首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee T  Foighil DO 《Molecular ecology》2004,13(11):3527-3542
The well-documented Floridian 'Gulf/Atlantic' marine genetic disjunction provides an influential example of vicariant cladogenesis along a continental coastline for major elements of a diverse nearshore fauna. We are engaged in a two-part study that aims to place this disjunction into a regional Caribbean Basin phylogenetic perspective using the scorched mussel Brachidontes exustus as an exemplar. Our first step, documented here, is to thoroughly characterize the genetic structure of Floridian scorched mussel populations using mitochondrial (mt) and nuclear markers. Both sets of markers recovered the expected disjunction involving sister clades distributed on alternate flanks of peninsular Florida and lineage-specific mt molecular clocks placed its origin in the Pliocene. The two sister clades had distinct population genetic profiles and the Atlantic clade appears to have experienced an evolutionarily recent bottleneck, although plots of the relative estimates of N through time are consistent with its local persistence through the last Ice Age Maximum. Our primary novel result, however, was the discovery that the Gulf/Atlantic disjunction represents but one of three cryptic, nested genetic discontinuities represented in Floridian scorched mussel populations. The most pronounced phylogenetic split distinguished the Gulf and Atlantic sister clades from two additional nested cryptic sister clades present in samples taken from the southern Florida tropical marine zone. Floridian populations of B. exustus are composed of four cryptic taxa, a result consistent with the hypothesis that the Gulf/Atlantic disjunction in this morphospecies is but one of multiple latent regional genetic breakpoints.  相似文献   

2.
The Dwarf crayfish or Cambarellinae, is a morphologically singular subfamily of decapod crustaceans that contains only one genus, Cambarellus. Its intriguing distribution, along the river basins of the Gulf Coast of United States (Gulf Group) and into Central México (Mexican Group), has until now lacked of satisfactory explanation. This study provides a comprehensive sampling of most of the extant species of Cambarellus and sheds light on its evolutionary history, systematics and biogeography. We tested the impact of Gulf Group versus Mexican Group geography on rates of cladogenesis using a maximum likelihood framework, testing different models of birth/extinction of lineages. We propose a comprehensive phylogenetic hypothesis for the subfamily based on mitochondrial and nuclear loci (3,833 bp) using Bayesian and Maximum Likelihood methods. The phylogenetic structure found two phylogenetic groups associated to the two main geographic components (Gulf Group and Mexican Group) and is partially consistent with the historical structure of river basins. The previous hypothesis, which divided the genus into three subgenera based on genitalia morphology was only partially supported (P = 0.047), resulting in a paraphyletic subgenus Pandicambarus. We found at least two cases in which phylogenetic structure failed to recover monophyly of recognized species while detecting several cases of cryptic diversity, corresponding to lineages not assigned to any described species. Cladogenetic patterns in the entire subfamily are better explained by an allopatric model of speciation. Diversification analyses showed similar cladogenesis patterns between both groups and did not significantly differ from the constant rate models. While cladogenesis in the Gulf Group is coincident in time with changes in the sea levels, in the Mexican Group, cladogenesis is congruent with the formation of the Trans-Mexican Volcanic Belt. Our results show how similar allopatric divergence in freshwater organisms can be promoted through diverse vicariant factors.  相似文献   

3.
Direct-developing lineages of the intertidal marine bivalve Lasaea have colonized both upstream mainland (southeastern Florida) and downstream oceanic island (Bermuda) locations in the western North Atlantic. Replicate samples from these two regional populations, separated by about 1500 km of open ocean, were sequenced for a 655-nucleotide portion of the mitochondrial (mt) cytochrome oxidase subunit I gene. Twelve haplotypes (2 Floridian and 10 Bermudan) were obtained that differed by a maximum of four substitutions among pairwise comparisons. Phylogenetic analysis yielded a parsimony network within which the mainland lineages clustered in one of the terminal branches; a mirror image of a priori expectations based on regional surface-current polarity. It is difficult, however, to envisage a plausible countercurrent dispersal mechanism. This tree topology may stem from divergent demographic processes operating on these two evolutionarily recent regional populations. The starlike phylogenetic pattern of Bermudan lineages is consistent with a history of rapid population growth. The restricted genetic repertoire and relative ecological scarcity of Floridian lineages imply either a recent founder event by unstudied Caribbean source populations or else a history of pronounced bottlenecks in population size. Bermuda's impoverished Caribbean marine biota may allow western North Atlantic Lasaea lineages to escape severe competitive interactions impacting other parts of their geographic range.  相似文献   

