首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The cellulosome-integrating protein CipA, which serves as a scaffolding protein for the cellulolytic complex produced by Clostridium thermocellum, comprises a COOH-terminal duplicated segment termed the dockerin domain. This paper reports the cloning and sequencing of a gene, termed sdbA (for scaffoldin dockerin binding), encoding a protein which specifically binds the dockerin domain of CipA. The sequenced fragment comprises an open reading frame of 1,893 nucleotides encoding a 631-amino-acid polypeptide, termed SdbA, with a calculated molecular mass of 68,577 kDa. SAA comprises an NH2-terminal leader peptide followed by three distinct regions. The NH2-terminal region is similar to the NH2-terminal repeats of C. thermocellum OlpB and ORF2p. The central region is rich in lysine and harbors a motif present in Streptococcus M proteins. The COOH-terminal region consists of a triplicated sequence present in several bacterial cell surface proteins. The NH2-terminal region of SdbA and a fusion protein carrying the first NH2-terminal repeat of OlpB were shown to bind the dockerin domain of CipA. Thus, a new type of cohesin domain, which is present in one, two, and four copies in SdbA, ORF2p, and OlpB, respectively, can be defined. Since OlpB and most likely SdbA and ORF2p are located in the cell envelope, the three proteins probably participate in anchoring CipA (and the cellulosome) to the cell surface.  相似文献   

3.
Artificial cellulase complexes active on crystalline cellulose were reconstituted in vitro from a native mix of cellulosomal enzymes and CipA scaffoldin. Enzymes containing dockerin modules for binding to the corresponding cohesin modules were prepared from culture supernatants of a C. thermocellum cipA mutant. They were reassociated to cellulosomes via dockerin-cohesin interaction. Recombinantly produced mini-CipA proteins with one to three cohesins either with or without the carbohydrate-binding module (CBM) and the complete CipA protein were used as the cellulosomal backbone. The binding between cohesins and dockerins occurred spontaneously. The hydrolytic activity against soluble and crystalline cellulosic compounds showed that the composition of the complex does not seem to be dependent on which CipA-derived cohesin was used for reconstitution. Binding did not seem to have an obvious local preference (equal binding to Coh1 and Coh6). The synergism on crystalline cellulose increased with an increasing number of cohesins in the scaffoldin. The in vitro-formed complex showed a 12-fold synergism on the crystalline substrate (compared to the uncomplexed components). The activity of reconstituted cellulosomes with full-size CipA reached 80% of that of native cellulosomes. Complexation on the surface of nanoparticles retained the activity of protein complexes and enhanced their stability. Partial supplementation of the native cellulosome components with three selected recombinant cellulases enhanced the activity on crystalline cellulose and reached that of the native cellulosome. This opens possibilities for in vitro complex reconstitution, which is an important step toward the creation of highly efficient engineered cellulases.  相似文献   

4.
The cipA gene encoding the Clostridium acetobutylicum scaffolding protein CipA was cloned and expressed in Escherichia coli. CipA contains an N-terminal signal peptide, a family 3a cellulose-binding domain (CBD), five type I cohesin domains, and six hydrophilic domains. The uniqueness of CipA lies in the enchainment of cohesin domains that are all separated by a hydrophilic domain. Affinity-purified CipA was used in equilibrium-binding experiments to characterize the interaction of CipA with crystalline cellulose. A K(d) of 0.038 micro M and a [C](max) of 0.43 micro mol of CipA bound per g of Avicel were determined. A mini-CipA polypeptide consisting of a CBD3a and two cohesin domains was overexpressed in C. acetobutylicum, yielding the in vivo formation of a minicellulosome. This is to our knowledge the first demonstration of the in vivo assembly of a recombinant minicellulosome.  相似文献   

