-class weighting system for the Y-STR loci that is based on locus lengths and motif lengths. Reduced-median-network analysis yields a phylogeny that is independently supported by the five biallelic mutations, with an error of 6%. We find the earliest branch in our African San (Bushmen) sample. Assuming an age of 20,000 years for the Native American DYS199 T mutation, we estimate a mutation rate of 2.6x10-4 mutations/20 years for slowly mutating Y STRs, approximately 10-fold slower than the published average pedigree rate.  相似文献   

14.
The distribution of the three previously reported alleles, with normal products at the factor XIII A subunit structural locus, FXIIIA*1, FXIIIA*2 and FXIIIA*4 has been studied in populations from the region extending from the Indonesian archipelago through Papua New Guinea, Australia and New Zealand to the Pacific Islands of Micronesia, Melanesia and Polynesia. In addition a population from the Caspian Littoral of Iran and a population of South American Indians were studied. The FXIIIA*1 and FXIIIA*2 alleles were polymorphic in all populations studied. The distribution of the FXIIIA*4 allele suggests that it may be a Melanesian marker.  相似文献   

15.
The current Chilean population originated from admixture between aboriginal populations (Amerindians) and Spanish conquerors of European origin. Consequently, the unions that gave rise to the Chilean population were chiefly between Spanish males and aboriginal females, and not the converse. To test the hypothesis that the Y chromosome of the Chilean population is mainly of Spanish origin, while the other chromosomes are from mixed (European and aboriginal) origin, we studied the DYS19 and DYS199 loci in two samples. One sample was obtained from a high socioeconomic stratum, while a second sample was from a low stratum. We studied male blood donors (N = 187) from Santiago, the capital of the country. Subjects were typed for the autosomal ABO and Rh (locus D) blood groups, and for the Y-linked DYS19 and the DYS199 loci, reported as Y-chromosome haplotypes. The aboriginal admixture was estimated for each genetic marker. The percentage of aboriginal admixture was 38.17% for the ABO system and 31.28% for the Rh system in the low socioeconomic stratum and 19.22% and 22.5%, respectively, in the high stratum. Y-chromosome haplotype frequencies constructed from the DYS19 and DYS199 loci demonstrated that the main haplotypes were DYS19*14/DYS199 C, as is often the case with many European populations, and DYS19*13/DYS199 C. The aboriginal admixture from Y-haplotype frequencies was estimated to be 15.83% in the low socioeconomic stratum and 6.91% in the high stratum. These values are lower than the values found using autosomal genetic markers, and are consistent with the historical background of the population studied. This study highlights the population genetic consequences of the asymmetric pattern of genome admixture between two ancestral populations (European and Amerindian).  相似文献   

16.
To evaluate sex-specific differences in gene flow between Native American populations from South America and between those populations and recent immigrants to the New World, we examined the genetic diversity at uni- and biparental genetic markers of five Native American populations from Colombia and in published surveys from native South Americans. The Colombian populations were typed for five polymorphisms in mtDNA, five restriction sites in the beta-globin gene cluster, the DQA1 gene, and nine autosomal microsatellites. Elsewhere, we published results for seven Y-chromosome microsatellites in the same populations. Autosomal polymorphisms showed a mean G(ST) of 6.8%, in agreement with extensive classical marker studies of South American populations. MtDNA and Y-chromosome markers resulted in G(ST) values of 0.18 and 0.165, respectively. When only Y chromosomes of confirmed Amerind origin were used in the calculations (as defined by the presence of allele T at locus DYS199), G(ST) increased to 0.22. G(ST) values calculated from published data for other South American natives were 0.3 and 0.29 for mtDNA and Amerind Y chromosomes, respectively. The concordance of these estimates does not support an important difference in migration rates between the sexes throughout the history of South Amerinds. Admixture analysis of the Colombian populations suggests an asymmetric pattern of mating involving mostly immigrant men and native women.  相似文献   

