首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The response to reactive electrophile species (RES) is now considered as part of the plant response to pathogen and insect attacks. Thanks to a previously established high-performance liquid chromatography tandem mass spectrometry methodology, we have investigated the production of oxylipin RES adducts to glutathione (GSH) during the hypersensitive response (HR) of plants. We have observed that RES conjugation to GSH in tobacco (Nicotiana tabacum) leaves is facile and nonspecific. In cryptogein-elicited tobacco leaves, we show that the oxylipin RES adducts to GSH are produced in correlation with GSH consumption, increase in glutathione S-transferase activity, and the appearance of the cell death symptoms. In this model, the adducts arise mainly from the downstream 13 lipoxygenase (LOX) metabolism, although the induced 9 LOX pathway leads massively to the accumulation of upstream metabolites. The main adducts were obtained from 2-hexenal and 12-oxo-phytodienoic acid. They accumulate transiently as 1-hexanol-3-GSH, a reduced adduct, and 12-oxo-phytodienoic acid-GSH, respectively. RES conjugation does not initiate cell death but explains part of the GSH depletion that accompanies HR cell death. The nature of these GSH conjugates shows the key role played by the 13 LOX pathway in RES signaling in the tobacco HR.  相似文献   

2.
Polycyclic aromatic hydrocarbon (PAH) o-quinones are products of an NADP+ dependent oxidation of non-K-region trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase (EC 1.3.1.20). Since these PAH o-quinones could be detoxified by non-enzymatic or enzymatic conjugation with cellular thiols, their reactivity with 2-mercaptoethanol, cysteine and glutathione (GSH) was examined by ion-pair reverse phase high pressure liquid chromatography (RP-HPLC). Second-order rate constants for the addition of these thiols to naphthalene-1,2-dione (NPQ) in water ranging from 4.9 x 10(3) - 1.1 x 10(4) min-1 M-1 and the reactions were complete within 10 min. When these reactions were conducted at near physiological pH (50 mM potassium phosphate buffer pH 7.0), the rate constants increased by 2-orders of magnitude. When benzo[a]pyrene-7,8-dione (BPQ) was substituted in these reactions the second-order rate constants decreased by 2-3 orders of magnitude and the reactions took several hours to reach completion. The decrease in reactivity can be explained by the presence of the bay region in BPQ. Methylation influenced the reactivity of PAH o-quinones with GSH and the following order of reactivity was observed: 7,12-dimethyl-benz[a]anthracene-3,4-dione (7,12-DMBAQ) > 12-methyl-BAQ, 7-methyl-BAQ and BAQ > BPQ. Of these quinones 7,12-dimethyl-BAQ was almost equi-reactive with NPQ. This suggests that methyl substitution in the bay and peri regions enhances reactivity with GSH. Using NPQ as a model for other PAH o-quinones, N-acetyl-L-cysteine, L-cysteine and GSH conjugates of NPQ were synthesized and characterized by [1H]- and [13C]NMR. Evidence for Michael type 1,4-addition products was obtained in which the resultant adduct could exist as either a catechol or o-quinone. By contrast, L-cysteine was able to form adducts via S- or N-attack and N-attack gave a purple p-iminoquinone. There was no evidence for the formation of bis-N-acetyl-L-cysteinyl-, bis-glutathionyl adducts or phenolic coupled products. The toxicity of thiol conjugates of NPQ remains to be explored.  相似文献   

