首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The investigation of mutagenic mechanisms in Haemophilus influenzae has been confined until now to mutagens that normally produce mainly base pair substitutions. This paper describes the development of a system suitable for detecting frameshift mutations induced by ICR-191. The system involves reversions from thymidine dependence to thymidine independence. Evidence is presented from a comparison of the responses to ICR-191 and to N-methyl-N′-nitro-N-nitrosoguanidine that the system is specific for frameshift mutations. The genetic recombination involved in transformation leads to a marked increase in “spontaneous” reversion of the frameshift mutations but not of the base substitution mutations. Presumably, this is a consequence of mispairing, with consequent change in the number of bases, during the recombination.  相似文献   

2.
2-Aminopurine (2-AP) is a base analogue of adenine which mispairs with cytosine and causes base-pair substitutions of the transition type. By analyzing the reversion patterns of defined trpA alleles in Escheriachia coli we confirm that 2-AP cuases both A:T → G:C and G:C → A:T transitions whith the former induced more frequently than the latter. We also find that 2-AP enhances transversion at 3 sites and frameshift mutations at 1 other site. It is unlikely that 2-AP can cause transversions and frameshifts solely by a mispairing mechanism. However, 2-AP-induced transversion and frameshift mutagenesis was not abolished by the presence of an inactive recA allele, indicating this mutagenic activity is not dependent upon recA-directed misrepair.  相似文献   

3.
274 N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced forward mutations in the lacI gene of an Escherichia coli RecA- strain were cloned and sequenced. Base substitutions accounted for 264 mutations and consisted of 261 G:C----A:T transitions (including one double mutant with two G:C----A:T transitions separated by 25 base pairs), two A:T----G:C transitions and one A:T----T:A transversion. Therefore, 263 of the 274 mutations (all the transitions) can be explained as a result of the direct mispairing of O6-methylguanine, and O4-methylthymine residues during DNA synthesis. The source of the transversion is not known. The remaining mutations, one 16-base pair deletion, two -1 frameshifts and 7 frameshifts at the lacI frameshift hotspot, are located in runs of identical bases or flanked by directly repeated DNA sequences and can therefore be explained by template slippage events during DNA synthesis. The observed distribution of mutations recovered is identical to that found in a RecA+ background indicating little involvement of RecA function in MNNG-induced mutation. Analysis of neighbouring base sequence revealed that the G:C----A:T transition was 6 times more likely to be recovered if the mutated guanine residue was preceded by a purine rather than a pyrimidine. A most striking aspect of this distribution concerns particular residues in the core domain of the lac repressor protein. Within this domain the great majority of mutations generate nonsense codons or alter Gly codons.  相似文献   

4.
Some 60 years ago chemicals that intercalate between base pairs of duplex DNA were found to amplify frameshift mutagenesis. Surprisingly, the robust induction of frameshifts by intercalators still lacks a mechanistic model, leaving this classic phenomenon annoyingly intractable. A promising idea of asymmetric half‐intercalation‐stabilizing frameshift intermediates during DNA synthesis has never been developed into a model. Instead, researchers of frameshift mutagenesis embraced the powerful slipped‐mispairing concept that unexpectedly struggled with the role of intercalators in frameshifting. It is proposed that the slipped mispairing and the half‐intercalation ideas are two sides of the same coin. Further, existing findings are reviewed to test predictions of the combined “half‐intercalation into the slipped‐mispairing intermediate” model against accumulated knowledge. The existence of potential endogenous intercalators and the phenomenon of “DNA bookmarks” reveal ample possibilities for natural frameshift mutagenisis in the cell. From this alarming perspective, it is discussed how the cell could prevent genome deterioration from frameshift mutagenesis.  相似文献   

