首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Most species of woodlice in temperate habitats have discrete breeding seasons. It is hypothesised that breeding synchronises with favourable environmental conditions to maximise offspring growth and survivorship (Willows 1984). We measured the breeding phenology of a species introduced to a tropical environment, primarily to consider the assumption that life histories in the tropics will differ fundamentally from those in temperate habitats. In addition to breeding phenology we considered variation in reproductive effort between individual females and the division of this effort between the size and number of young.A continuous breeding phenology was observed in a synanthropic population of Porcellionides pruinosus within the tropics. Reproductive effort varied between months, showed a weak relationship with female size and was independent of female fecundity. Female sizefecundity relationships varied between samples and when the proportion of reproductive females was high size-fecundity slopes were steeper than at other times. Mean offspring size varied between months and there was a wide range in offspring size within broods. Offspring size was not related to female body mass, reproductive effort or fecundity; consequently brood mass increased linearly with an increase in fecundity. Increased reproductive effort goes into more rather than larger offspring.We propose that the continuous breeding in this population was the result of the constant presence of an environmental cue to reproduction evolved in temperate habitats. Continuous breeding is not necessarily equivocal to high individual reproductive success even though overall population growth may be rapid. However, variation in reproductive effort suggests that individuals respond to current environmental conditions on short time scales.  相似文献   

2.
The aim of this study was to determine how size, age, somatic and reproductive condition, abundance and egg production of southern calamary spawning aggregations changed during the spawning season in each of 2 years. During the spawning period in at least one of the years there was a decline as much as 20% in average size, 50% in somatic condition, 28–34% in size-at-age, 26–29% in reproductive status, as well as abundance and reproductive output of the stock declining during the spawning season. However, this change was not a function of the population becoming reproductively exhausted, as the aggregation was composed of different individuals with different biological characteristics. In each month the average age of individuals was ca. 6 mo, indicating that squid that had hatched at different times had entered the spawning aggregations, suggesting that the aggregation was made-up of a succession of microcohorts. Currently, management of many squid populations assumes that there is a single cohort in the aggregation. Therefore, estimating stock biomass at the start of the spawning season cannot be used as the population is constantly changing as micro-cohorts move into the aggregation. An instantaneous estimate of the spawning biomass, independent of fishing activity may be obtained by quantifying the density of deposited eggs. The strategy of individuals with a diversity of life history characteristics coming together in a single spawning aggregation may ensure the phenotypic and genetic diversity required to guarantee successful recruitment of this short-lived species. Therefore, temporally structured protection from harvest throughout the spawning season will ensure maintenance of this population diversity.  相似文献   

3.
Individual size, rate of growth, and mode and frequency of asexual reproduction are life-history traits of primary importance for sea anemones. These traits determine sexual reproductive output, affect an individual's probability of survival, and are crucial in adapting an individual to its environmental surroundings. The sea anemone Metridium senile (L.) is highly variable in ecological distribution and life history, including rate of growth, individual size, and rate of asexual reproduction. Gonad size (measured as cross-sectional area of gonadal tissue) increases with body weight, so individuals should grow as large and as rapidly as possible to maximize individual sexual reproductive output. Cessation of growth and small body size in intertidal populations suggest that growth is constrained by genetic or environmental conditions. The growth of intertidal individuals transplanted to harbor-float panels demonstrated that growth limits are imposed by environmental factors, most probably limited food and feeding time and damage from wave exposure (which stimulates fragmentation). Individuals in harbor-float populations, which are continuously immersed, grow much larger, and large individuals comprise a greater proportion of the population than in the intertidal zone. The highest rate of fragmentation observed was on harbor-float panels. Patterns of growth and asexual reproduction provide adaptive advantages for M. senile. For harborfloat individuals, large individual size increases gamete production and may increase feeding efficiency. For intertidal individuals, asexual reproduction allows growth despite individual size constraints and rapid population growth, with specific advantages resulting from clone formation.  相似文献   