3.
5-Oxo-7-glutathionyl-8,11,14-eicosatrienoic acid (FOG(7)), a biologically active glutathione (GSH) adduct of the eicosanoid 5-oxo-eicosatrienoic acid (5-oxoETE), is the major metabolite formed within the murine peritoneal macrophage. The conjugation of GSH to electrophilic 5-oxoETE in vitro was found to be catalyzed by both soluble glutathione S-transferase and membrane-bound leukotriene C(4) (LTC(4)) synthase. The cytosolic glutathione S-transferase-catalyzed products were not biologically active; however, the adduct formed from recombinant LTC(4) synthase had identical mass spectrometric properties and biological activity to the macrophage-derived FOG(7). The biosynthesis of FOG(7) in the macrophage was inhibited by MK-886, a known inhibitor of LTC(4) synthase, suggesting that this nuclear membrane-bound enzyme might be responsible for GSH conjugation to 5-oxoETE in the intact cell. Subcellular fractionation revealed that the microsomal fraction from the murine macrophage contained the enzyme responsible for FOG(7) biosynthesis. Western blot analysis confirmed the presence of LTC(4) synthase in the microsomal fraction that did not catalyze conjugation of GSH to 1-chloro-2,4-dinitrobenzene, indicating an absence of microsomal glutathione S- transferase activity. These results suggest that LTC(4) synthase, thought to be specific for the conjugation of GSH to LTA(4), can also recognize 5-oxoETE as an electrophilic substrate.  相似文献   

4.
Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 M(-1)S(-1) and 355 M(-1)S(-1), respectively, at pH 7.4 and 37 degrees C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Delta(12,14)-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-beta-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.  相似文献   

5.
The oxidation of quercetin by horseradish peroxidase/H(2)O(2) was studied in the absence but especially also in the presence of glutathione (GSH). HPLC analysis of the reaction products formed in the absence of GSH revealed formation of at least 20 different products, a result in line with other studies reporting the peroxidase-mediated oxidation of flavonoids. In the presence of GSH, however, these products were no longer observed and formation of two major new products was detected. (1)H NMR identified these two products as 6-glutathionylquercetin and 8-glutathionylquercetin, representing glutathione adducts originating from glutathione conjugation at the A ring instead of at the B ring of quercetin. Glutathione addition at positions 6 and 8 of the A ring can best be explained by taking into consideration a further oxidation of the quercetin semiquinone, initially formed by the HRP-mediated one-electron oxidation, to give the o-quinone, followed by the isomerization of the o-quinone to its p-quinone methide isomer. All together, the results of the present study provide evidence for a reaction chemistry of quercetin semiquinones with horseradish peroxidase/H(2)O(2) and GSH ultimately leading to adduct formation instead of to preferential GSH-mediated chemical reduction to regenerate the parent flavonoid.  相似文献   

6.
Ferrimyoglobin at pH 7.4 binds nitric oxide to yield nitric oxide adducts. In the presence of glutathione (GSH), nitrosoadducts of Mb(III) react with it to give nitrosoglutathione, whose concentration has been determined with an apparatus based on a specific and sensitive solid-state amperometric gas sensor. The reaction constant between the adduct and glutathione, kGSH = (47 +/- 1) M(-1) x s(-1), obtained by UV-Vis spectroscopy kinetic measurements, is about one-eighth of the constant with OH- determined by other authors. We can explain this fact with the higher nucleophilicity of OH- compared to GSH, due to the bulkiness and charge of the species. It is known that the formation of nitrosothiols starting from nitrite or NO (nitrogen monoxide) and glutathione, in the absence of oxygen, is impossible. Thus, from a biological point of view, it is important to point out that GSH reacts with NO in the presence of ferrimyoglobin, even at physiological pH, to form nitrosoglutathione.  相似文献   

7.
The spontaneous and glutathione (GSH) transferase catalyzed reactions of GSH and N-acetyl-p-benzoquinonimine (NABQI) have been studied by stopped-flow kinetics. The spontaneous reaction was shown to be first order in NABQI, GSH and inversely proportional to the H+ concentration; e.g., at pH 7.0 and 25 degrees C the second-order rate constant was 3.2 X 10(4) M-1 s-1. Data for the enzymatic reaction gave values for Km of 27, 1.3, 7, and 7 microM and values for kappa cat of 90, 37, 5.1, and 165 s-1 for rat liver GSH transferases 1-1, 2-2, 3-3, and 7-7, respectively. Over a wide range of reactant concentrations and pH, the spontaneous reaction yields three products, namely a GSH conjugate, 3-(glutathion-S-yl)acetaminophen; a reduction product, acetaminophen; and an oxidation product, glutathione disulfide in the proportions 2:1:1. Analysis of products formed after enzymatic reaction showed that both GSH conjugation and the reduction of NABQI to acetaminophen were catalyzed to an extent characteristic of each isoenzyme. With respect to GSH conjugation, GSH transferase isoenzymes were effective in the order 7-7 greater than 2-2 greater than 1-1 greater than 3-3 greater than 4-4, and with respect to NABQI reduction these isoenzymes were effective in the order 1-1 greater than 2-2 greater than 7-7 the position of isoenzymes 3-3 and 4-4 being uncertain. Human GSH transferases delta, mu, and pi behave similarly to the homologous rat enzymes, i.e., toward conjugation in the order pi greater than delta greater than mu and the reduction delta greater than mu greater than pi (for nomenclature see W. B. Jakoby, B. Ketterer, and B. Mannervik, (1984) Biochem. Pharmacol. 33, 2539-2540). Possible mechanisms of the reaction and its effect on the toxicity of NABQI are discussed.  相似文献   