5.
The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.  相似文献   

6.
7.
Clostridium thermocellum produces the prototypical cellulosome, a large multienzyme complex that efficiently hydrolyzes plant cell wall polysaccharides into fermentable sugars. This ability has garnered great interest in its potential application in biofuel production. The core non-catalytic scaffoldin subunit, CipA, bears nine type I cohesin modules that interact with the type I dockerin modules of secreted hydrolytic enzymes and promotes catalytic synergy. Because the large size and flexibility of the cellulosome preclude structural determination by traditional means, the structural basis of this synergy remains unclear. Small angle x-ray scattering has been successfully applied to the study of flexible proteins. Here, we used small angle x-ray scattering to determine the solution structure and to analyze the conformational flexibility of two overlapping N-terminal cellulosomal scaffoldin fragments comprising two type I cohesin modules and the cellulose-specific carbohydrate-binding module from CipA in complex with Cel8A cellulases. The pair distribution functions, ab initio envelopes, and rigid body models generated for these two complexes reveal extended structures. These two N-terminal cellulosomal fragments are highly dynamic and display no preference for extended or compact conformations. Overall, our work reveals structural and dynamic features of the N terminus of the CipA scaffoldin that may aid in cellulosome substrate recognition and binding.  相似文献   

8.
The interaction between the type-II dockerin domain of the scaffoldin protein CipA and the type-II cohesin domain of the outer layer protein SdbA is the fundamental mechanism for anchoring the cellulosome to the cell surface of Clostridium thermocellum. We constructed and purified a dockerin polypeptide and a cohesin polypeptide, and determined affinity constants of the interaction between them by the surface plasmon resonance method. The dissociation constant (K(D)) value was 1.8 x 10(-9) M, which is a little larger than that for the combination of a type-I dockerin and a type-I cohesin.  相似文献   

9.
Cellulosomes are large, multienzyme, plant cell wall-degrading protein complexes found affixed to the surface of a variety of anaerobic microbes. The core of the cellulosome is a noncatalytic scaffoldin protein, which contains several type-I cohesin modules that bind type-I dockerin-containing enzymatic subunits, a cellulose-binding module, an X module, and a type-II dockerin that interacts with type-II cohesin-containing cell surface proteins. The unique arrangement of the enzymatic subunits in the cellulosome complex, made possible by the scaffoldin subunit, promotes enhanced substrate degradation relative to the enzymes free in solution. Despite representative high-resolution structures of all of the individual modules of the cellulosome, this mechanism of enzymatic synergy remains poorly understood. Consequently, a model of the entire cellulosome and a detailed picture of intermodular contacts will provide more detailed insight into cellulosome activity. Toward this goal, we have solved the structure of a multimodular heterodimeric complex from Clostridium thermocellum composed of the type-II cohesin module of the cell surface protein SdbA bound to a trimodular C-terminal fragment of the scaffoldin subunit CipA to a resolution of 1.95 Å. The linker that connects the ninth type-I cohesin module and the X module has elevated temperature factors, reflecting an inherent flexibility within this region. Interestingly, a novel dimer interface was observed between CipA and a second, symmetry-related CipA molecule within the crystal structure, mediated by contacts between a type-I cohesin and an X module of a symmetry mate, resulting in two intertwined scaffoldins. Sedimentation velocity experiments confirmed that dimerization also occurs in solution. These observations support the intriguing possibility that individual cellulosomes can associate with one another via inter-scaffoldin interactions, which may play a role in the mechanism of action of the complex.  相似文献   

10.
11.
Antimicrobial peptides (AMPs) are molecules that act in a wide range of physiological defensive mechanisms developed to counteract bacteria, fungi, parasites and viruses. Several hundreds of AMPs have been identified and characterized. These molecules are presently gaining increasing importance, as a consequence of their remarkable resistance to microorganism adaptation. Carbohydrate-binding modules (CBMs) are non-catalytic domains that anchor glycoside hydrolases into complex carbohydrates. Clostridium thermocellum produces a multi-enzyme complex of cellulases and hemicellulases, termed the cellulosome, which is organized by the scaffoldin protein CipA. Binding of the cellulosome to the plant cell wall results from the action of CipA family 3 CBM (CBM3), which presents a high affinity for crystalline cellulose. Here CipA family 3 CBM was fused to four different AMPs using recombinant DNA technology and the fusion recombinant proteins were expressed at high levels in Escherichia coli cells. CBM3 does not present antibacterial activity and does not bind to the bacterial surface. However, the four recombinant proteins retained the ability to bind cellulose, suggesting that CBM3 is a good candidate polypeptide to direct the binding of AMPs into cellulosic supports. A comprehensive characterization of the antimicrobial activity of the recombinant fusion proteins is currently under evaluation.  相似文献   