5.
E L Loechler 《Biopolymers》1989,28(5):909-927
Most carcinogens have been shown to be mutagens, and DNA adducts are formed when mutagenic/carcinogenic substances react with DNA. It is generally believed these adducts (or their derivatives) induce misreplication events that result in mutations. Many of the more potently mutagenic substances are bulky and three-dimensionally complex, such as the polycyclic aromatic hydrocarbons, aromatic amines, and aflatoxins; little is known about the mechanisms by which they induce mutations. Several theories exist and herein an additional mechanism is proposed by which bulky adducts might induce mutations at GC base pairs. Molecular modeling in conjunction with molecular mechanical calculation is used to assess if the mutagen/carcinogen moiety of the adduct might be able to shift the position of the base moiety of the adduct in such a way that misreplication events might be facilitated. This mechanism is referred to as adduct-induced base-shift, and two classes appeared possible; adduct-induced base-wobble and adduct-induced base-rotation. The latter has been proposed previously. By adduct-induced, base-wobble, the mutagen/carcinogen moiety of the adduct induces a shift in the position of the base moiety of the adduct with respect to the helix axis, which might facilitate mispairing events that are reminisent of non-Watson/Crick pairing that occurs at the wobble base of tRNA during translation. For example, in some guanine adducts, the guanine appears more thymine-like, which might facilitate G.A mispairing and thereby ultimately GC to TA transversion mutations. Adduct-induced base-rotation involves the rotation of the adducted base from the anti to the syn conformation and a variety of mispairing events might result.  相似文献   

6.
LacI mutants obtained following 2 and 6 h of thymine deprivation were cloned and sequenced. The mutational spectra recovered were dissimilar. After 2 h of starvation the majority of mutations were base substitutions, largely G: C→C: G transversions. Frameshift mutations but not deletions were observed. In contrast, following 6 h of starvation, with the exception of the G: C→C: G transversion, all possible base substitutions were recovered. Moreover, several deletions but no frameshift events were observed. The differences in the mutational spectra recovered after two periods of thymine deprivation highlight the role of altered nucleotide pools and the potential influence of DNA replication mechanisms.  相似文献   

7.
We used colony probe hybridization and polymerase chain reaction/DNA sequence analysis to determine the mutations in ~2,400 4-aminobiphenyl (4-AB) +S9-induced revertants of the -1 frameshift allele hisD3052 and of the base-substitution allele hisG46 of Salmonella typhimurium. Most of the mutations occurred at sites containing guanine, which is the primary base at which 4-AB forms DNA adducts. A hotspot mutation involving the deletion of a CG or GC within the sequence CGCGCGCG accounted for 100 and 99.9%, respectively, of the reversion events at the hisD3052 allele in the pKM101 plasmid-minus strains TA1978 (uvr(+)) and TA1538 (δuvrB). In strain TA98 (δuvrB, pKM101), which contained the SOS DNA repair system provided by the pKM101 plasmid, ~85% of the revertants also contained the hotspot deletion; the remaining ~15% contained one of two types of mutations: (1) complex frameshifts that can be described as a -2 or + 1 frameshift and an associated base substitution and (2) deletions of the CC or GG sequences that flank the hotspot site (CCGCGCGCGG). We propose a misincorporation/slippage model to account for these mutations in which (1) pKM101-mediated misincorporation and translesion synthesis occurs across a 4-AB-adducted guanine; (2) the instability of such a mispairing and/or the presence of the adduct leads to strand slippage in a run of repeated bases adjacent to the adducted guanine; and (3) continued DNA synthesis from the slipped intermediate produces a frameshift associated with a base substitution. This model readily accounts for the deletion of the CC or GG sequences flanking the hotspot site, indicating that these mutations are, in fact, complex mutations in disguise (i.e., cryptic complex frameshifts). The inferred base-substitution specificity associated with the complex frameshifts at the hisD3052 allele (primarily G·C -> T·A transversions) is consistent with the finding that 4-AB induced primarily G·C -> T·A transversions at the hisG46 base-substitution allele. The model also provides a framework for understanding the different relative mutagenic potencies of 4-AB at the two alleles in the various DNA repair backgrounds of Salmonella.  相似文献   