17.
Ancestral Asian source(s) of new world Y-chromosome founder haplotypes   总被引:15,自引:0,他引:15       下载免费PDF全文
Haplotypes constructed from Y-chromosome markers were used to trace the origins of Native Americans. Our sample consisted of 2,198 males from 60 global populations, including 19 Native American and 15 indigenous North Asian groups. A set of 12 biallelic polymorphisms gave rise to 14 unique Y-chromosome haplotypes that were unevenly distributed among the populations. Combining multiallelic variation at two Y-linked microsatellites (DYS19 and DXYS156Y) with the unique haplotypes results in a total of 95 combination haplotypes. Contra previous findings based on Y- chromosome data, our new results suggest the possibility of more than one Native American paternal founder haplotype. We postulate that, of the nine unique haplotypes found in Native Americans, haplotypes 1C and 1F are the best candidates for major New World founder haplotypes, whereas haplotypes 1B, 1I, and 1U may either be founder haplotypes and/or have arrived in the New World via recent admixture. Two of the other four haplotypes (YAP+ haplotypes 4 and 5) are probably present because of post-Columbian admixture, whereas haplotype 1G may have originated in the New World, and the Old World source of the final New World haplotype (1D) remains unresolved. The contrasting distribution patterns of the two major candidate founder haplotypes in Asia and the New World, as well as the results of a nested cladistic analysis, suggest the possibility of more than one paternal migration from the general region of Lake Baikal to the Americas.  相似文献   

18.
Green pythons, which are regionally variable in colour patterns, are found throughout the lowland rainforest of New Guinea and adjacent far northeastern Australia. The species is popular in commercial trade and management of this trade and its impacts on natural populations could be assisted by molecular identification tools. We used mitochondrial nucleotide sequences and a limited allozyme data to test whether significantly differentiated populations occur within the species range. Phylogenetic analysis of mtDNA sequences revealed hierarchal phylogeographic structure both within New Guinea and between New Guinea and Australia. Strongly supported reciprocally monophyletic mitochondrial lineages, northern and southern, were found either side of the central mountain range that runs nearly the length of New Guinea. Limited allozyme data suggest that population differentiation is reflected in the nuclear as well as the mitochondrial genome. A previous morphological analysis did not find any phenotypic concordance with the pattern of differentiation observed in the molecular data. The southern mitochondrial lineage includes all of the Australian haplotypes, which form a single lineage, nested among the southern New Guinean haplotypes.  相似文献   

19.
Two dinucleotide short tandem-repeat polymorphisms (STRPs) and a polymorphic Alu element spanning a 22-kb region of the PLAT locus on chromosome 8p12-q11.2 were typed in 1,287-1,420 individuals originating from 30 geographically diverse human populations, as well as in 29 great apes. These data were analyzed as haplotypes consisting of each of the dinucleotide repeats and the flanking Alu insertion/deletion polymorphism. The global pattern of STRP/Alu haplotype variation and linkage disequilibrium (LD) is informative for the reconstruction of human evolutionary history. Sub-Saharan African populations have high levels of haplotype diversity within and between populations, relative to non-Africans, and have highly divergent patterns of LD. Non-African populations have both a subset of the haplotype diversity present in Africa and a distinct pattern of LD. The pattern of haplotype variation and LD observed at the PLAT locus suggests a recent common ancestry of non-African populations, from a small population originating in eastern Africa. These data indicate that, throughout much of modern human history, sub-Saharan Africa has maintained both a large effective population size and a high level of population substructure. Additionally, Papua New Guinean and Micronesian populations have rare haplotypes observed otherwise only in African populations, suggesting ancient gene flow from Africa into Papua New Guinea, as well as gene flow between Melanesian and Micronesian populations.  相似文献   

20.
Gradients of allele frequencies have long been considered the main genetic characteristic of the European population, but mitochondrial DNA diversity seems to be distributed differently. One Alu insertion (YAP), five tetranucleotide (DYS19, DYS389B, DYS390, DYS391 and DYS393) and one trinucleotide (DYS392) microsatellite loci of the Y chromosome were analysed for geographical patterns in 59 European populations. Spatial correlograms showed clines for most markers, which paralleled the gradients previously observed for two RFLP polymorphisms. Effective separation times between populations were estimated from genetic distances at microsatellite loci. Even after correcting for the possible effects of continuous local gene flow, the most distant Indo-European-speaking populations seem to have separated no more than 7000 years ago. The clinal patterns and the estimated, recent separation times between populations jointly suggest that Y-chromosome diversity in Europe largely reflects a directional demic expansion, which is unlikely to have occurred before the Neolithic period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号