首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei Y  Cao X  Ou Y  Lu J  Xing C  Zheng R 《Mutation research》2001,490(2):113-121
An immortal human hepatic cell line HL-7702 and human hepatoma cell line SMMC-7721 were treated with 3-30 microM SeO(2). SeO(2) at 30 microM markedly inhibited cell proliferation and viability, and prompted apoptosis of both normal hepatic and hepatoma cells after 48h treatment. SeO(2) could also down-regulate the Bcl-2 level, greatly in HL-7702 and slightly in SMMC-7721 cells, but up-regulate wild type P53 level a little in HL-7702 and significantly in SMMC-7721 cells. The Bcl-2/P53 value was closely correlated with the apoptotic rate as well as SeO(2) concentrations.  相似文献   

2.
目的:探讨Notch信号通路对肝癌细胞迁移能力及钙粘附蛋白E(E-cadherin)、环氧化酶-2(COX-2)表达的影响。方法:体外培养肝癌细胞系(SMMC-7721、MHCC97H)、正常非肿瘤肝细胞系(HL-7702),Transwell小室用于测定细胞的迁移侵袭能力,Western blot蛋白印迹法用于测定Notch1、E-cadherin、COX-2蛋白的表达水平,并采用DAPT阻断Notch信号通路,比较肝癌细胞系与正常非肿瘤肝细胞系的迁移侵袭能力及肝癌细胞中E-cadherin、COX-2蛋白的表达水平的改变。结果:SMMC-7721细胞、MHCC97H细胞的迁移能力强于HL-7702细胞,差异有统计学意义(P0.05);相比于HL-7702细胞,MHCC97H细胞、SMMC-7721细胞中的Notch1、COX-2表达水平均显著升高,E-cadherin的表达水平明显降低(P0.05);DAPT处理后,SMMC-7721细胞、MHCC97H细胞发生迁移的能力均弱于对照组,差异有统计意义(P0.05);DAPT处理后,SMMC-7721细胞、MHCC97H细胞内COX-2、Notch1的表达量明显降低,而E-cadherin的表达水平升高(P0.05)。结论:Notch信号通路参与肝癌细胞迁移过程,其机制可能与E-cadherin、COX-2的表达相关。  相似文献   

3.
目的:探究组蛋白甲基转移酶G9a抑制剂(BIX-01294)对肝癌细胞周期、凋亡及移植瘤的影响.方法:将SMMC-7721、BEL-7402、HL-7702原始细胞株传代培养后,分为空白对照组和不同浓度(1 μM、5 μM、10 μM、20 μM)BIX-01294处理组.应用Western-blot法检测G9a及肝癌...  相似文献   

4.
Background The impact of STAT-3 expression on the apoptosis of human hepatomas cell SMMC-7721 line induced by X-ray and carbon ion irradiations was investigated. Methods Human hepatoma SMMC-7721 cells were irradiated with a carbon ion beam and X-ray. Cell survival was determined by a standard colony-forming assay. STAT-3 protein expression was analysed by Western Immunoblots. Cell cycle and apoptosis were performed by flow cytometry. Results The viability of SMMC-7721 cells decreased with increasing dose of the carbon ion beam, and the high-LET carbon ion beam led to the cells getting arrested at G2/M phase. Western Blot analyses show that STAT-3 expression increased with increasing radiation dose. The carbon ion irradiation induced cell apoptosis and significantly promoted the expression of STAT-3 gene compared with the X-ray irradiation. The apoptosis rate is correlated with the expression of STAT-3 in human hepatoma SMMC-7721 cells after exposure to different doses of X-ray and heavy ion beam. Conclusions Heavy ion irradiation increases the expression of STAT-3 gene, makes SMMC-7721 cells arrested at G2/M phase and increases cell apoptosis in comparison with that induced by low-LET X-ray. The STAT-3 expression may be regarded as a protected reaction when the cancerous cells suffer a strong stimulus such as high-LET irradiation. The interaction of STAT-3 expression and other cytokines in human hepatoma and the relationship between STAT-3 and radiation-induced apoptosis remain to be clarified in the future.  相似文献   