8.
Summary Reports describing short (< 20 bp) gene deletions causing human genetic disease were collated in order to study underlying causative mechanisms. Deletion break-point junction regions were found to be non-random both at the nucleotide and dinucleotide sequence levels, an observation consistent with an endogenous sequencedirected mechanism of mutagenesis. Direct repeats of between 2 bp and 8 bp were found in the immediate vicinity of all but one of the 60 deletions analysed. Direct repeats are a feature of a number of recombination, replication or repair-based models of deletion mutagenesis and the possible contribution of each to the spectrum of mutations examined was assessed. The influence of parameters such as repeat length and lenght of DNA between repeats was studied in relation to the frequency, location and extent of these deletions. Findings were broadly consistent with a slipped mispairing model but the predicted deletion of one whole repeat copy was found only rarely. A modified version of the slipped mispairing hypothesis was therefore proposed and was shown to possess considerable explanatory value for 25% of deletions examined. Whereas the frequency of inverted repeats in the vicinity of gene deletions was not significantly elevated, these elements may nevertheless promote instability by facilitating the formation of secondary structure intermediates. A significant excess of symmetrical sequence elements was however found at sites of single base deletions. A new model to explain the involvement of symmetric elements in frameshift mutagenesis was devised, which successfully accounted for a majority of the single base deletions examined. In general, the loss of one or a few base pairs of DNA was found to be more compatible with a replication-based model of mutagenesis than with a recombination or repair hypothesis. Seven hitherto unrecognized hotspots for deletion were noted in five genes (AT3, F8, HBA, HBB and HPRT). Considerable sequence homology was found between these different sites, and a consensus sequence (TGA/GA/GG/ TA/C) was drawn up. Sequences fitting this consensus (i) were noted in the immediate vicinity of 41% of the other (sporadic) gene deletions, (ii) were found frequently at sites of spontaneous deletion in the hamster APRT gene, (iii) were found to be associated with many larger human gene deletions/translocations, (iv) act as arrest sites for human polymerase a during DNA replication and (v) have been shown by in vitro studies of human polymerase a to be especially prone to frameshift mutation. It is proposed that dissociation of polymerase a at arrest sites may, by providing a stable single stranded substrate, lead to deletion of a DNA sequence either by slipped mispairing via a number of different secondary structure intermediates, or by strand-switching or base misincorporation. Human gene deletions thus appear to be caused by multiple mechanisms whose relative importance is probably governed by local primary and secondary DNA structure. Our ability to predict precisely the location and extent of a gene deletion is however hampered both by this complexity and by the possibility that these mechanisms may often act in combination.  相似文献   

9.
Three models describing frameshift mutations are "classical" Streisinger slippage, proposed for repetitive DNA, and "misincorporatation misalignment" and "dNTP-stabilized misalignment," proposed for non-repetitive DNA. We distinguish between models using pre-steady state fluorescence kinetics to visualize transiently misaligned DNA intermediates and nucleotide incorporation products formed by DNA polymerases adept at making small frameshift mutations in vivo. Human polymerase (pol) mu catalyzes Streisinger slippage exclusively in repetitive DNA, requiring as little as a dinucleotide repeat. Escherichia coli pol IV uses dNTP-stabilized misalignment in identical repetitive DNA sequences, revealing that pol mu and pol IV use different mechanisms in repetitive DNA to achieve the same mutational end point. In non-repeat sequences, pol mu switches to dNTP-stabilized misalignment. pol beta generates -1 frameshifts in "long" repeats and base substitutions in "short" repeats. Thus, two polymerases can use two different frameshift mechanisms on identical sequences, whereas one polymerase can alternate between frameshift mechanisms to process different sequences.  相似文献   

10.
Slipped-strand mispairing (SSM) may play an major role in repetitive DNA sequence evolution by generating large numbers of short frameshift mutations within simple tandem repeats. Here we examine the frequency and size spectrum of frameshifts generated within poly-CA/TG sequences inserted into bacteriophage M13 in Escherichia coli hosts. The frequency of detectable frameshifts within a 40 bp tract of poly-CA/TG is greater than one percent and increases more than linearly with length, being lower by a factor of four in a 22 bp target sequence. The frequency increases more than 13-fold in mutL and mutS host cells, suggesting that a high proportion of frameshift events are normally repaired by methyl-directed mismatch repair. Of the 87 sequenced frameshifts in this study, 96% result from deletion or insertion of only or two 2 bp repeat units. The most frequent events are 2 bp deletions, 2 bp insertions, and 4 bp deletions, the relative frequencies of these events being about 18:6:1.  相似文献   

