首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myofiber survival and suppression of anoikis depend in large part on the merosin (laminin-2/-4)-integrin alpha7beta1D cell adhesion system; however, the question remains as to the nature of the signaling molecules/pathways involved. In the present study, we investigated this question using the C2C12 cell model of myogenic differentiation and its merosin- and laminin-deficient derivatives. Herein, we report that: 1) of four members of the Src family of tyrosine kinases studied (p60Src, p53/56Lyn, p59Yes, or p60Fyn), the expression and activity of p60Fyn are found in myotubes exclusively; 2) a severe decrease of p60Fyn activity correlates with myotube apoptosis/anoikis induced by pharmocological compounds (herbimycin A or PP2) which inhibit tyrosine kinases of the Src family, by merosin deficiency and by beta1 integrin inhibition; 3) myoblast survival depends on Fak and the MEK/Erk pathway, in contrast to myotubes; 4) the PI3-K pathway is not involved in either myoblast or myotube survival; and 5) p38alpha SAPK stimulation and activity (but not that of p38beta) are required in the progression of myotube apoptosis/anoikis induced by p60Fyn inhibition, merosin deficiency or beta1 integrin-inhibition; however, p38 is not involved in myoblast apoptosis. Taken together, these results suggest that the promotion of myotube survival by the merosin-alpha7beta1D adhesion system involves p60Fyn, and that disruptions in this cell adhesion system induce myotube apoptosis/anoikis through a p38alpha SAPK-dependent pathway.  相似文献   

2.
We recently described a novel congenital muscular dystrophy (CMD) syndrome characterized by mental retardation, microcephaly, and partial merosin deficiency on muscle biopsy. Linkage analysis excluded involvement of the known CMD loci. We now report on a study performed on the differentiation of cultured myoblasts from one patient affected by this condition to evaluate the potential to form myotubes and merosin processing in these cells. The differentiation rate was comparable to controls and myotubes were stable in culture. Biochemical analysis showed the expected 80-kDa merosin subunit in myoblasts. However, a shifted 60-kDa protein was detected in myotubes. Matrix-metalloproteinases (MMPs) zymography showed increased gelatinolytic activity, and immunoblotting identified an increased amount of membrane-type 1 matrix-metalloproteinase in pathological myotube preparations. Our results show that these CMD-derived myotubes contain a low molecular weight merosin. They further suggest that an altered regulation of MMPs can be involved in basal lamina damage.  相似文献   

3.
Laminin alpha2 is a component of skeletal and cardiac muscle basal lamina. A defect of the laminin alpha2 chain leads to severe congenital muscular dystrophy (MDC1A) in humans and dy/dy mice. Myogenic cells including myoblasts, myotubes, and myofibers in skeletal muscle are a possible source of the laminin alpha2 chain, and myogenic cells are thus proposed as a cell source for congenital muscular dystrophy therapy. However, we observed production of laminin alpha2 in non-myogenic cells of normal mice, and we could enrich these laminin alpha2-producing cells in CD90(+) cell fractions. Intriguingly, the number of CD90(+) cells increased dramatically during skeletal muscle regeneration in mice. This fraction did not include myogenic cells but exhibited a fibroblast-like phenotype. Moreover, these cells were resident in skeletal muscle, not derived from bone marrow. Finally, the production of laminin alpha2 in CD90(+) cells was not dependent on fusion with myogenic cells. Thus, CD90(+) cells are a newly identified additional cell fraction that increased during skeletal muscle regeneration in vivo and could be another cell source for therapy for lama2-deficient muscular dystrophy.  相似文献   

4.
Mutations in the gene encoding laminin (LM) alpha2 chain cause congenital muscular dystrophy. Here, we show that extraocular muscle (EOM) is spared upon complete LMalpha2 chain absence. The major LM chains in limb muscle basement membranes are alpha2, beta1, beta2 and gamma1 whereas alpha2, alpha4, beta1, beta2 and gamma1 chains are expressed in EOM. Expression of LMalpha4 chain mRNA is further increased in LMalpha2 chain deficient EOM. Mainly integrin alpha7X1 subunit, which binds to laminin-411, is expressed in EOM and in contrast to dystrophic limb muscle, sustained integrin alpha7B expression is seen in LMalpha2 chain deficient EOM. We propose that LMalpha4 chain, possibly by binding to integrin alpha7BX1beta1D, protects EOM in LMalpha2 chain deficient muscular dystrophy.  相似文献   