4.
A growing body of knowledge on the diversity and evolution of intertidal isopods across different regions worldwide has enhanced our understanding on biological diversification at the poorly studied, yet vast, sea–land interface. High genetic divergences among numerous allopatric lineages have been identified within presumed single broadly distributed species. Excirolana mayana is an intertidal isopod that is commonly found in sandy beaches throughout the Gulf of California. Its distribution in the Pacific extends from this basin to Colombia and in the Atlantic from Florida to Venezuela. Despite its broad distribution and ecological importance, its evolutionary history has been largely neglected. Herein, we examined phylogeographic patterns of E. mayana in the Gulf of California and the Caribbean, based on maximum‐likelihood and Bayesian phylogenetic analyses of DNA sequences from four mitochondrial genes (16S rDNA, 12S rDNA, cytochrome oxidase I gene, and cytochrome b gene). We compared the phylogeographic patterns of E. mayana with those of the coastal isopods Ligia and Excirolana braziliensis (Gulf of California and Caribbean) and Tylos (Gulf of California). We found highly divergent lineages in both, the Gulf of California and Caribbean, suggesting the presence of multiple species. We identified two instances of Atlantic–Pacific divergences. Some geographical structuring among the major clades found in the Caribbean is observed. Haplotypes from the Gulf of California form a monophyletic group sister to a lineage found in Venezuela. Phylogeographic patterns of E. mayana in the Gulf of California differ from those observed in Ligia and Tylos in this region. Nonetheless, several clades of E. mayana have similar distributions to clades of these two other isopod taxa. The high levels of cryptic diversity detected in E. mayana also pose challenges for the conservation of this isopod and its fragile environment, the sandy shores.  相似文献   

5.
C. A. Reeb  J. C. Avise 《Genetics》1990,124(2):397-406
Restriction site variation in mitochondrial DNA (mtDNA) of the American oyster (Crassostrea virginica) was surveyed in continuously distributed populations sampled from the Gulf of St. Lawrence, Canada, to Brownsville, Texas. mtDNA clonal diversity was high, with 82 different haplotypes revealed among 212 oysters with 13 endonucleases. The mtDNA clones grouped into two distinct genetic arrays (estimated to differ by about 2.6% in nucleotide sequence) that characterized oysters collected north vs. south of a region on the Atlantic mid-coast of Florida. The population genetic "break" in mtDNA contrasts with previous reports of near uniformity of nuclear (allozyme) allele frequencies throughout the range of the species, but agrees closely with the magnitude and pattern of mtDNA differentiation reported in other estuarine species in the southeastern United States. This concordance of mtDNA phylogenetic pattern across independently evolving species provides strong evidence for vicariant biogeographic processes in initiating intraspecific population structure. The post-Miocene ecological history of the region suggests that reduced precipitation levels in an enlarged Floridian peninsula may have created discontinuities in suitable estuarine habitat for oysters during glacial periods, and that today such population separations are maintained by the combined influence of ecological gradients and oceanic currents on larval dispersal. The results are consistent with the hypothesis that historical vicariant events, in conjunction with contemporary environmental influences on gene flow, can result in genetic discontinuities in continuously distributed species with high dispersal capability.  相似文献   