11.
Escherichia coli DNA polymerase IV (pol IV), a member of the error-prone Y family, predominantly generates -1 frameshifts when copying DNA in vitro. T-->G transversions and T-->C transitions are the most frequent base substitutions observed. The in vitro data agree with mutational spectra obtained when pol IV is overexpressed in vivo. Single base deletion and base substitution rates measured in the lacZalpha gene in vitro are, on average, 2 x 10(-4) and 5 x 10(-5), respectively. The range of misincorporation and mismatch extension efficiencies determined kinetically are 10(-3) to 10(-5). The presence of beta sliding clamp and gamma-complex clamp loading proteins strongly enhance pol IV processivity but have no discernible influence on fidelity. By analyzing changes in fluorescence of a 2-aminopurine template base undergoing replication in real time, we show that a "dNTP-stabilized" misalignment mechanism is responsible for making -1 frameshift mutations on undamaged DNA. In this mechanism, a dNTP substrate is paired "correctly" opposite a downstream template base, on a "looped out" template strand instead of mispairing opposite a next available template base. By using the same mechanism, pol IV "skips" past an abasic template lesion to generate a -1 frameshift. A crystal structure depicting dNTP-stabilized misalignment was reported recently for Sulfolubus solfataricus Dpo4, a Y family homolog of Escherichia coli pol IV.  相似文献   

12.
Two novel frameshift mutations were detected in the mutant LDL receptor genes responsible for familial hypercholesterolemia. One was a 5-bp insertion at codon 395 in exon 9, and the other was a one nucleotide deletion at codon 531 in exon 11. Both mutations alter the reading frame and consequently produce a premature stop codon in the region of the mature LDL receptor homologous to the epidermal growth factor (EGF) precursor. With regard to the mechanism responsible for the generation of these frameshift mutations, strand slipped mispairing mediated by short direct repeats is considered to be the most likely. The findings seem to support the hypothesis that a short direct repeat in DNA sequence can have a profound influence on the stability of a given gene and promote human gene mutations.  相似文献   

13.
Mechanisms of frameshift mutagenesis by aflatoxin B1-2,3-dichloride   总被引:6,自引:0,他引:6  
In order to characterize frameshift mutagenesis by aflatoxin B1-2,3-dichloride (AFB1Cl2), we have introduced a +1 (BK8) or a -1 (HS8) frameshift within the lacZ alpha gene segment contained in the phage M13mp8 to obtain lacZ alpha- derivatives. BK8 or HS8 replicative form DNA was modified with AFB1Cl2 in vitro, transfected into appropriate Escherichia coli hosts and lacZ alpha+ revertants scored and defined by DNA sequencing. The -1 frameshift (BK8) results suggest the following. (1) The E. coli recA gene is not absolutely required for AFB1Cl2-induced frameshift mutagenesis; however, in recA+ cells, ultraviolet light (SOS) induction enhances AFB1Cl2 mutagenesis, but such ultraviolet induction is not required. The plasmid pGW270 (mucAB+) significantly enhances the AFB1Cl2-induced frameshift mutagenesis. The uvrABC+ excision system plays a major role in the repair of AFB1Cl2-induced damage. (2) Sequence analysis reveals that AFB1Cl2 induces two classes of -1 frameshift mutations: the simple class in which the frameshift is due to the loss of one base-pair, and the complex class in which the loss of a base-pair is coupled to a vicinal base substitution. Both types of mutations occur predominantly at G.C runs, which are hotspots for AFB1Cl2 damage. The complex mutations appear to be concerted events targeted by a single AFB1Cl2 adduct. The frequency of these complex mutations is significantly enhanced by mucAB activity. In this system, recA activity is required for generation of significant levels of complex mutations. An analysis of the +1 frameshifts (HS8) reveals that AFB1Cl2 induces +1 frameshifts with an efficiency comparable to that for -1 frameshifts. Most +1 frameshifts occur by the addition of a base, and a third of the additions are complex mutations because they are accompanied by at least one base substitution. All simple additions occur at G.C runs; however, in a striking contrast to spontaneous insertions, a majority of the induced events introduce an A.T pair at these sites. Our data suggest a model for the generation of base substitution as well as simple and complex frameshift mutations induced by AFB1Cl2. To the extent determined, the frameshift specificity of aflatoxin B1 activated by metabolic enzymes is similar to that of AFB1Cl2.  相似文献   