5.
Summary The laminin variant of adult skeletal muscle fibres and Schwann cells is known as merosin, and is composed of M-B1-B2 chains. Blood vessels and immature fibres express the A chain in association with B1 or S, and B2. The importance of merosin has recently been shown by its absence in one form of congenital muscular dystrophy and in the mutantdy/dy mouse, and by its partial deficiency in Fukuyama congenital muscular dystrophy. We have examined the immunocytochemical localization of the M, A, B1 and B2 laminin chains in human fetal muscle from 7 to 40 weeks' gestation to ascertain their developmental expression. The B1 and B2 chains were detected on muscle fibres at 7 weeks, but only traces of the A or M chain were seen. By 21 weeks maximal levels of all four subunits were observed on all fibres. This suggests that the basement membrane is still being assembled until this stage of development. Expression of the A chain on muscle fibres was not reduced until 34 weeks and low levels persisted at birth. The concomitant expression of the M and A chains at early stages may indicate a laminin variant, in addition to merosin, that is highly expressed in fetal muscle. Merosin was seen in intramuscular nerves at 11 weeks. B1 and B2 subunits were detected in blood vessels from 7 weeks' gestation and the A chain from 11 weeks. The capillary network, however, is not fully established in fetal muscle. Merosin is therefore detected early during human fetal muscle development, and this should be taken into account when assessing aborted fetuses at risk for congenital muscular dystrophy.  相似文献   

6.
IL-4 acts as a myoblast recruitment factor during mammalian muscle growth   总被引:10,自引:0,他引:10  
Horsley V  Jansen KM  Mills ST  Pavlath GK 《Cell》2003,113(4):483-494
  相似文献   

7.
The cysteine protease calpain 3 (CAPN3) is essential for normal muscle function, since mutations in CAPN3 cause limb girdle muscular dystrophy type 2A. Previously, we showed that myoblasts isolated from CAPN3 knockout (C3KO) mice were able to fuse to myotubes; however, sarcomere formation was disrupted. In this study we further characterized morphological and biochemical features of C3KO myotubes in order to elucidate a role for CAPN3 during myogenesis. We showed that cell cycle withdrawal occurred normally in C3KO cultures, but C3KO myotubes have an increased number of myonuclei per myotube. We found that CAPN3 acts during myogenesis to specifically control levels of membrane-associated but not cytoplasmic beta-catenin and M-cadherin. CAPN3 was able to cleave both proteins, and in the absence of CAPN3, M-cadherin and beta-catenin abnormally accumulated at the membranes of myotubes. Given the role of M-cadherin in myoblast fusion, this finding suggests that the excessive myonuclear index of C3KO myotubes was due to enhanced fusion. Postfusion events, such as beta1D integrin expression and myofibrillogenesis, were suppressed in C3KO myotubes. These data suggest that the persistence of fusion observed in C3KO cells inhibits subsequent steps of differentiation, such as integrin complex rearrangements and sarcomere assembly.  相似文献   

8.
9.
Merosin-deficient congenital muscular dystrophy is an autosomal recessive neuromuscular disorder caused by partial or total absence of laminin-2 (merosin) in the skeletal muscle. Affected children have severe weakness, hypotonia at birth, high creatine kinase (CK) levels (more than 10 times normal) and are not able to walk or stand unsupported. Linkage and mutation analysis demonstrated that the gene encoding for the laminin-alpha2 chain, mapped on chromosome 6q22-23, is invariably responsible for this form of congenital muscular dystrophy. We investigated the pattern of inheritance of the haplotypes associated with the mutated allele in 29 informative merosin-deficient families, using tightly linked informative polymorphic microsatellite markers. This allowed us to identify heterozygous individuals from normal homozygotes, who are clinically, pathologically and biochemically indistinguishable. By linkage analysis, we found a statistically significant increase in the number of heterozygous individuals carrying either the paternal or the maternal haplotypes associated with the mutated allele. This could suggest a selection in favour of the alleles carrying mutations at the laminin alpha2-chain locus.  相似文献   