8.
In order to study the possible detoxification mechanisms of the carcinogenic arylamine, 2-amino-6-methyldipyrido[1,2-a: 3',2'-d]imidazole (Glu-P-1), the in vitro non-enzymatic reaction of 2-nitroso-6-methyldipyrido[1,2-a: 3',2'-d]imidazole (NO-Glu-P-1) with reduced glutathione (GSH) was examined at pH 7.4 under both aerobic and anaerobic conditions. Two GSH-arylamine adducts were isolated and found to contain the Glu-P-1 and GSH moieties in a 1:1 molar ratio via an N-S linkage. Their structures were assigned as sulfinamide (-NH-SO-) and N-hydroxy-sulfonamide (-N(OH)-SO2-) by their behaviour under acidic and basic conditions and by UV-VIS, 1H-NMR, infrared and mass spectrometries. Also, a N-hydroxy-sulfonamide adduct was produced when NO-Glu-P-1 and cysteine were reacted at pH 7.4. The N-hydroxy-sulfonamide structure is a new binding form between arylnitroso compounds and thiols. The formation of these adducts may also take place in vivo as a detoxification of toxic arylamines since GSH is abundant in organs such as liver or kidney.  相似文献   

9.
Oxidation of 2-phenylthiophene (2PT) by rat liver microsomes, in the presence of NADPH and glutathione (GSH), led to three kinds of metabolites whose structures were established by 1H NMR and mass spectrometry. The first ones were 2PT-S-oxide dimers formed by Diels-Alder type dimerization of 2PT-S-oxide, while the second ones were GSH adducts derived from the 1,4-Micha?l-type addition of GSH to 2PT-S-oxide. The third metabolites were GSH adducts resulting from a nucleophilic attack of GSH to the 4,5-epoxide of 2PT. Oxidation of 2PT by recombinant, human cytochrome P4501A1, in the presence of NADPH and GSH, also led to these three kinds of metabolites. These results provide the first evidence that cytochrome P450 may catalyze the oxidation of thiophene compounds with the simultaneous formation of two reactive intermediates, a thiophene-S-oxide and a thiophene epoxide.  相似文献   

10.
Pal A  Gu Y  Pan SS  Ji X  Singh SV 《Biochemistry》2001,40(24):7047-7053
The molecular basis for catalytic differences between structurally closely related murine class alpha glutathione (GSH) transferases mGSTA1-1 and mGSTA2-2 in the GSH conjugation of anti-diol epoxide isomers of benzo[c]phenanthrene (anti-B[c]PDE) was investigated. GSH conjugation of both (-)- and (+)-enantiomers of anti-B[c]PDE was observed in the presence of mGSTA1-1 (60 and 40% GSH conjugation, respectively), whereas mGSTA2-2 exhibited a preference for the (-)-anti-isomer (>97%). In addition, the specific activity of mGSTA2-2 toward the (-)-anti-B[c]PDE isomer was relatively higher than that of mGSTA1-1. The amino acid sequences of mGSTA1-1 and mGSTA2-2 differ at 10 positions that are distributed in three sections. Section I contains amino acid residues in positions 65 and 95; section II contains residues in positions 157, 162, and 169, and section III contains residues in positions 207, 213, 218, 221, and 222. Enzyme activity measurements with chimeras of mGSTA1-1 and mGSTA2-2 revealed that amino acid substitutions in section III account for their differential enantioselectivity and catalytic activity toward anti-B[c]PDE. Site-directed mutagenesis of amino acid residues in section III of mGSTA2-2 with corresponding residues of mGSTA1-1 followed by activity measurements of the wild type and mutated enzymes indicates that leucine 207 and phenylalanine 221 may be critical for the high catalytic activity of mGSTA2-2 toward (-)-anti-B[c]PDE. Molecular modeling studies demonstrated that the active site of mGSTA1-1 accommodates both enantiomers of anti-B[c]PDE, whereas the (-)-anti-isomer interacts more favorably with active site residues in mGSTA2-2. The results of this study clearly indicate that amino acid substitutions in the C-terminal region contribute to catalytic differences between mGSTA1-1 and mGSTA2-2 with respect to anti-B[c]PDE.  相似文献   