6.
Excirolana braziliensis is a coastal intertidal isopod with a broad distribution spanning the Atlantic and Pacific tropical and temperate coasts of the American continent. Two separate regional studies (one in Panama and one in Chile) revealed the presence of highly genetically divergent lineages, implying that this taxon constitutes a cryptic species complex. The relationships among the lineages found in these two different regions and in the rest of the distribution, however, remain unknown. To better understand the phylogeographic patterns of E. braziliensis, we conducted phylogenetic analyses of specimens from much of its entire range. We obtained DNA sequences for fragments of four mitochondrial genes (16S rDNA, 12S rDNA, COI, and Cytb) and also used publicly available sequences. We conducted maximum likelihood and Bayesian phylogenetic reconstruction methods. Phylogeographic patterns revealed the following: (1) new highly divergent lineages of E. braziliensis; (2) three instances of Atlantic–Pacific divergences, some of which appear to predate the closure of the Isthmus of Panama; (3) the distributional limit of highly divergent lineages found in Brazil coincides with the boundary between two major marine coastal provinces; (4) evidence of recent long‐distance dispersal in the Caribbean; and (5) populations in the Gulf of California have closer affinities with lineages further south in the Pacific, which contrasts with the closer affinity with the Caribbean reported for other intertidal organisms. The high levels of cryptic diversity detected also bring about challenges for the conservation of this isopod and its fragile environment, the sandy shores. Our findings underscore the importance of comprehensive geographic sampling for phylogeographic and taxonomical studies of broadly distributed putative species harboring extensive cryptic diversity.  相似文献   

7.
Comparative phylogeography has revealed remarkable patterns of concordance in the maternal phylogenies of many species. The phylogeography and historical demography of the mitochondrial control region I for 607 Atlantic bluefin tuna (Thunnus thynnus) and 275 swordfish (Xiphias gladius) were analyzed to clarify the complex phylogenetic signals in the North Atlantic-Mediterranean region where they are sympatric. Atlantic bluefin tuna mtDNA is polyphyletic, and includes rare sequences sister to Pacific bluefin tuna (Thunnus orientalis) and introgressed albacore (Thunnus alalunga) sequences. There is no geographic partitioning between Atlantic and Mediterranean samples of Atlantic bluefin tuna (Phi(ST)=0.002). In contrast, Atlantic and Mediterranean swordfish are differentiated (Phi(ST)=0.091) due to the combined effects of vicariance, secondary contact, and dissimilar regional demographic histories. Mediterranean swordfish has substantially less variation, and a more recent history (tau=2.42) than that of Atlantic swordfish (tau=7.02). In spite of the discordant phylogenetic and phylogeographic signals, the demographic history of Atlantic swordfish and Atlantic bluefin tuna (tau=7.51) suggests concordance in the timeline of population expansion. Possible scenarios of cladogenesis, expansion, and contraction, influenced by glacial cycles during the Pleistocene, are formulated.  相似文献   

8.
The geographical pattern of speciation and the relationship between floral variation and species ranges were investigated in the tribe Sinningieae (Gesneriaceae), which is found mainly in the Atlantic forests of Brazil. Geographical distribution data recorded on a grid system of 0.5 x 0.5 degree intervals and a near-complete species-level phylogenetic tree of Sinningieae inferred from a simultaneous analysis of seven DNA regions were used to address the role of geographical isolation in speciation. Geographical range overlaps between sister lineages were measured across all nodes in the phylogenetic tree and analyzed in relation to relative ages estimated from branch lengths. Although there are several cases of species sympatry in Sinningieae, patterns of sympatry between sister taxa support the predominance of allopatric speciation. The pattern of sympatry between sister taxa is consistent with range shifts following allopatric speciation, except in one clade, in which the overlapping distribution of recent sister species indicates speciation within a restricted geographical area and involving changes in pollinators and habitats. The relationship between floral divergence and regional sympatry was also examined by analyzing floral contrasts, phenological overlap, and the degree of sympatry between sister clades. Morphological contrast between flowers is not increased in sympatry and phenological divergence is more apparent between allopatric clades than between sympatric clades. Therefore, our results failed to indicate a tendency for sympatric taxa to minimize morphological and phenological overlap (geographic exclusion and/or character displacement hypotheses). Instead, they point toward adaptation in phenology to local conditions and buildup of sympatries at random with respect to flower morphology. Additional studies at a lower geographical scale are needed to identify truely coexisting species and the components of their reproductive isolation.  相似文献   