10.
Caveolae are vesicular invaginations of the plasma membrane. Caveolin-3 is the principal structural component of caveolae in skeletal muscle cells in vivo. We have recently generated caveolin-3 transgenic mice and demonstrated that overexpression of wild-type caveolin-3 in skeletal muscle fibers is sufficient to induce a Duchenne-like muscular dystrophy phenotype. In addition, we have shown that caveolin-3 null mice display mild muscle fiber degeneration and T-tubule system abnormalities. These data are consistent with the mild phenotype observed in Limb-girdle muscular dystrophy-1C (LGMD-1C) in humans, characterized by a approximately 95% reduction of caveolin-3 expression. Thus, caveolin-3 transgenic and null mice represent valid mouse models to study Duchenne muscular dystrophy (DMD) and LGMD-1C, respectively, in humans. Here, we derived conditionally immortalized precursor skeletal muscle cells from caveolin-3 transgenic and null mice. We show that overexpression of caveolin-3 inhibits myoblast fusion to multinucleated myotubes and lack of caveolin-3 enhances the fusion process. M-cadherin and microtubules have been proposed to mediate the fusion of myoblasts to myotubes. Interestingly, we show that M-cadherin is downregulated in caveolin-3 transgenic cells and upregulated in caveolin-3 null cells. For the first time, variations of M-cadherin expression have been linked to a muscular dystrophy phenotype. In addition, we demonstrate that microtubules are disorganized in caveolin-3 null myotubes, indicating the importance of the cytoskeleton network in mediating the phenotype observed in these cells. Taken together, these results propose caveolin-3 as a key player in myoblast fusion and suggest that defects of the fusion process may represent additional molecular mechanisms underlying the pathogenesis of DMD and LGMD-1C in humans.  相似文献   

11.
The major laminin-binding integrin of skeletal, smooth, and heart muscle is alpha7beta1-integrin, which is structurally related to alpha6beta1. It occurs in three cytoplasmic splice variants (alpha7A, -B, and -C) and two extracellular forms (X1 and X2) which are developmentally regulated and differentially expressed in skeletal muscle. Previously, we have shown that ectopic expression of the alpha7beta-integrin splice variant in nonmotile HEK293 cells specifically induced cell locomotion on laminin-1 but not on fibronectin. To investigate the specificity and the mechanism of the alpha7-mediated cell motility, we expressed the three alpha7-chain cytoplasmic splice variants, as well as alpha6A- and alpha6B-integrin subunits in HEK293 cells. Here we show that all three alpha7 splice variants (containing the X2 domain), as well as alpha6A and alpha6B, promote cell attachment and stimulate cell motility on laminin-1 and its E8 fragment. Deletion of the cytoplasmic domain (excluding the GFFKR consensus sequence) from alpha7B resulted in a loss of the motility-enhancing effect. On laminin-2/4 (merosin), the predominant isoform in mature skeletal muscle, only alpha7-expressing cells showed enhanced motility, whereas cells transfected with alpha6A and alpha6B neither attached nor migrated on laminin-2. Adhesion of alpha7-expressing cells to both laminin-1 and laminin-2 was specifically inhibited by a new monoclonal antibody (6A11) specific for alpha7. Expression of the two extracellular splice variants alpha7X1 and alpha7X2 in HEK293 cells conferred different motilities on laminin isoforms: Whereas alpha7X2B promoted cell migration on both laminin-1 and laminin-2, alpha7X1B supported motility only on laminin-2 and not on laminin-1, although both X1 and X2 splice variants revealed similar adhesion rates to laminin-1 and -2. Fluorescence-activated cell sorter analysis revealed a dramatic reduction of surface expression of alpha6-integrin subunits after alpha7A or -B transfection; also, surface expression of alpha1-, alpha3-, and alpha5-integrins was significantly reduced. These results demonstrate selective responses of alpha6- and alpha7-integrins and of the alpha7 splice variants to laminin-1 and -2 and indicate differential roles in laminin-controlled cell adhesion and migration.  相似文献   