11.
Zhang K  Wong KP  Chow P 《Life sciences》2003,72(23):2629-2640
Chlorambucil (CMB) combines with glutathione (GSH) spontaneously in vitro to form monochloromonoglutathionyl CMB (MG-CMB). This was identified and quantified by an HPLC-UV method. Glutathione S-transferase (GST) purified from human colon adenocarcinoma cells increased the formation of the conjugate significantly. The GST-mediated conjugation, represented by the difference between total and spontaneous conjugation showed Michaelis-Menten kinetics with apparent Km and Vmax values of 0.2 mM and 75.8 nmol/min/mg for CMB and 5.2 mM and 127.0 nmol/min/mg for GSH respectively. Unexpectedly, we found in our study that both the spontaneous and the enzymatic conjugation of chlorambucil with GSH were affected markedly by a change in pH from 6.0 to 8.0. The optimum for the enzymatic conjugation was about 7.0, above which the spontaneous conjugation increased rapidly, while the enzymatic conjugation became lower. The plant polyphenols namely tannic acid, butein, quercetin, morin, 2-hydroxychalcone and 2'-hydroxychalcone at 40 microM inhibited the GST-mediated conjugation of CMB with GSH by 38 to 62%. Their action in this respect may contribute to sensitisation of tumour cells to anticancer drugs.  相似文献   

12.
The stereoselectivity of purified rat GSH transferases towards alpha-bromoisovaleric acid (BI) and its amide derivative alpha-bromoisovalerylurea (BIU) was investigated. GSH transferase 2-2 was the only enzyme to catalyse the conjugation of BI and was selective for the (S)-enantiomer. The conjugation of (R)- and (S)-BIU was catalysed by the isoenzymes 2-2, 3-3 and 4-4. Transferase 1-1 was less active, and no catalytic activity was observed with transferase 7-7. Isoenzymes 1-1 and 2-2 of the Alpha multigene family preferentially catalysed the conjugation of the (S)-enantiomer of BIU (and BI), whereas isoenzymes 3-3 and 4-4 of the Mu multigene family preferred (R)-BIU. The opposite stereoselectivity of conjugation of BI and BIU previously observed in isolated rat hepatocytes and the summation of activities of enzymes known to be present in hepatocytes on the basis of present data are in accord.  相似文献   