9.
Desmodus rotundus (Chiroptera: Phyllostomidae; Desmodontinae) is the most common vampire bat and has a broad distribution, ranging from southern Mexico to central Chile in the west, and Paraguay and northern Argentina in the east of South America ( Koopman 1988 ). Because of its feeding habit, this bat is considered the main source of rabies transmission to cattle. Although this species has a large spectrum of morphological variability throughout its range, thus far no study has examined the distribution of genetic lineages over its geographic range. Four geographically circumscribed clades of D. rotundus were described in the Brazilian territory on the basis of mitochondrial sequence analyses: southern Atlantic forest (SAF), northern Atlantic forest (NAF), Pantanal (PAN) and Amazon plus Cerrado (AMC) clade. The differentiation among these clades is strongly supported statistically, although the phylogenetic relationship between them remains uncertain. The extremely high levels of sequence divergence that were found between clades (ranging from 6% to 11%) are the highest ever described for a Neotropical bat species and cannot be explained by female philopatry alone. This indicates that D. rotundus comprises two or more distinct, possibly cryptic species. The biogeographic pattern described for this bat is similar to those described for other bats and terrestrial mammals, suggesting geographical congruence between historical vicariant processes, including likely vicariant events between north and south Atlantic Forest and between the Atlantic Forest and the Amazon.  相似文献   

10.
In strict symbiotic associations, the genetic structure of the symbiont often mirrors that of its host, with interesting implications for population dynamics and phylogeography. An unresolved case of symbiotic specificity and phylogeographic consequence is the relationship between the marine triclad Bdelloura candida and its host, the American horseshoe crab, Limulus polyphemus. A recent study by Riesgo et al. (2017, Marine Biology, 164, 111) identified a strong genetic break between populations of B. candida in the Gulf of Mexico and the Atlantic Ocean but had minimal sampling around the Florida peninsula such that the exact location of the boundary zone was not specified. To solve this, a comprehensive analysis of 16S rRNA and ITS2 genetic markers was conducted from new collections around the Florida peninsula. A clear and significant genetic break was identified between populations of supposed B. candida between Cumberland Island, Georgia, and Mosquito Lagoon, Florida. This genetic break establishes two cryptic lineages, an Atlantic population as far south as Georgia and a Floridian population inclusive of the entire peninsula and Gulf of Mexico, potentially due to niche partitioning of the unique intertidal habitats of its horseshoe crab hosts in Florida. This result directly refutes the previous hypothesis that a population break exists between the coasts of the Atlantic Ocean and Gulf of Mexico, and instead matches the genetic break of its host. Furthermore, a third cryptic lineage was identified in Key West. Overall, this work demonstrates the challenges in maintaining genetic connections between populations of both B. candida and L. polyphemus across their distributions, and poses meaningful implications for both species in the larger context of marine conservation and biodiversity.  相似文献   

11.
Abstract We investigated the genetic structure of blacktip shark (Carcharhinus limbatus) continental nurseries in the northwestern Atlantic Ocean, Gulf of Mexico, and Caribbean Sea using mitochondrial DNA control region sequences and eight nuclear microsatellite loci scored in neonate and young-of-the-year sharks. Significant structure was detected with both markers among nine nurseries (mitochondrial PhiST = 0.350, P < 0.001; nuclear PhiST = 0.007, P < 0.001) and sharks from the northwestern Atlantic, eastern Gulf of Mexico, western Gulf of Mexico, northern Yucatan, and Belize possessed significantly different mitochondrial DNA haplotype frequencies. Microsatellite differentiation was limited to comparisons involving northern Yucatan and Belize sharks with nuclear genetic homogeneity throughout the eastern Gulf of Mexico, western Gulf of Mexico, and northwestern Atlantic. Differences in the magnitude of maternal vs. biparental genetic differentiation support female philopatry to northwestern Atlantic, Gulf of Mexico, and Caribbean Sea natal nursery regions with higher levels of male-mediated gene flow. Philopatry has produced multiple reproductive stocks of this commercially important shark species throughout the range of this study.  相似文献   