12.
The role of transmembrane 4 superfamily (TM4SF) proteins during muscle cell fusion has not been investigated previously. Here we show that the appearance of TM4SF protein, CD9, and the formation of CD9-beta1 integrin complexes were both regulated in coordination with murine C2C12 myoblast cell differentiation. Also, anti-CD9 and anti-CD81 monoclonal antibodies substantially inhibited and delayed conversion of C2C12 cells to elongated myotubes, without affecting muscle-specific protein expression. Studies of the human myoblast-derived RD sarcoma cell line further demonstrated that TM4SF proteins have a role during muscle cell fusion. Ectopic expression of CD9 caused a four- to eightfold increase in RD cell syncytia formation, whereas anti-CD9 and anti-CD81 antibodies markedly delayed RD syncytia formation. Finally, anti-CD9 and anti-CD81 monoclonal antibodies triggered apoptotic degeneration of C2C12 cell myotubes after they were formed. In summary, TM4SF proteins such as CD9 and CD81 appear to promote muscle cell fusion and support myotube maintenance.  相似文献   

13.
Laminins are a family of large heterotrimeric glycoproteins comprising alpha, beta, and gamma chains. To determine the molecular mechanisms underlying chain assembly in vitro, we expressed human laminin-332 subunits in an insect cell-free translation system. We successfully produced the beta3-gamma2 heterodimer and the alpha3-beta3-gamma2 heterotrimer of the laminin coiled-coil (LCC) domain following co-translation of each chain. The alpha3-beta3 and the alpha3-gamma2 heterodimer were not detected, suggesting that the alpha3 chain can assemble with only beta3-gamma2 heterodimer to form a heterotrimer via disulfide bonds. These results are consistent with those of a previous report indicating that laminin chain assembly proceeds through the beta-gamma heterodimer to the alpha-beta-gamma heterotrimer in vivo. We suggest that the cell-free translation system is a valid system with which to study the mechanisms underlying laminin chain assembly.  相似文献   

14.
15.
Caveolin-3 is the principal structural protein of caveolae membrane domains in striated muscle cells. Caveolin-3 mRNA and protein expression are dramatically induced during the differentiation of C2C12 skeletal myoblasts, coincident with myoblast fusion. In these myotubes, caveolin-3 localizes to the sarcolemma (muscle cell plasma membrane), where it associates with the dystrophin-glycoprotein complex. However, it remains unknown what role caveolin-3 plays in myoblast differentiation and myotube formation. Here, we employ an antisense approach to derive stable C2C12 myoblasts that fail to express the caveolin-3 protein. We show that C2C12 cells harboring caveolin-3 antisense undergo differentiation and express normal amounts of four muscle-specific marker proteins. However, C2C12 cells harboring caveolin-3 antisense fail to undergo myoblast fusion and, therefore, do not form myotubes. Interestingly, treatment with specific p38 mitogen-activated protein kinase inhibitors blocks both myotube formation and caveolin-3 expression, but does not affect the expression of other muscle-specific proteins. In addition, we find that three human rhabdomyosarcoma cell lines do not express caveolin-3 and fail to undergo myoblast fusion. Taken together, these results support the idea that caveolin-3 expression is required for myoblast fusion and myotube formation, and suggest that p38 is an upstream regulator of caveolin-3 expression.  相似文献   