4.
Size-dependent or allometric relationships between reproductive and vegetative size are extremely common in plant populations. Reproductive allometry where plant size differences are due to environmental variability has been interpreted both as an adaptive strategy of plant growth and allocation, and as the product of fixed developmental constraints. Patterns of development are crucial in defining reproductive allometry but development is not fixed across individuals. For example, environmental adversity (e.g. resource impoverishment) tends to favor reproduction at relatively small sizes – an adaptive response to environmental adversity. While small individuals may have lower reproductive output than large individuals, all plants should maximize their reproductive output and relative allocation to reproduction may be constant across sizes. Thus, where individual plants within a population initiate reproduction at different sizes, no significant reproductive allometry is an appropriate null expectation. Reproductive allometry occurs in plant populations where initiating reproduction at small sizes yields relatively high or low reproductive size at final development. Both of these outcomes are common in plant populations. Our interpretation of reproductive allometry combines previous adaptive and developmental constraint interpretations, and is the first to successfully explain the range of relationships in plant populations where relative allocation has been observed to increase, decrease or remain constant will increasing plant size.  相似文献   

5.
How individuals respond to environmental change determines the strength and direction of biological processes like recruitment and growth that underpin population productivity. Ascertaining the relative importance of environmental factors can, however, be difficult given the numerous mechanisms through which they affect individuals. This is especially true in dynamic and complex estuarine environments. Here, we develop long‐term otolith‐based indices of recruitment and growth for estuary perch Percalates colonorum (Bemm River, Australia), to explore the importance of intrinsic (individual, demographic) and extrinsic (hydrologic, climatic, density‐dependent) factors in driving estuarine fish productivity. Analyses involved a novel zero‐inflated specification of catch curve regression and mixed effects modelling. The 39 years of recruitment and 46 years of growth data, spanning a period of environmental change including severe drought, displayed considerable inter‐annual variation. Recruitment success was strongly related to high freshwater inflows during the spawning season, suggesting that these conditions act as spawning cues for adults and potentially provide favourable conditions for larvae. Individuals displayed age‐dependent growth, with highest rates observed at younger ages in years characterized by warm temperatures, and to a lesser degree, greater magnitude base inflow conditions. We detected systematic among‐year‐class growth differences, but these were not attributable to year class strength, suggesting that environmental conditions experienced by individuals as juveniles can have long‐lasting effects of greater importance to population productivity than density‐dependent growth responses. The primacy of temperature in driving growth variation highlights that under‐appreciated climatic variation can affect estuarine fish productivity through direct physiological and indirect food web mechanisms. We predict that climatic warming will promote individual growth in southerly populations of P. colonorum but concurrently limit recruitment due to forecast reductions in spawning season river discharge. Disparate trait responses are likely in other fishes as they respond to multiple and changing environmental drivers, making predictions of future population productivity challenging.  相似文献   

6.
Secondary sexual traits displayed by males and females may have evolved as a signal of individual quality. However, both individual quality and investment on producing or maintaining enhanced sexual traits change as individuals age. At the same time, the costs associated to produce sexual traits might be attenuated or increased if environmental conditions are benign or worse respectively. Accordingly, environmental conditions are expected to shape the association between the expression of sexual traits and their reproductive outcome as individuals age. Nonetheless, little is known about the environmental influence on the co‐variation between sexual traits and reproductive outcome throughout the life of individuals. We studied the age‐dependency of the number and size of back spots, a melanin‐based and sexual trait in adults of common kestrels (Falco tinnunculus). We analysed the age‐dependence of reproductive traits and the environmental influence, defined as vole abundance, using a 10‐year individual‐based dataset. We broke down age‐related changes of reproductive traits into within‐ and between‐individual variation to assess their contribution to population‐level patterns. Our results showed a within‐individual decrease in the number, but not the size, of back spots in males. The size of back spots was positively correlated with food availability in males. Reproductive performance of males increased as they aged, in agreement with the life‐history theory but depending of vole abundance. Remarkably, we found that having fewer back spots was positively associated with clutch size only for old individuals under low‐food conditions. We suggest that environmental variation may shape the association between the expression of a sexual signal and reproductive outcome. We speculate that the reliability of sexual traits is higher when environmental conditions are poor only for old individuals. Within an evolutionary context, we suggest that the expression of sexual traits might be constrained by environmental conditions at later stages of life.  相似文献   