12.
13.
The influence of the growth rate on outer membrane protein composition and enterobactin production was studied with Klebsiella pneumoniae grown under conditions of iron limitation in chemostats. More enterobactin was produced at fast (D = 0.4 h-1) and slow (D = 0.1 h-1) growth rates in continuous cultures than in either logarithmic- or stationary-phase batch cultures. When the growth rate was controlled under conditions of carbon limitation and the iron level was reduced to 0.5 microM, the iron-regulated outer membrane proteins and enterobactin were induced at the fast growth rate. At the slow growth rate, although the iron-regulated outer membrane proteins were barely visible, a significant level of enterobactin was still produced. These results suggest that under conditions of either carbon or iron limitation, the growth rate can influence the induction of the high-affinity iron uptake system of K. pneumoniae. Other outer membrane proteins, including a 39-kilodalton peptidoglycan-associated protein, were found to vary with the growth rate and nutrient limitation.  相似文献   

14.
A novel cellulosomal scaffoldin gene, termed cipV, was identified and sequenced from the mesophilic cellulolytic anaerobe Acetivibrio cellulolyticus. Initial identification of the protein was based on a combination of properties, including its high molecular weight, cellulose-binding activity, glycoprotein nature, and immuno-cross-reactivity with the cellulosomal scaffoldin of Clostridium thermocellum. The cipV gene is 5,748 bp in length and encodes a 1,915-residue polypeptide with a calculated molecular weight of 199,496. CipV contains an N-terminal signal peptide, seven type I cohesin domains, an internal family III cellulose-binding domain (CBD), and an X2 module of unknown function in tandem with a type II dockerin domain at the C terminus. Surprisingly, CipV also possesses at its N terminus a catalytic module that belongs to the family 9 glycosyl hydrolases. Sequence analysis indicated the following. (i) The repeating cohesin domains are very similar to each other, ranging between 70 and 90% identity, and they also have about 30 to 40% homology with each of the other known type I scaffoldin cohesins. (ii) The internal CBD belongs to family III but differs from other known scaffoldin CBDs by the omission of a 9-residue stretch that constitutes a characteristic loop previously associated with the scaffoldins. (iii) The C-terminal type II dockerin domain is only the second such domain to have been discovered; its predicted "recognition codes" differ from those proposed for the other known dockerins. The putative calcium-binding loop includes an unusual insert, lacking in all the known type I and type II dockerins. (iv) The X2 module has about 60% sequence homology with that of C. thermocellum and appears at the same position in the scaffoldin. (v) Unlike the other known family 9 catalytic modules of bacterial origin, the CipV catalytic module is not accompanied by a flanking helper module, e.g., an adjacent family IIIc CBD or an immunoglobulin-like domain. Comparative sequence analysis of the CipV functional modules with those of the previously sequenced scaffoldins provides new insight into the structural arrangement and phylogeny of this intriguing family of microbial proteins. The modular organization of CipV is reminiscent of that of the CipA scaffoldin from C. thermocellum as opposed to the known scaffoldins from the mesophilic clostridia. The phylogenetic relationship of the different functional modules appears to indicate that the evolution of the scaffoldins reflects a collection of independent events and mechanisms whereby individual modules and other constituents are incorporated into the scaffoldin gene from different microbial sources.  相似文献   

15.
16.
Most bacteria use free enzymes to degrade plant cell walls in nature. However, some bacteria have adopted a different strategy wherein enzymes can either be free or tethered on a protein scaffold forming a complex called a cellulosome. The study of the structure and mechanism of these large macromolecular complexes is an active and ongoing research topic, with the goal of finding ways to improve biomass conversion using cellulosomes. Several mechanisms involved in cellulosome formation remain unknown, including how cellulosomal enzymes assemble on the scaffoldin and what governs the population of cellulosomes created during self-assembly. Here, we present a coarse-grained model to study the self-assembly of cellulosomes. The model captures most of the physical characteristics of three cellulosomal enzymes (Cel5B, CelS, and CbhA) and the scaffoldin (CipA) from Clostridium thermocellum. The protein structures are represented by beads connected by restraints to mimic the flexibility and shapes of these proteins. From a large simulation set, the assembly of cellulosomal enzyme complexes is shown to be dominated by their shape and modularity. The multimodular enzyme, CbhA, binds statistically more frequently to the scaffoldin than CelS or Cel5B. The enhanced binding is attributed to the flexible nature and multimodularity of this enzyme, providing a longer residence time around the scaffoldin. The characterization of the factors influencing the cellulosome assembly process may enable new strategies to create designers cellulosomes.  相似文献   