13.
The major DNA adduct (greater than 95% total) resulting from the bioactivation of ethylene dibromide by conjugation with GSH is S-(2-(N7-guanyl)ethyl)GSH. The mutagenic potential of this adduct has been uncertain, however, because the observed mutagenicity might be caused by other adducts present at much lower levels, e.g. S-(2-N1-adenyl)ethyl)GSH. To assess the formation of other potential adducts, S-(2-(N3-deoxycytidyl)ethyl)GSH, S-(2-(O6-deoxyguanosyl)ethyl)GSH, and S-(2-(N2-deoxyguanosyl)ethyl)GSH were prepared and used as standards in the analysis of calf thymus DNA modified by treatment with [1,2-14C]ethylene dibromide and GSH in the presence of rat liver cytosol; only minor amounts (less than 0.2%) were found. A forward mutation assay in (repair-deficient) Salmonella typhimurium TA100 and sequence analysis were utilized to determine the type, site, and frequency of mutations in a portion of the lacZ gene resulting from in vitro modification of bacteriophage M13mp18 DNA with S-(2-chloroethyl)GSH, an analog of the ethylene dibromide-GSH conjugate. An adduct level of approximately 8 nmol (mg DNA)-1 resulted in a 10-fold increase in mutation frequency relative to the spontaneous level. The spectrum of spontaneous mutations was quite varied, but the spectrum of S-(2-chloroethyl)GSH-induced mutations consisted primarily of base substitutions of which G:C to A:T transitions accounted for 75% (70% of the total mutations). All available evidence implicates S-(2-(N7-guanyl)ethyl)GSH as the cause of these mutations inasmuch as the levels of the minor adducts are not consistent with the mutation frequency observed in this system. The sequence selectivity of alkylation was determined by treatment of end-labeled lac DNA fragments with S-(2-chloroethyl)GSH, cleavage of the DNA at adduct sites, and electrophoretic analysis. Comparison of the sequence selectivity with the mutation spectrum revealed no obligate relationship between the extent of adduct formation and the number of mutations which resulted at different sites. We suggest that the mechanism of mutagenesis involves DNA sequence-dependent alterations in the interaction of the polymerase with the (modified) template and incoming nucleotide.  相似文献   

14.
In the Ames test, after the addition of glutathione (GSH) or uridine-5'-diphosphoglucuronic acid (UD-PGA), we observed for Trp-P-1 an unchanged or a reduced mutagenicity by both the liver and intestine S9 fraction. For Trp-P-2, the same was true when we used the intestine S9 fraction. In the presence of liver S9 fraction, Trp-P-2 mutagenicity was also decreased by the addition of UDPGA but was increased by the addition of GSH. These results show that cofactors for glucuronide and GSH conjugation may alter the metabolic activation of Trp-P-1 and Trp-P-2 and consequently their mutagenicity.  相似文献   

15.
Curcumin (diferuloylmethane), a yellow pigment of turmeric with antioxidant properties has been shown to be a cancer preventative in animal studies. It contains two electrophilic alpha, beta-unsaturated carbonyl groups, which can react with nucleophilic compounds such as glutathione (GSH), but formation of the GSH-curcumin conjugates has not previously been demonstrated. In the present studies, we investigated the reactions of curcumin with GSH and the effect of recombinant human glutathione S-transferase(GST)P1-1 on reaction kinetics. Glutathionylated products of curcumin identified by FAB-MS and MALDI-MS included mono- and di-glutathionyl-adducts of curcumin as well as cyclic rearrangement products of GSH adducts of feruloylmethylketone (FMK) and feruloylaldehyde (FAL). The presence of GSTP1-1 significantly accelerated the initial rate of GSH-mediated consumption of curcumin in 10 mM potassium phosphate, pH 7.0, and 1 mM GSH. GSTP1-1 kinetics determined using HPLC indicated substrate inhibition (apparent K(m) for curcumin of 25+/-11 microM, and apparent K(i) for curcumin of 8+/-3 microM). GSTP1-1 was also shown to catalyze the reverse reaction leading to the formation of curcumin from GSH adducts of FMK and FAL.  相似文献   

16.
Cytosolic GSH transferases have been purified from rat lung by affinity chromatography followed by chromatofocusing. On the criteria of order of elution, substrate specificity, apparent subunit Mr, sensitivity to inhibitors, and reaction with antibodies, transferase subunits equivalent to subunits 2, 3, and 4, in the binary combinations occurring in liver, were identified. However, subunit 1 (and therefore transferases 1-1 and 1-2) was not detected. The most conspicuous difference is the presence in lung of a new form, eluting at pH 8.7, which is not detected in rat liver. This isoenzyme (transferase "pH 8.7") is characterized by its low apparent subunit Mr and high efficiency in the conjugation of glutathione with anti-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide, considered the ultimate carcinogen of benzo(a)-pyrene.  相似文献   