14.
The mutagenic potency of the simple reversible intercalators isopropyl-OPC (iPr-OPC) and 9-aminoacridine (9-AA) is assessed in E. coli using reversion assays based on plasmids derived from pBR322 carrying various frameshift mutations within the tetracycline resistance gene in repetitive sequences: +/- 2 frameshift mutations within alternating GC sequences; +/- 1 frameshift mutation at runs of guanines. The results obtained show that iPr-OPC and 9-AA have a sequence specificity for mutagenesis: they revert +1 and -1 frameshift mutations within runs of monotonous G:C base pairs. The precise determination of the size of a small restriction fragment which contains the mutation allowed us to demonstrate that reversion occurred by -1 deletions for the +1 frameshift mutations and by +1 additions for the -1 frameshift mutations. The possible relations of this specific reversion with the base sequence specificity of the mutagenesis are briefly discussed.  相似文献   

15.
Missense and nonsense suppressors can correct frameshift mutations   总被引:6,自引:0,他引:6  
Missense and nonsense suppressor tRNAs, selected for their ability to read a new triplet codon, were observed to suppress one or more frameshift mutations in trpA of Escherichia coli. Two of the suppressible frameshift mutants, trpA8 and trpA46AspPR3, were cloned, sequenced, and found to be of the +1 type, resulting from the insertion of four nucleotides and one nucleotide, respectively. Twenty-two suppressor tRNAs were examined, 20 derived from one of the 3 glycine isoacceptor species, one from lysT, and one from trpT. The sequences of all but four of the mutant tRNAs are known, and two of those four were converted to suppressor tRNAs that were subsequently sequenced. Consideration of the coding specificities and anticodon sequences of the suppressor tRNAs does not suggest a unitary mechanism of frameshift suppression. Rather, the results indicate that different suppressors may shift frame according to different mechanisms. Examination of the suppression windows of the suppressible frameshift mutations indicates that some of the suppressors may work at cognate codons, either in the 0 frame or in the +1 frame, and others may act at noncognate codons (in either frame) by some as-yet-unspecified mechanism. Whatever the mechanisms, it is clear that some +1 frameshifting can occur at non-monotonous sequences. A striking example of a frameshifting missense suppressor is a mutant lysine tRNA that differs from wild-type lysine tRNA by only a single base in the amino acid acceptor stem, a C to U70 transition that results in a G.U base pair. It is suggested that when this mutant lysine tRNA reads its cognate codon, AAA, the presence of the G.U base pair sometimes leads either to a conformational change in the tRNA or to an altered interaction with some component of the translation machinery involved in translocation, resulting in a shift of reading frame. In general, the results indicate that translocation is not simply a function of anticodon loop size, that different frameshifting mechanisms may operate with different tRNAs, and that conformational features, some far removed from the anticodon region, are involved in maintaining fidelity in translocation.  相似文献   