17.
18.
Mutants of Clostridium thermocellum that had lost the ability to adhere to microcrystalline cellulose were isolated. Six of them that showed diminished ability to depolymerize crystalline cellulose were selected. Size exclusion chromatography of the proteins from the culture supernatant revealed the loss of the supramolecular enzyme complex, the cellulosome. However, denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis resulted in extracellular protein patterns comparable to those of isolated cellulosomes, except for a missing CipA band. Sequencing of the six mutant cipA genes revealed a new insertion (IS) element, IS1447, belonging to the IS3 family. It was inserted into the cipA reading frame in four different locations: cohesin module 1, two different positions in the carbohydrate binding module, and cohesin module 3. The IS sequences were identical and consisted of a transposase gene and the inverted repeats IRR and IRS. The insertion resulted in an obviously nonspecific duplication of 3 base pairs within the target sequence. This lack of specificity allows transposition without the need of a defined target DNA sequence. Eighteen copies of IS1447 were identified in the genomic sequence of C. thermocellum ATCC 27405. At least one of them can be activated for transposition. Compared to the wild type, the mutant culture supernatant, with a completely defective CipA protein, showed equal specific hydrolytic activity against soluble beta-glucan but a 15-fold reduction in specific activity with crystalline cellulose. These results identify a genetic basis for the synergistic effect of complex formation on crystalline-cellulose degradation.  相似文献   

19.
The nucleotide sequence was determined for a 9.4-kb region of Clostridium thermocellum DNA extending from the 3' end of the gene (now termed cipA), encoding the S1/SL component of the cellulosome. Three open reading frames (ORFs) belonging to two operons were detected. They encoded polypeptides of 1,664, 688, and 447 residues, termed ORF1p, ORF2p, and ORF3p, respectively. The COOH-terminal regions of the three polypeptides were highly similar and contained three reiterated segments of 60 to 70 residues each. Similar segments have been found at the NH2 terminus of the S-layer proteins of Bacillus brevis and Acetogenium kivui, suggesting that ORF1p, ORF2p, and ORF3p might also be located on the cell surface. Otherwise, the sequence of ORF1p and ORF2p gave little clue concerning their potential function. However, the NH2-terminal region of ORF3p was similar to the reiterated domains previously identified in CipA as receptors involved in binding the duplicated segment of 22 amino acids present in catalytic subunits of the cellulosome. Indeed, it was found previously that ORF3p binds 125I-labeled endoglucanase CelD containing the duplicated segment (T. Fujino, P. Béguin, and J.-P. Aubert, FEMS Microbiol. Lett. 94:165-170, 1992). These findings suggest that ORF3p might serve as an anchoring factor for the cellulosome on the cell surface by binding the duplicated segment that is present at the COOH end of CipA.  相似文献   

20.
Saccharomyces cerevisiae carrying a multicopy integrated expression vector containing the gene encoding a Llama antibody fragment, has been cultivated in continuous cultures both under carbon and nitrogen limiting conditions with galactose as the sole carbon source. VHH-R2 expression was under control of the inducible GAL7 promoter. Induction however, was independent of the galactose consumption rate and maximal at all growth rates. VHH-R2 was secreted with 70% efficiency at all growth rates and under both limitations. The specific production rate increased linear with increasing growth rate in a growth-associated manner. However, when grown under nitrogen limitation at growth rates above 0.09 h(-1), the extracellular VHH-R2 was less active or part of the VHH-R2 was in an inactive form. From our results we conclude that to obtain a maximal amount of VHH per kilogram biomass per hour, VHH production should be done in carbon limited continuous cultures at high specific growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号