7.
Synopsis The life history characteristics of tule perch were compared within and among populations in three drainages with substantially different environmental conditions. Within populations there were, in general, substantial increases in brood size, size of young, brood weight, and gonadal-somatic index (GSI) with age and with size of female. In at least one population there was a trade-off between the number and size of young produced. However, in a lake where individual growth was very slow, brood weight, GSI, and other life history characters showed decreasing trends with age. Among populations in isolated drainages, female length at first reproduction and longevity varied directly and mean brood size varied inversely with environmental predictability. Morphological and geological evidence and some comparative litter characteristics suggest that life history differences among populations in isolated drainages are in part genetic.  相似文献   

8.
Heterogeneity in the intrinsic quality and nutritional condition of individuals affects reproductive success and consequently fitness. Black brant (Branta bernicla nigricans) are long‐lived, migratory, specialist herbivores. Long migratory pathways and short summer breeding seasons constrain the time and energy available for reproduction, thus magnifying life‐history trade‐offs. These constraints, combined with long lifespans and trade‐offs between current and future reproductive value, provide a model system to examine the role of individual heterogeneity in driving life‐history strategies and individual heterogeneity in fitness. We used hierarchical Bayesian models to examine reproductive trade‐offs, modeling the relationships between within‐year measures of reproductive energy allocation and among‐year demographic rates of individual females breeding on the Yukon‐Kuskokwim Delta, Alaska, using capture–recapture and reproductive data from 1988 to 2014. We generally found that annual survival tended to be buffered against variation in reproductive investment, while breeding probability varied considerably over the range of clutch size‐laying date combinations. We provide evidence for relationships between breeding probability and clutch size, breeding probability and nest initiation date, and an interaction between clutch size and initiation date. Average lifetime clutch size also had a weak positive relationship with apparent survival probability. Our results support the use of demographic buffering strategies for black brant. These results also indirectly suggest associations among environmental conditions during growth, fitness, and energy allocation, highlighting the effects of early growth conditions on individual heterogeneity, and subsequently, lifetime reproductive investment.  相似文献   

9.
Abstract A growth model for reproductive energy allocation pattern and schedule is proposed. Assumptions are as follows: (1) the assimilation rate for an individual is given by a logistic curve of vegetative dry weight; (2) size variability is expressed by the parameter W of the logistic curve (asymptotic value of vegetative dry weight); (3) a plant controls allocation of the assimilate to vegetative and reproductive structures so as to maximize the reproductive energy investment at the end of the growth period. The models were analyzed in comparison with field and experimental observations and gave reasonable explanations for the reproductive allocation pattern of individuals which reflects ecological preferences and life history characteristics, such as environmental conditions of habitats (stable or changing), length of life span (annual, biennial or perennial) and growth form (erectophile or planophile). Decreasing RA (reproductive allocation) with individual size and delayed switchover time from vegetative to reproductive growth were found in plants which occur in stable environments and have a more or less fixed growth period; in those which occur in changing environments where growth period depends on individual size, RAs that remain constant or increase with variations in individual size and early switchover time were detected. Most perennials conform to the former case, but annuals and biennials conform to the latter case. Under extremely overcrowded conditions, planophiles, which are much more subject to crowding effect than erectophiles, tend to have increasing RA with increasing size, while erectophiles tend to have almost constant RA irrespective of size. These trends are discussed in the light of the life history characteristics and ecological distribution of plant species studied.  相似文献   