12.
Over the last few decades, advances in molecular techniques have led to the detection of strong geographic population structure and cryptic speciation in many benthic marine taxa, even those with long‐lived pelagic larval stages. Polychaete annelids, in particular, generally show a high degree of population divergence, especially in mitochondrial genes. Rarely have molecular studies confirmed the presence of ‘cosmopolitan’ species. The amphinomid polychaete Hermodice carunculata was long considered the sole species within its genus, with a reported distribution throughout the Atlantic and adjacent basins. However, recent studies have indicated morphological differences, primarily in the number of branchial filaments, between the East and West Atlantic populations; these differences were invoked to re‐instate Hermodice nigrolineata, formerly considered a junior synonym of H. carunculata. We utilized sequence data from two mitochondrial (cytochrome c oxidase subunit I, 16S rDNA) markers and one nuclear (internal transcribed spacer) marker to examine the genetic diversity of Hermodice throughout its distribution range in the Atlantic Ocean, including the Mediterranean Sea, the Caribbean Sea, the Gulf of Mexico and the Gulf of Guinea. Our analyses revealed generally low genetic divergences among collecting localities and between the East and West Atlantic, although phylogenetic trees based on mitochondrial data indicate the presence of a private lineage in the Mediterranean Sea. A re‐evaluation of the number of branchial filaments confirmed differences between East and West Atlantic populations; however, the differences were not diagnostic and did not reflect the observed genetic population structure. Rather, we suspect that the number of branchial filaments is a function of oxygen saturation in the environment. Our results do not support the distinction between Hcarunculata in the West Atlantic and H. nigrolineata in the East Atlantic. Instead, they re‐affirm the older notion that H. carunculata is a cohesive species with a broad distribution across the Atlantic Ocean.  相似文献   

13.
The genus Gonatodes is a monophyletic group of small-bodied, diurnal geckos distributed across northern South America, Central America, and the Caribbean. We used fragments of three nuclear genes (RAG2, ACM4, and c-mos) and one mitochondrial gene (16S) to estimate phylogenetic relationships among Amazonian species of Gonatodes. We used Penalized Likelihood to estimate timing of diversification in the genus. Most cladogenesis occurred in the Oligocene and early Miocene and coincided with a burst of diversification in other South American animal groups including mollusks, birds, and mammals. The Oligocene and early Miocene were periods dominated by dramatic climate change and Andean orogeny and we suggest that these factors drove the burst of cladogenesis in Gonatodes geckos as well as other taxa. A common pattern in Amazonian taxa is a biogeographic split between the eastern and western Amazon basin. We observed two clades with this spatial distribution, although large differences in timing of divergence between the east-west taxon pairs indicate that these divergences were not the result of a common vicariant event.  相似文献   

14.
Elucidating the evolutionary patterns and processes of extant species is an important objective of any research program that seeks to understand population divergence and, ultimately, speciation. The island-like nature and temporal fluctuation of limnetic habitats create opportunities for genetic differentiation in rotifers through space and time. To gain further understanding of spatio-temporal patterns of genetic differentiation in rotifers other than the well-studied Brachionus plicatilis complex in brackish water, a total of 318 nrDNA ITS sequences from the B. calyciflorus complex in freshwater were analysed using phylogenetic and phylogeographic methods. DNA taxonomy conducted by both the sequence divergence and the GMYC model suggested the occurrence of six potential cryptic species, supported also by reproductive isolation among the tested lineages. The significant genetic differentiation and non-significant correlation between geographic and genetic distances existed in the most abundant cryptic species, BcI-W and Bc-SW. The large proportion of genetic variability for cryptic species Bc-SW was due to differences between sampling localities within seasons, rather than between different seasons. Nested Clade Analysis suggested allopatric or past fragmentation, contiguous range expansion and long-distance colonization possibly coupled with subsequent fragmentation as the probable main forces shaping the present-day phylogeographic structure of the B. calyciflorus species complex.  相似文献   