5.
目的检测壳寡糖对人肝癌SMMC-7721细胞的抑制效果及对凋亡调控蛋白Bcl-2和Caspase-3的影响。方法采用噻唑蓝(MTT)法检测不同浓度壳寡糖对肝癌细胞SMMC-7721细胞增殖的抑制作用,并利用荧光Hoechst33258染色法检测细胞凋亡状况。最后通过免疫细胞化学方法研究壳寡糖对肝癌细胞SMMC-7721中Bcl-2和Caspase-3表达的影响。结果壳寡糖能够抑制SMMC-7721细胞增殖,并且促进SMMC-7721细胞的凋亡,并且壳寡糖能够上调促凋亡蛋白Caspase-3的表达和降低抑制凋亡蛋白Bcl-2的表达。结论壳寡糖对人肝癌SMMC-7721细胞的增殖有抑制作用,此作用可能是通过促进Caspase-3的表达和抑制Bcl-2的表达来实现的。  相似文献   

6.
Two human hepatoma cell lines, QGY-7703 and SMMC-7721, and two human pulmonary adenocarcinoma cell lines, LTEP-a-2 and SPC-A-1, were found to respond to 1 μg/mL Na2SeO3, 24 h, in-vitro treatment by decreasing its confluent saturation density. The same treatment was found to cause an increase in the adhesiveness of cells measured as resistance to detachment by trypsin/EDTA. The pathological features of tumors after heterotransplantation of treated and untreated cells were similar, but the size of tumor grown from treated cells was much smaller.  相似文献   

7.
Plasmalogens play multiple roles in the structures of biological membranes, cell membrane lipid homeostasis and human diseases. We report the isolation and identification of choline plasmalogens (ChoPlas) from swine liver by high performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC)/MS. The growth and viability of hepatoma cells (CBRH7919, HepG2 and SMMC7721) was determined following ChoPlas treatment comparing with that of human normal immortal cell lines (HL7702). Result indicated that ChoPlas inhibited hepatoma cell proliferation with an optimal concentration and time of 25 μmol/L and 24 h. To better understand the mechanism of the ChoPlas-induced inhibition of hepatoma cell proliferation, Caveolin-1 and PI3K/Akt pathway signals, including total Akt, phospho-Akt(pAkt) and Bcl-2 expression in CBRH7919 cells, were determined by western blot. ChoPlas treatment increased Caveolin-1 expression and reduced the expression of phospho-Akt (pAkt) and Bcl-2, downstream targets of the PI3K/Akt pathway. Further cell cycle analysis showed that ChoPlas treatment induced G1 and G1/S phase transition cell cycle arrest. The expression of essential cell cycle regulatory proteins involved in the G1 and G1/S phase transitions, cyclin D, CDK4, cyclin E and CDK2, were also analyzed by western blot. ChoPlas reduced CDK4, cyclin E and CDK2 expression. Taken together, the results indicate that swine liver-derived natural ChoPlas inhibits hepatoma cell proliferation associated with Caveolin-1 and PI3K/Akt signals.  相似文献   

8.
Nowadays, much effort is being devoted to detect new substances that not only significantly induce the death of tumor cells, but also have little side effect on normal cells. Our previous study showed that 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC) exhibited significant cytotoxic potential with an IC50 value of 32.3 ± 1.13 μM against SMMC-7721 cells and could induce SMMC-7721 cells apoptosis. In the present study, we found that DMC was almost nontoxic to human normal liver L-02 and human normal fetal lung fibroblast HFL-1 cells as their IC50 values (111.0 ± 4.57 and 152.0 ± 4.83 µM for L-02 and HFL-1 cells, respectively) were much higher. To further explore the apoptotic mechanism of DMC, we investigated the role of the reactive oxygen species (ROS) in the apoptosis induced by DMC in SMMC-7721 cells. Our results suggested that the cytotoxicity and the generation of intracellular ROS were inhibited by N-acetylcysteine (NAC). Reversal of apoptosis in NAC pretreated cells indicated the involvement of ROS in DMC-induced apoptosis. The loss of mitochondrial membrane potential (ΔΨm) induced by DMC was significantly blocked by NAC. NAC also prevented the decrease of Caspase-3 and -9 activities, the increase of Bcl-2 protein expression and the decrease of p53 and PUMA protein expressions. Together, these results indicated that ROS played a key role in the apoptosis induced by DMC in human hepatoma SMMC-7721 cells.  相似文献   