10.
Aims In perennial species, the allocation of resources to reproduction results in a reduction of allocation to vegetative growth and, therefore, impacts future reproductive success. As a consequence, variation in this trade-off is among the most important driving forces in the life-history evolution of perennial plants and can lead to locally adapted genotypes. In addition to genetic variation, phenotypic plasticity might also contribute to local adaptation of plants to local conditions by mediating changes in reproductive allocation. Knowledge on the importance of genetic and environmental effects on the trade-off between reproduction and vegetative growth is therefore essential to understand how plants may respond to environmental changes.Methods We conducted a transplant experiment along an altitudinal gradient from 425 to 1?921 m in the front range of the Western Alps of Switzerland to assess the influence of both altitudinal origin of populations and altitude of growing site on growth, reproductive investment and local adaptation in Poa alpina .Important findings In our study, the investment in reproduction increased with plant size. Plant growth and the relative importance of reproductive investment decreased in populations originating from higher altitudes compared to populations originating from lower altitudes. The changes in reproductive investment were mainly explained by differences in plant size. In contrast to genetic effects, phenotypic plasticity of all traits measured was low and not related to altitude. As a result, the population from the lowest altitude of origin performed best at all sites. Our results indicate that in P. alpina genetic differences in growth and reproductive investment are related to local conditions affecting growth, i.e. interspecific competition and soil moisture content.  相似文献   

11.
We present the results of a series of experiments that examined the effect of feeding history on the growth and tissue composition of juveniles of two tropical cephalopods; the squid Sepioteuthis lessoniana and the cuttlefish Sepia elliptica. Juveniles were reared in individual containers for between 35 and 42 days at different ration levels, three ration levels for the squid and two levels for the cuttlefish. Although differences in ration were sufficient to cause different growth rates, both in body length and mass, the effects on tissue composition were less definitive. Sepioteuthis juveniles on the highest rations had higher concentrations of water, but no difference in lipid, carbohydrate or protein when compared with their lower ration siblings. In the case of juvenile cuttlefish no difference in tissue composition was detected between the two ration levels. RNA:protein ratios were also determined for the juveniles to provide an estimate of instantaneous growth. A significant correlation was found between body size and RNA:protein ratio in the squid; those juveniles that ate more had higher RNA:protein ratios than lower ration individuals. Significantly, the juvenile cuttlefish showed no relationship between growth rate and RNA:protein ratios, which means that we are unable to use this measure to estimate the growth rates of wild individuals. In conclusion, ration level did affect growth rates and food availability is an important factor in modifying growth rates of wild individuals. However, we could not find, at the individual level, an index or measure that could be used to explain the variability of observed differences in growth rates as a function of nutritional history.  相似文献   

12.
Variation in reproductive traits (sexual maturity, clutch size, clutch weight, mean egg mass, newborn weight) was studied during a four year period in a population of the live-bearing lizard Lacerta vivipara . Sexual maturity was associated with attaining a minimum body size. Clutch size increased with female body length and litter weight increased with clutch size. A major component of the within year variation in these reproductive traits was attributable to female size. Analysis of successive clutches in individual females indicated that a significant fraction of the variation in litter size, adjusted for female length, was due to consistent differences between individuals. Newborn weight varied within and among litters, but no relations between hatchling mass or mean egg mass in a litter and other traits were detected.
Size-adjusted reproductive performances remained constant during the course of this study, even though environmental conditions (weather factors, food availability) varied annually. Observed among year variations in reproductive characteristics were attributable to differences in the body size distributions of the adult females.  相似文献   

13.
Reduced body size and accelerated life cycle due to warming are considered major ecological responses to climate change with fitness costs at the individual level. Surprisingly, we know little about how relevant ecological factors can alter these life history trade‐offs and their consequences for individual fitness. Here, we show that food modulates temperature‐dependent effects on body size in the water flea Daphnia magna and interacts with temperature to affect life history parameters. We exposed 412 individuals to a factorial manipulation of food abundance and temperature, tracked each reproductive event, and took daily measurements of body size from each individual. High temperature caused a reduction in maximum body size in both food treatments, but this effect was mediated by food abundance, such that low food conditions resulted in a reduction of 20% in maximum body size, compared with a reduction of 4% under high food conditions. High temperature resulted in an accelerated life cycle, with pronounced fitness cost at low levels of food where only a few individuals produced a clutch. These results suggest that the mechanisms affecting the trade‐off between fast growth and final body size are food‐dependent, and that the combination of low levels of food and high temperature could potentially threaten viability of ectotherms.  相似文献   