16.
We have used an oriP-tk shuttle vector t determine the types of mutations induced in human cells by ethyl methanesulfonate (EMS), 1'-acetoxysafrole (AcOS), and N-benzoyloxy-N-methyl-4-aminoazobenzene (BzOMAB). Plasmid DNA was treated in vitro with mutagen and electroporated into human lymphoblastoid cells. After replication of the vector in human cells, plasmids were analyzed for mutations in the herpes simplex virus type 1 thymidine kinase gene. Ethyl methanesulfonate induced predominantly GC → AT transition mutations. Treatment of the shuttle vector with AcOS induced 5 of the 6 possible base substitution mutations, including GC → AT (32%) and AT → GC (14%) transition mutations, GC → TA (%), GC → CG (18%), and AT → TA (14%) transversion mutations, as well as a low frequency (9%) of −1 frameshift mutations at GC base pairs. Replication in human cells of DNA modified with BzOMAB yielded a significant increase (17-fold) in the frequency of deletion mutations relative to solvent-treated DNA. A majority (94%) of the point mutations induced by BzOMAB occurred at GC base pairs and were predomianntly GC → AT transitions (33%) and −1 frameshift (22%) mutations, with the remainder consisting mainly of transversions at GC base pairs (28%). The broad spectrum of base substitution mutations observed for AcOS and BzOMAB may indicate the frequent insertion of a variety of bases during replicative bypass of aralkylated bases in human cells.  相似文献   

17.
Chloroethylene oxide (CEO), an ultimate carcinogenic metabolite of vinyl chloride, induces base-pair substitution mutations but not frameshift mutations in bacteria. The mutational specificity of CEO was investigated in Escherichia coli, using the trpA mutants developed by Yanofsky. Reversion frequencies to tryptophan prototrophy were analysed, and CEO was found to induce more GC----AT transitions than AT----TA transversions, in addition to a low frequency of other types of substitution. This specificity indicates that CEO is mutagenic through a miscoding DNA adduct. The results are discussed in relation to the various CEO-DNA adducts formed and to their reported or expected mispairing properties.  相似文献   

18.
Formerly, we isolated a series of dihydrofolate reductase-deficient Chinese hamster ovary cell mutants that were induced by N-acetoxy-2-acetylaminofluorene. Deletions and complex gene rearrangements were detected in 28% of these mutants; 72% contained putative point mutations. In the present study, we have localized the putative point mutations in the 25,000 base dhfr gene by RNase heteroduplex mapping. Assignment of a position for each mutation was successful in 16 of 19 mutants studied. We cloned DNA fragments containing the mapped mutations from nine mutants into a bacteriophage lambda vector. In the case of 11 other mutants, DNA was amplified by the polymerase chain reaction procedure. Sequence analysis of cloned and amplified DNA confirmed the presence of point mutations. Most mutants (90%) carried base substitutions; the rest contained frameshift mutations. Of the point mutations, 75% were G.C to T.A transversions in either the dhfr coding sequence or at splice sites; transition G.C to A.T mutations were found in two mutants (10%). In one of these transition mutants, the base substitution occurred at the fifth base of the third intron. Of the frameshift mutations, one was a deletion of G.C pair and the other was an insertion of an A.T pair. Of the mapped mutants, 38% exhibited greatly reduced (approximately 10-fold) steady-state levels of dhfr mRNA. All eight sequenced mutants displaying this phenotype contained premature chain termination codons. Normal levels of dhfr mRNA were observed in five missense mutants and in five mutants carrying nonsense codons in the translated portion of exon VI. Taken together with the results of other mutagens at this locus, we conclude that the low dhfr mRNA phenotype is correlated with the presence of nonsense codons in exons II to V but not in the last exon of the dhfr gene.  相似文献   

19.
Single-stranded plasmid DNA, containing the mnt gene, was replicated in vitro with DNA polymerase III holoenzyme. Escherichia coli mutH bacteria, defective in mismatch repair, were transformed with the products of in vitro synthesis. Mutations in mnt were readily identified and 33 out of 65 isolates were single base changes including transition, transversion and frameshift mutations. The remaining 32 isolates were deletions of apparently random length and substitutions (deletion/insertions). The intergenic deletions as well as the transition and frameshift mutations were identical to those previously isolated from mismatch repair-defective cells in vivo.  相似文献   

20.
Sodium chloride (NaCl) and potassium chloride (KCl) are both capable of inducing lethality and mutations when each is administered at a molarity of two for different lengths of time to logarithmic phase cells of the yeast Saccharomyces cerevisiae. Analysis of the revertants indicates that the reversions can be base substitutions, of both the transition and the transversion type, as well as frameshift mutations. At equal molarity, with the frequency of mutations as the criterion, KCl and NaCl are equally efficient in inducing all types of mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号