9.
We previously reported that wogonin, a flavonoid compound, was a potent apoptosis inducer of human hepatoma SMMC-7721 cells and murine sarcoma S180 cells. In the present study, the effect of oroxylin A, one wogonin structurally related flavonoid isolated from Scutellariae radix, on human hepatocellular carcinoma cell line HepG2 was examined and molecular mechanisms were also investigated. Oroxylin A inhibited HepG2 cell proliferation in a concentration- and time-dependent manner measured by MTT-assay. Treatment with an apoptosis-inducing concentration of oroxylin A caused typical morphological changes and apoptotic blebbing in HepG2 cells. DNA fragmentation assay was used to examine later apoptosis induced by oroxylin A. FACScan analysis revealed a dramatic increase in the number of apoptotic and G(2)/M phase arrest cells after oroxylin A treatment. The pro-apoptotic activity of oroxylin A was attributed to its ability to modulate the concerted expression of Bcl-2, Bax, and pro-caspase-3 proteins. The expression of Bcl-2 protein and pro-caspase-3 protein was dramatically decreased after treatment with oroxylin A. These results demonstrated that oroxylin A could effectively induce programmed cell death and suggested that it could be a promising antitumor drug.  相似文献   

10.
Arsenic trioxide induces apoptosis and clinical remission in patients diagnosed with acute promyelocytic leukemia. The human malignant melanoma A375 cells were treated with NaAsO2 (0.1–130 μM) and also treated with combined 10 μM NaAsO2 and 10 μM Na2SeO3. NaAsO2 arrested cell growth in the G1 phase and induced apoptosis in a concentration- and time-dependent manner. In contrast, administration of Na2SeO3 antagonized the cell growth inhibition and apoptosis induced by NaAsO2. The NaAsO2 treatment resulted in a marked increase in p53 protein as early as 4 h and in Bcl-2 protein level by 12 h. In addition, p53 downregulation accompanied the combined treatment of NaAsO2 and Na2SeO3. Thus, our results indicate upregulation of p53 and Bcl-2 play a crucial role in the NaAsO2-induced G1 arrest and apoptosis of A375 cells and that downregulation p53 appears to contribute to the inhibition by Na2SeO3 of the effects induced by NaAsO2.  相似文献   

11.
The purpose of this study is to investigate in vitro and ex vivo effects of matrine on the growth of human lung cancer and hepatoma cells and the cancer cell migration as well as the expressions of related proteins in the cancer cells. Matrine significantly inhibited the in vitro and ex vivo growth of human non-small cell lung cancer A549 and hepatoma SMMC-7721 cells. Matrine induced the apoptosis in A549 and SMMC-7721 cells. Western blot analysis indicated that matrine dose-dependently down-regulated the expression of anti-apoptotic protein Bcl-2 and up-regulated the level of pro-apoptotic protein bax, eventually leading the reduction of ratios of Bcl-2/Bax proteins in A549 and SMMC-7721 cells. Furthermore, matrine significantly suppressed the A549 cell migration without reducing the cell viability. In addition, matrine dramatically reduced the secretion of vascular endothelial growth factor A in A549 cells. More importantly, matrine markedly enhanced the anticancer activity of anticancer agent trichostatin A (the histone deacetylase inhibitor) by strongly reducing the viability and/or the ratio of Bcl-2/Bax protein in A549 cells. Our findings suggest that matrine may have the broad therapeutic and/or adjuvant therapeutic application in the treatment of human non-small cell lung cancer and hepatoma.  相似文献   