17.
Reaction of the rodent carcinogen acrylonitrile (AN) at pH 5.0 and/or pH 7.0 for 10 and/or 40 days with 2'-deoxyadenosine (dAdo), 2'-deoxycytidine (dCyd), 2'-deoxyguanosine (dGuo), 2'-deoxyinosine (dIno), N6-methyl-2'-deoxyadenosine (N6-Me-dAdo) and thymidine (dThd) resulted in the formation of cyanoethyl and carboxyethyl adducts. Adducts were not detected after 4 h. The adducts isolated were 1-(2-carboxyethyl)-dAdo (1-CE-dAdo), N6-CE-dAdo, 3-CE-dCyd, 7-(2-cyanoethyl)-Gua (7-CNE-Gua), 7,9-bis-CNE-Gua, imidazole ring-opened 7,9-bis-CNE-Gua, 1-CNE-dIno, 1-CE-N6-Me-dAdo and 3-CNE-dThd. Structures were assigned on the basis of UV spectra and electron impact (EI), chemical ionization (CI), desorption chemical ionization (DCI) and Californium-252 fission fragment ionization mass spectra. Evidence is presented which strongly suggests that N6-CE-dAdo was formed by Dimroth rearrangement of 1-CE-dAdo during the reaction between AN and dAdo. The carboxyethyl adducts resulted from initial cyanoethylation (by Michael addition) at a ring nitrogen adjacent to an exocyclic nitrogen atom followed by rapid hydrolysis of the nitrile moiety to a carboxylic acid. It was postulated that the facile hydrolysis is an autocatalyzed reaction resulting from the formation of a cyclic intermediate between nitrile carbon and exocyclic nitrogen. AN was reacted with calf thymus DNA (pH 7.0, 37 degrees C, 40 days) and the relative amounts of adducts isolated were 1-CE-Ade (26%), N6-CE-Ade (8%), 3-CE-Cyt (1%), 7-CNE-Gua (26%), 7,9-bis-CNE-Gua (4%), imidazole ring-opened 7,9-bis-CNE-Gua (19%) and 3-CNE-Thy (16%). Thus a carcinogen once adducted to a base in DNA was shown to be subsequently modified resulting in a mixed pattern of cyanoethylated and carboxyethylated AN-DNA adducts. Three of the adducts (1-CE-Ade, N6-CE-Ade and 3-CE-Cyt) were identical to adducts previously reported by us to be formed following in vitro reaction of the carcinogen beta-propiolactone (BPL) and calf thymus DNA. The results demonstrate that AN can directly alkylate DNA in vitro at a physiological pH and temperature.  相似文献   

18.
In vivo spin trapping of radical metabolites has become a promising tool in understanding and predicting toxicities caused by different xenobiotics. However, in biological systems radical adducts can be reduced to electron paramagnetic resonance (EPR)-silent hydroxylamines. To overcome this difficulty, different procedures for reoxidation of the reduced radical adducts were systematically investigated and some metabolic inhibitors of nitroxide reduction were tested. As a test system, carbon tetrachloride (CCl4), a known hepatotoxic substance, was used. CCl4 is metabolized by liver to .CCl3 and, in the presence of the spin trap phenyl N-t-butylnitrone (PBN), forms the PBN/.CCl3 and PBN/.CO2- radical adducts. These radical adducts were measured in the bile using electron paramagnetic resonance after administration of CCl4 and PBN to the rat. We have shown that these radical adducts were reduced to the corresponding hydroxylamines in vivo, since immediately after the collection of bile only traces of the radical adducts could be detected, but after oxidation by different procedures such as bubbling with oxygen, addition of mild oxidant potassium ferricyanide or autoxidation the EPR spectra intensity increases, indicating that the hydroxylamines had been re-oxidized back to nitroxides. The collection of bile into plastic Eppendorf tubes containing the sulfhydryl reagent N-ethylmaleimide (NEM) or the enzyme ascorbate oxidase did not increase the intensity of the spectra significantly, demonstrating that neither reduction by reduced glutathione (GSH) nor ascorbic acid occurred ex vivo. However in the presence of NEM faster re-oxidation was observed. A new radical adduct that was not observed previously in any in vivo experiment and which exhibited 13C hyperfine coupling was detected when the rats were injected with 13CCl4. We have proven that this is the same adduct detected previously in vitro in microsomal incubations of CCl4, PBN, GSH, and reduced nicotinamide adenine dinucleotide phosphate (NADPH). As a general rule, we have shown that a variety of oxidation procedures should be tried to detect the different radical adducts which are otherwise not observable due to the in vivo reduction of radical adducts.  相似文献   