15.
Antitropicality is a distribution pattern where closely related taxa are separated by an intertropical latitudinal gap. Two potential examples include Brachidontes darwinianus (south eastern Brazil to Uruguay), considered by some authors as a synonym of B. exustus (Gulf of Mexico and the Caribbean), and B. solisianus, distributed along the Brazilian coast with dubious records north of the intertropical zone. Using two nuclear (18S and 28S rDNA) and one mitochondrial gene (mtDNA COI), we aimed to elucidate the phylogeographic and phylogenetic relationships among the scorched mussels present in the warm‐temperate region of the southwest Atlantic. We evaluated a divergence process mediated by the tropical zone over alternative phylogeographic hypotheses. Brachidontes solisianus was closely related to B. exustus I, a species with which it exhibits an antitropical distribution. Their divergence time was approximately 2.6 Ma, consistent with the intensification of Amazon River flow. Brachidontes darwinianus, an estuarine species is shown here not to be related to this B. exustus complex. We suspect ancestral forms may have dispersed from the Caribbean to the Atlantic coast via the Trans‐Amazonian seaway (Miocene). The third species, B rodriguezii is presumed to have a long history in the region with related fossil forms going back to the Miocene. Although scorched mussels are very similar in appearance, their evolutionary histories are very different, involving major historical contingencies as the formation of the Amazon River, the Panama Isthmus, and the last marine transgression.  相似文献   

16.
Zoanthids are marine cnidarians with simple morphologies that challenge our ability to delineate species. Phylogenetic analyses of internal transcribed spacer (ITS) sequences are consistent with six morphologically described species from the wider Caribbean region, and reveal four additional species that were not previously recognized. Histological examinations of unidentified species reveal cryptic Isozoanthus and Edwardsiidae (Actiniaria) species. Observations of zoanthids in situ reveal geographic distributions that range from regional to trans‐Atlantic. ITS and 16S data are consistent with hypotheses of paraphyly in some higher taxa of zoanthids; however, the clades of zoanthids recovered in both analyses can largely be defined by their host associations, thereby supporting phylogenetic conservatism in zoanthid–host association evolution. The single clear example of a zoanthid switching hosts was accompanied by a compensatory loss of endosymbiosis, which maintained the match in photosynthetic symbioses between zoanthids and sponge hosts. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 223–238.  相似文献   

17.
Gracilaria tikvahiae, a highly morphologically variable red alga, is one of the most common species of Gracilariaceae inhabiting Atlantic estuarine environments and the Intracoastal Waterway of eastern North America. Populations of G. tikvahiae at the extremes of their geographic range (Canada and southern Mexico) are subjected to very different environmental regimes. In this study, we used two types of genetic markers, the chloroplast‐encoded rbcL and the nuclear internal transcribed spacer (ITS) region, to examine the genetic variability within G. tikvahiae, for inferring the taxonomic and phylogenetic relationships between geographically isolated populations, and to discuss its distributional information in a phylogeographic framework. Based on rbcL and ITS phylogenies, specimens from populations collected at the extreme distributional ranges reported for G. tikvahiae are indeed part of the same species; however, rbcL‐ but not ITS‐based phylogenies detected phylogenetic structure among the ten G. tikvahiae different haplotypes found in this study. The four distinct rbcL lineages were identified as 1) a Canadian–northeast U.S. lineage, 2) a southeast Florida lineage, 3) an eastern Gulf of Mexico lineage, and 4) a western Gulf of Mexico lineage. We found no evidence for the occurrence of G. tikvahiae in the Caribbean Sea. Observed phylogeographic patterns match patterns of genetic structures reported for marine animal taxa with continuous and quasicontinuous geographic distribution along the same geographic ranges.  相似文献   