14.
Squid are important components of many marine ecosystems from the poles to the equator, serving as both important predators and prey. Novel aspects of their growth and reproduction mean that they are likely to play an important role in the changing oceans due to climate change. Virtually every facet of squid life-history examined thus far has revealed an incredible capacity in this group for life-history plasticity. The extremely fast growth rates of individuals and rapid rates of turnover at the population level mean that squid can respond quickly to environmental or ecosystem change. Their ‘life-in-the-fast-lane’ life-style allows them to rapidly exploit ‘vacuums’ created in the ecosystem when predators or competitors are removed. In this way, they function as ‘weeds of the sea’. Elevated temperatures accelerate the life-histories of squid, increasing their growth rates and shortening their life-spans. At first glance, it would be logical to suggest that rising water temperatures associated with climate change (if food supply remains adequate) would be beneficial to inshore squid populations and fisheries—growth rates would increase, life spans would shorten and population turnover would accelerate. However, the response of inshore squid populations to climate change is likely to be extremely complex. The size of hatchlings emerging from the eggs becomes smaller as temperatures increase and hatchling size may have a critical influence on the size-at-age that may be achieved as adults and subsequently, population structure. The influence of higher temperatures on the egg and adult stages may thus be opposing forces on the life-history. The process of climate change will likely result in squids that hatch out smaller and earlier, undergo faster growth over shorter life-spans and mature younger and at a smaller size. Individual squid will require more food per unit body size, require more oxygen for faster metabolisms and have a reduced capacity to cope without food. It is therefore likely that biological, physiological and behavioural changes in squid due to climate change will have far reaching effects.  相似文献   

15.
Reproductive effort, egg number and egg size are traditionally considered to be ‘female’ life history traits. However, females often adjust the amount of resources allocated to reproduction depending on their mate, causing male environmental effects on life history traits. If females respond to male traits which are genetically variable, then male environmental effects contain indirect genetic effects. Estimates of how much of the total variation in life history traits originates from female effects versus male environmental effects, seems mostly lacking. We have investigated variation in rates of egg production and in egg size in the annual Argentinian blackfin pearl killifish Austrolebias nigripinnis, in a crossed design where males were exchanged repeatedly between females. Our analysis of phenotypic variance components of reproductive effort, egg size and egg number indicates that the amount of variation contributed by male environmental effects is equal (egg size, reproductive effort) or larger (egg number) than that between females. For egg size and number, we find that male environmental effects consist of a male random effect representing the average response of females to male phenotype, plus a female-male interaction term. This term can be understood as the deviation from the population mean of an individual female’s response. For reproductive effort, we find that the male environmental effect consists of an interaction term only. Random effects on egg size and number additionally vary in magnitude depending on the weekday where we collected eggs, probably due to cyclic variation in experimental conditions. Since we find that both male phenotype and environmental conditions affect egg size and number as determined by females, our results suggest that selection on these life history traits will be frequency-dependent.  相似文献   

16.
Short-term effects of environmental perturbations on various life history traits are reasonably well documented in birds and mammals. But, in the present context of global climate change, there is a need to consider potential long-term effects of natal conditions to better understand and predict the consequences of these changes on population dynamics. The environmental conditions affecting offspring during their early development may determine their lifetime reproductive performance, and therefore the number of recruits produced by a cohort. In this study, we attempted to link recruitment to natal and recent (previous year) conditions in the long-lived black-browed albatross (Thalassarche melanophrys) at Kerguelen Islands. The environmental variability was described using both climatic variables over breeding (sea surface temperature anomaly) and non-breeding grounds (Southern Oscillation index), and variables related to the colony (breeding success and colony size). Immature survival was linked to the breeding success of the colony in the year of birth, which was expected to reflect the average seasonal parental investment. At the cohort level, this initial mortality event may act as a selective filter shaping the number, and presumably the quality (breeding frequency, breeding success probability), of the individuals that recruit into the breeding population. The decision to start breeding was strongly structured by the age of the individuals and adjusted according to recent conditions. An effect of natal conditions was not detected on this parameter, supporting the selection hypothesis. Recruitment, as a whole, was thus influenced by a combination of long- and short-term environmental impacts. Our results highlight the complexity of the influence of environmental factors on such long-lived species, due to the time-lag (associated with a delayed maturity) between the impact of natal conditions on individuals and their repercussion on the breeding population.  相似文献   