19.
The role of DT-diaphorase (DTD, EC 1.6.99.2) in the bioreductive activation of mitomycin C was examined using purified rat hepatic DTD. The formation of adducts with reduced glutathione (GSH), binding of [3H]mitomycin C to DNA, and mitomycin C-induced DNA interstrand cross-linking were used as indicators of bioactivation. Mitomycin C was metabolized by DTD in a pH-dependent manner with increasing amounts of metabolism observed as the pH was decreased from 7.8 to 5.8. The major metabolite observed during DTD-mediated reduction of mitomycin C was 2,7-diaminomitosene. GSH adduct formation, binding of [3H]mitomycin C and mitomycin C-induced DNA interstrand cross-linking were observed during DTD-mediated metabolism. In agreement with the pH dependence of metabolism, increased bioactivation was observed at lower pH values. Temporal studies and experiments using authentic material showed that 2,7-diaminomitosene could be further metabolized by DTD resulting in the formation of mitosene adducts with GSH. DNA cross-linking during either chemical (sodium borohydride) or enzymatic (DTD) mediated reduction of mitomycin C could be observed at pH 7.4, but it increased as the pH was decreased to 5.8, showing the critical role of pH in the cross-linking process. These data provide unequivocal evidence that the obligate two-electron reductase DTD can bioactivate mitomycin C to reactive species which can form adducts with GSH and DNA and induce DNA cross-linking. The use of mitomycin C may be a viable approach to the therapy of tumors high in DTD activity, particularly when combined with strategies to lower tumor pH.  相似文献   

20.
A method for the simultaneous single-step organic extraction from biological matrices of peptido- and dihydroxyleukotrienes as well as 5-hydroperoxy- and 5-hydroxyeicosatetraenoic acid followed by separation and quantitation in a single run on reversed-phase high-performance liquid chromatography was evaluated. Using an extraction system comprising 400/1200/4800 (v/v/v) aqueous phase/isopropanol/dichloromethane, pH 3.0, absolute recoveries of 82.3 +/- 2.0, 89.7 +/- 1.0, 93.7 +/- 1.4, 92.8 +/- 1.4, 90 +/- 4, and 90 +/- 4% for prostaglandin B1 (PGB1), leukotriene C4 (LTC4), leukotriene B4 (LTB4), leukotriene D4 (LTD4), 5-hydroperoxyeicosatetraenoic acid (5-HETE), respectively, were achieved. Separation and quantitation of products were performed on a Nucleosil 100 C18 column (5 microns, 4.6 X 250 mm) using, at pH 6.0, a gradient system comprising 72/28/0.02 (v/v/v) methanol/water/glacial acetic acid from 0 to 15 min, followed by a convex gradient to 76/24/0.02 (v/v/v) methanol/water/glacial acetic acid, followed by a 10-min hold at this methanol concentration. The method was used to investigate the profile of leukotrienes synthesized by rat hepatocyte homogenates from 5-HPETE or leukotriene A4 in absence or presence of glutathione (GSH). During a 5-min incubation with 100 microM 5-HPETE, 9.6 ng LTB4/mg protein and 2.2 micrograms 5-HETE/mg protein were formed in the absence of GSH. In the presence of 0.4 mM GSH, 3.7 ng LTB4/mg protein and 11.0 micrograms 5-HETE/mg protein were formed. Using 20 microM LTA4 as a substrate, 17.3 and 324.0 ng LTC4/mg protein X min and 14.3 and 19.3 ng LTB4/mg protein X min were formed in the presence of 0.4 and 10 mM GSH, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号