18.
Pinpointing processes that structure the geographical distribution of genetic diversity of marine species and lead to speciation is challenging because of the lack of obvious dispersal barriers and the likelihood of substantial (passive) dispersal in oceans. In addition, cryptic radiations with sympatric distributions abound in marine species, challenging the allopatric speciation mechanism. Here, we present a phylogeographical study of the marine nematode species complex Rhabditis ( Pellioditis ) marina to investigate processes shaping genetic structure and speciation. Rhabditis ( P .) marina lives on decaying macroalgae in the intertidal, and may therefore disperse over considerable distances. Rhabditis ( P .) marina consists of several cryptic species sympatrically distributed at a local scale. Genetic variation in the COI gene was screened in 1362 specimens from 45 locations around the world. Two nuclear DNA genes (ITS and D2D3) were sequenced to infer phylogenetic species. We found evidence for ten sympatrically distributed cryptic species, seven of which show a strong genetic structuring. A historical signature showed evidence for restricted gene flow with occasional long-distance dispersal and range expansions pre-dating the last glacial maximum. Our data also point to a genetic break around the British Isles and a contact zone in the Southern Bight of the North Sea. We provide evidence for the transoceanic distribution of at least one cryptic species (PmIII) and discuss the dispersal capacity of marine nematodes. The allopatric distribution of some intraspecific phylogroups and of closely related cryptic species points to the potential for allopatric speciation in R. ( P .) marina .  相似文献   

19.
Restriction site‐associated DNA (RAD) sequencing was used to characterize neutral and adaptive genetic variation among geographic samples of red drum, Sciaenops ocellatus, an estuarine‐dependent fish found in coastal waters along the southeastern coast of the United States (Atlantic) and the northern Gulf of Mexico (Gulf). Analyses of neutral and outlier loci revealed three genetically distinct regional clusters: one in the Atlantic and two in the northern Gulf. Divergence in neutral loci indicated gradual genetic change and followed a linear pattern of isolation by distance. Divergence in outlier loci was at least an order of magnitude greater than divergence in neutral loci, and divergence between the regions in the Gulf was twice that of divergence between other regions. Discordance in patterns of genetic divergence between outlier and neutral loci is consistent with the hypothesis that the former reflects adaptive responses to environmental factors that vary on regional scales, while the latter largely reflects drift processes. Differences in basic habitat, initiated by glacial retreat and perpetuated by contemporary oceanic and atmospheric forces interacting with the geomorphology of the northern Gulf, followed by selection, appear to have led to reduced gene flow among red drum across the northern Gulf, reinforcing differences accrued during isolation and resulting in continued divergence across the genome. This same dynamic also may pertain to other coastal or nearshore fishes (18 species in 14 families) where genetically or morphologically defined sister taxa occur in the three regions.  相似文献   

20.
Together, Indian plus Seychelles caeciliid caecilian amphibians (Gymnophiona) constitute approximately 10% of the extant species of this order. A molecular phylogenetic analysis of all but one (or two) nominal species (16, in five genera) is presented based on mitochondrial (12S, 16S, cytb, cox1) and nuclear (RAG1) sequence data. Results strongly support monophyly of both Seychelles and peninsular Indian caeciliids, and their sister-group status. Within the Indian caeciliids, Indotyphlus and Gegeneophis are monophyletic sister genera. The phylogenetic position of Gegeneophis ramaswamii, Gegeneophis seshachari, and Gegeneophis carnosus are not well resolved, but all lie outside a well-supported clade of most northern Western Ghats Gegeneophis (madhavai, mhadeiensis, goaensis, danieli/nadkarnii). Most nominal species of Indian caeciliid are diagnosed by robust haplotype clades, though the systematics of G. carnosus-like forms in northern Kerala and southern Karnataka requires substantial further investigation. For the most part, Indian caeciliid species comprise narrowly distributed, allopatric taxa with low genetic diversity. Much greater geographic genetic diversity exists among populations referred to G. seshachari, such that some populations likely represent undescribed species. This, the first phylogenetic analysis of Indian caeciliids, generally provides additional support for recent increases in described species (eight since 1999), and a framework for ongoing taxonomic revision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号