12.
Aquaglycero-aquaporins (agAQPs) are the structural foundation of rapid water transport and they appear to participate in cancer proliferation and malignancy. AQP3 expression is increased and AQP9 expression is decreased in hepatocellular carcinoma (HCC) compared to normal liver, which suggests their possible use as targets for cancer treatment. AQP-based modifiers, such as Auphen and dibutyryladenosine 3′, 5′-cyclic monophosphate (dbcAMP), might be used to treat several diseases and as chemical tools for assessing the functions of AQPs in biological systems. We investigated the effects of both Auphen on AQP3 and dbcAMP on AQP9 in SMMC-7721 cells. We used western blotting, real-time quantitative polymerase chain reaction (qPCR) and immunohistochemistry to evaluate changes in AQP3 and AQP9 expression in SMMC-7721 cells after culturing with Auphen and dbcAMP, respectively. We also determined the proliferation of SMMC-7721 cells. We found that compared to HL-7702 (L02) liver cells, Auphen increased AQP3 expression in tumor cells, whereas dbcAMP decreased expression of AQP9 in these cells. Also, high concentrations of Auphen and dbcAMP inhibited proliferation of SMMC-7721 cells in vitro. Auphen and dbcAMP may inhibit HCC development and could be considered targets for HCC diagnosis and therapy.  相似文献   

13.
目的:研究RPB5调节蛋白(RMP)在正常肝细胞及肝癌细胞基因组稳定性中的作用,并探讨其与细胞凋亡的相关性。方法:采用逆转录-聚合酶链反应(RT-PCR)从mRNA 水平检测正常细胞系及多种肿瘤细胞系中RMP的表达。不同剂量60Coγ射线照射肝癌细胞SMMC-7721细胞和正常肝细胞HL-7702细胞,RT-PCR法检测RMP的表达,流式细胞技术检测照射肝癌细胞周期变化及细胞凋亡。应用RNA干扰技术研究RMP在肝癌细胞基因组稳定性中的作用。结果:正常细胞系及多种肿瘤细胞系中RMP基因均有不同程度的表达。经60Coγ射线诱导的肝癌细胞及正常肝细胞RMP表达水平明显升高,且有一定剂量依赖性。随着照射剂量增加细胞凋亡明显增多,细胞周期G1期增高,而S期明显降低。RMP被干扰后, 电子显微镜观察细胞形态发生明显改变,p21基因表达减弱。结论:RMP具有维持细胞基因组稳定性的潜在作用。RMP的表达与p53、p21等具有一定相关性,可能与后者协同调节细胞凋亡过程。  相似文献   

14.
Curcumin, a spice component as well as a traditional Asian medicine, has been reported to inhibit proliferation of a variety of cancer cells but is limited in application due to its low potency and bioavailability. Here, we have assessed the therapeutic effects of a novel and water soluble curcumin analog, 3,5-bis(2-hydroxybenzylidene)tetrahydro-4H-pyran-4-one glutathione conjugate [EF25-(GSH)2], on hepatoma cells. Using the MTT and colony formation assays, we determined that EF25-(GSH)2 drastically inhibits the proliferation of hepatoma cell line HepG2 with minimal cytotoxicity for the immortalized human hepatic cell line HL-7702. Significantly, EF25-(GSH)2 suppressed growth of HepG2 xenografts in mice with no observed toxicity to the animals. Mechanistic investigation revealed that EF25-(GSH)2 induces autophagy by means of a biphasic mechanism. Low concentrations (<5 µmol/L) induced autophagy with reversible and moderate cytoplasmic vacuolization, while high concentrations (>10 µmol/L) triggered an arrested autophagy process with irreversible and extensive cytoplasmic vacuolization. Prolonged treatment with EF25-(GSH)2 induced cell death through both an apoptosis-dependent and a non-apoptotic mechanism. Chloroquine, a late stage inhibitor of autophagy which promoted cytoplasmic vacuolization, led to significantly enhanced apoptosis and cytotoxicity when combined with EF25-(GSH)2. Taken together, these data imply a fail-safe mechanism regulated by autophagy in the action of EF25-(GSH)2, suggesting the therapeutic potential of the novel curcumin analog against hepatocellular carcinoma (HCC), while offering a novel and effective combination strategy with chloroquine for the treatment of patients with HCC.  相似文献   