17.
Scaling relationships such as the variation of population abundance with body size provide links between individual organisms and ecosystem functioning. Previous work, in marine pelagic ecosystems, has focused on the relationship between total phytoplankton abundance and the assemblage mean cell size. However, the relationship between specific population abundance and cell size in marine phytoplankton has received little attention. Here, we show that cell size accounts for a significant amount of variability in the population abundance of phytoplankton species across a cell volume range spanning seven orders of magnitude. The interspecific scaling of population abundance and cell size takes a power exponent near −3/4. Unexpectedly, despite the constraints imposed on large phytoplankton by limited resource acquisition, the size scaling exponent does not differ between contrasting marine environments such as coastal and subtropical regions. These findings highlight the adaptive abilities of individual species to cope with different environmental conditions and suggest that a general rule such as the 'energetic equivalence' constrains the abundance of phytoplankton populations in marine pelagic ecosystems.  相似文献   

18.
Detailed knowledge of the habitat requirements of species is required because habitat greatly affects the persistence of species. We investigated the effects of tree species and microhabitat heterogeneity on the population of the locally threatened lichen Lobaria pulmonaria. We studied four L. pulmonaria populations in Central Spain and collected microhabitat data for individuals growing on beech and oak. The microhabitat affected the life stages of L. pulmonaria; being a phorophyte species the location of the lichen was the most important factor generating different patterns of establishment, abundance, thallus size and reproductive capacity. Although oak forests favoured the establishment and recruitment of new L. pulmonaria individuals, they apparently provided adverse environmental conditions for lichen growth, thus affecting the reproductive capacity since this is size-dependent. By contrast, beech forests offered a more favourable microclimate, because L. pulmonaria individuals reached larger sizes in these forests. In conclusion, our results indicate that habitats hosting large populations, with high rates of establishment and recruitment do not necessarily favour other life-cycle stages.  相似文献   

19.
The population total length ( L T) structures and individual growth trajectories for three stream living pike Esox lucius populations were studied for 7 years. All three populations exhibited small variation in both population L T structure and individual growth trajectories over time. These dynamics contrasted to the much more variable population L T structure of perch Perca fluviatilis studied previously. The difference in population dynamics between the two species was related to differences in prey:predator size ratios. The pike populations in the more open and larger streams grew to larger sizes, but this difference in life history did not affect population dynamics of pike. It is concluded that (1) cannibalistic population dynamics may be predicted from individual life-history characteristics such as minimum and maximum victim:cannibal size ratios and (2) the cannibal-driven population dynamics observed in pike seems to be robust to variation in environmental conditions (system openness).  相似文献   

20.
1. Spatial variation in habitat quality and its demographic consequences have important implications for the regulation of animal populations. Theoretically, habitat quality is typically viewed as a single gradient from 'poor' to 'good', but in wild populations it is possible that there are multiple environmental gradients that determine spatial variation in demography. 2. Understanding environmental gradients is important to gain mechanistic insights into important population processes, but also to understand how populations might respond to environmental change. Here, we explore habitat and elevation gradients and their implications for population persistence using detailed long-term data on 600 individuals of the Mauritius kestrel. These data allow us to statistically separate spatial variation in demography from variation arising out of individual or environmental quality and explore its relationships with habitat and topography. 3. Birds that breed earlier in the season have higher reproductive success, and we found that the timing of breeding varies significantly between territories. This variation is primarily driven by elevation, with birds breeding progressively later as elevation increases. 4. Pre-fledging survival from the egg to fledgling stage (independently of timing), and recruitment, also varied significantly between territories. This variation is driven by the habitat surrounding breeding sites with increasing agricultural encroachment causing survival and recruitment to decline. 5. Taken together, our results suggest that there are likely to be multiple environmental gradients affecting spatial variation in productivity in wild populations, and hence multiple and different routes through which environmental change might have consequences for population dynamics by modifying spatial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号