15.
This study aimed to evaluate the correlation of integrin alpha 7 (ITGA7) with clinical outcomes and its effect on cell activities as well as stemness in hepatocellular carcinoma (HCC). HCC tumor tissues and paired adjacent tissues from 90 HCC patients were obtained and ITGA7 expression was detected using immunohistochemistry assay. Cellular experiments were conducted to examine the effect of ITGA7 on cell activities, astemness via ITGA7 ShRNA transfection, and compensation experiments were further performed to test whether ITGA7 functioned via regulating PTK2-PI3K-AKT signaling pathway. ITGA7 was overexpressed in tumor tissues compared with paired adjacent tissues and its high expression was correlated with larger tumor size, vein invasion and advanced Barcelona Clinic Liver Cancer stage, and it also independently predicted worse overall survival in HCC patients. In cellular experiments, ITGA7 was upregulated in SMMC-7721, Hep G2, HuH-7 and BEL-7404 cell lines compared with normal human liver cells HL-7702. ITGA7 knockdown suppressed cell proliferation but promoted apoptosis, and it also downregulated CSCs markers (CD44, CD133 and OCT-4) as well as PTK2, PI3K and AKT expressions in SMMC-7721 and Hep G2 cell lines. ITGA7 overexpression promoted cell proliferation but inhibited apoptosis, and it also upregulated CSCs markers in HL-7702 cells. Further compensation experiments verified that ITGA7 regulated cell proliferation, apoptosis and CSCs markers via PTK2-PI3K-Akt signaling pathway. ITGA7 negatively associates with clinical outcomes in HCC patients, and it regulates cell proliferation, apoptosis and CSCs markers via PTK2-PI3K-Akt signaling pathway.  相似文献   

16.
Transthyretin(TTR) gene was highly expressed in normal liver and it has been found to be deleted in part of DNA samples from human hepatic cancer.Its mRNA expression was suppressed in most hepatoma samples.In order to study the biological effect of TTR gene on the growth of hepatoma cells,a recombinant vector containing TTR cDNA was constructed by pCMV,then it was transfected into hepatoma cell lines SMMC-7721 and Q3.It has been demonstrated that the inhibition of growth rate of TTR cDNA transfected hepatoma cells was about 50% in strength compared with that of the control.This inhibition was further enhanced when the transfected hepatoma cells were treated with all-trans retinoic acid.Hepatoma cells of cell lines PLC/PRF/5,SMMC-7721 and Q3 as well as hepatoma cells SMMC-7721 transfected with pCMV or pCMV-TTR were analyzed for TTR expression by Northern hybridization.The low level of TTR expression was found in both hepatoma cell lines and in SMMC-7721 cells transfected with pCMV alone.However,a remarkable TTR mRNA expression was observed in hepatoma SMMV-7721 cells transfected with pCMV-TTR.It seems possible that TTR gene might be a candidate of cancer suppressor gene for human hepatic cancer.  相似文献   

17.

Background

Ubiquitin Specific Peptidase 39 (USP39) is a 65 kDa SR-related protein involved in RNA splicing. Previous studies showed that USP39 is related with tumorigenesis of human breast cancer cells.

Results

In the present study, we investigated the functions of USP39 in human hepatocellular carcinoma (HCC) cell line SMMC-7721. We knocked down the expression of USP39 through lentivirus mediated RNA interference. The results of qRT-PCR and western blotting assay showed that both the mRNA and protein levels were suppressed efficiently after USP39 specific shRNA was delivered into SMMC-7721 cells. Cell growth was significantly inhibited as determined by MTT assay. Crystal violet staining indicated that colony numbers and sizes were both reduced after knock-down of USP39. Furthermore, suppression of USP39 arrested cell cycle progression at G2/M phase in SMMC-7721cells. In addition, Annexin V showed that downregulation of USP39 significantly increased the population of apoptotic cells.

Conclusions

All our results suggest that USP39 is important for HCC cell proliferation and is a potential target for molecular therapy of HCC.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0006-y) contains supplementary material, which is available to authorized users.  相似文献   

18.
Three new chlorinated phenolic glycosides, namely przewatangosides A-C (1-3), along with one known compound, globosumoside A (4), were isolated from the whole plants of Przewalskia tangutica. Their structures were unequivocally determined by extensive spectroscopic analysis and chemical method. The cytotoxic activities of the isolated phenolic glycosides (1-4) were evaluated against the five human cancer cell lines A549, MCF-7, SMMC-7721, HepG2 and HL-60. Przewatangoside A (1) exhibited weak cytotoxicity against SMMC-7721 with the IC50 value of 38.1 μM. All the tested compounds were inactive (IC50 > 50 μM) to the normal human hepatocyte cell line (L02).  相似文献   

19.
Dichlorodiphenoxytrichloroethane (DDT) is a known persistent organic pollutant and liver damage toxicant. However, there has been little emphasis on the mechanism underlying liver damage toxicity of DDT and the relevant effective inhibitors. Hence, the present study was conducted to explore the protective effects of vitamin C (VC) and vitamin E (VE) on the cytotoxicity of DDT in HL-7702 cells and elaborate the specific molecular mechanisms. The results demonstrated that p,p′-DDT exposure at over 10 µM depleted cell viability of HL-7702 cells and led to cell apoptotic. p,p′-DDT treatment elevated the level of reactive oxygen species (ROS) generation, induced mitochondrial membrane potential, and released cytochrome c into the cytosol, with subsequent elevations of Bax and p53, along with suppression of Bcl-2. In addition, the activations of caspase-3 and -8 were triggered. Furthermore, p,p′-DDT promoted the expressions of NF-κB and FasL. When the cells were exposed to the NF-κB inhibitor (PDTC), the up-regulated expression of FasL was attenuated. Strikingly, these alterations caused by DDT treatment were prevented or reversed by the addition of VC or VE, and the protective effects of co-treatment with VC and VE were higher than the single supplement with p,p′-DDT. Taken together, these findings provide novel experimental evidences supporting that VC or/and VE could reduce p,p′-DDT-induced cytotoxicity of HL-7702 cells via the ROS-mediated mitochondrial pathway and NF-κB/FasL pathway.  相似文献   

20.
To gain new insight into the biological function of the human augmenter of liver regeneration (hALR) in HCC, we studied its involvement in radiation-induced damage and recovery of HCC cells. We found that hALR expression was up-regulated in both HCC tissues and multiple hepatoma cell lines and correlated significantly with increased radiation clonogenic survival after radiation treatment. Exogenous expression of hALR increased radiation resistance in SMMC-7721 cells, and the increased survival was accompanied by a decrease in apoptosis and a prolonged G2–M arrest after irradiation. Overexpression of ALR significantly increased the mitochondrial membrane potential, inhibited cytochrome c release, and opposed the loss of intracellular ATP levels after radiation. Moreover, knockdown of ALR by siRNA resulted in inhibition of viability in the absence of exogenously added oxidative stress and radiation sensitization in HepG2 cells. Importantly, hALR expression was very low in normal hepatocyte L02 cells, and hALR silencing had a minimal effect on L02 viability and radiation sensitivity. These results suggest that human ALR is important for hepatoma cell viability and involved in the protection of hepatoma cells against irradiation-induced damage by its association with mitochondria. Targeting hALR may be a promising novel approach to enhance the radiosensitivity of hepatoma cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号