16.
The functionally undefined Stac3 gene, predicted to encode a SH3 domain- and C1 domain-containing protein, was recently found to be specifically expressed in skeletal muscle and essential to normal skeletal muscle development and contraction. In this study we determined the potential role of Stac3 in myoblast proliferation and differentiation, two important steps of muscle development. Neither siRNA-mediated Stac3 knockdown nor plasmid-mediated Stac3 overexpression affected the proliferation of C2C12 myoblasts. Stac3 knockdown promoted the differentiation of C2C12 myoblasts into myotubes as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA and protein expression of myogenic markers including myogenin and myosin heavy chain. In contrast, Stac3 overexpression inhibited the differentiation of C2C12 myoblasts into myotubes as evidenced by decreased fusion index, decreased number of nuclei per myotube, and decreased mRNA and protein expression of myogenic markers. Compared to wild-type myoblasts, myoblasts from Stac3 knockout mouse embryos showed accelerated differentiation into myotubes in culture as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA expression of myogenic markers. Collectively, these data suggest an inhibitory role of endogenous Stac3 in myoblast differentiation. Myogenesis is a tightly controlled program; myofibers formed from prematurely differentiated myoblasts are dysfunctional. Thus, Stac3 may play a role in preventing precocious myoblast differentiation during skeletal muscle development.  相似文献   

17.
Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2(-/-) myotube formation. When differentiated in horse serum-containing medium, TIMP-2(-/-) myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2(-/-) myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with beta1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2(-/-) myotube size and induces increased MMP-9 activation and decreased beta1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on beta1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and beta1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.  相似文献   

18.
Proper muscle function is dependent on spatial and temporal control of gene expression in myofibers. Myofibers are multinucleated cells that are formed, repaired and maintained by the process of myogenesis in which progenitor myoblasts proliferate, differentiate and fuse. Gene expression is dependent upon proteins that require facilitated nuclear import, however little is known about the regulation of nucleocytoplasmic transport during the formation of myofibers. We analyzed the role of karyopherin alpha (KPNA), a key classical nuclear import receptor, during myogenesis. We established that five karyopherin alpha paralogs are expressed by primary mouse myoblasts in vitro and that their steady-state levels increase in multinucleated myotubes, suggesting a global increase in demand for classical nuclear import during myogenesis. We used siRNA-mediated knockdown to identify paralog-specific roles for KPNA1 and KPNA2 during myogenesis. KPNA1 knockdown increased myoblast proliferation, whereas KPNA2 knockdown decreased proliferation. In contrast, no proliferation defect was observed with KPNA4 knockdown. Only knockdown of KPNA2 decreased myotube growth. These results identify distinct pathways involved in myoblast proliferation and myotube growth that rely on specific nuclear import receptors suggesting that regulation of classical nuclear import pathways likely plays a critical role in controlling gene expression in skeletal muscle.  相似文献   

19.
Laminin-11.     
Laminins are a family of glycoproteins which are ubiquitous components of basement membranes and play key structural and functional roles. Eleven isoforms have been identified to date; each is an alpha beta gamma heterotrimer assembled from a repertoire of five alpha, three beta and two gamma chains. Studies of laminin-11 (alpha 5 beta 2 gamma 1) illustrate the unique expression patterns and distinct functions that can be displayed by laminin isoforms. Laminin-11 is found in the glomerular basement membrane in kidney, in the neuromuscular synaptic cleft in skeletal muscle and in other tissues such as placenta and lung. Mice lacking laminin-11 exhibit defective glomerular filtration and developmental defects in neuromuscular synapse formation, with Schwann cells invading the synaptic cleft. Consistent with these observations, both motoneurons and Schwann cells distinguish laminin-11 from other isoforms in vitro. These results suggest that laminin-11 is a structural component of the basement membrane which influences cell behavior in physiologically relevant ways. A greater understanding of laminin-11 assembly and basement membrane incorporation could provide a logical basis for therapy in merosin-deficient congenital muscular dystrophy.  相似文献   

20.
Muscle fibers attach to laminin in the basal lamina using two distinct mechanisms: the dystrophin glycoprotein complex and the alpha 7 beta 1 integrin. Defects in these linkage systems result in Duchenne muscular dystrophy (DMD), alpha 2 laminin congenital muscular dystrophy, sarcoglycan-related muscular dystrophy, and alpha 7 integrin congenital muscular dystrophy. Therefore, the molecular continuity between the extracellular matrix and cell cytoskeleton is essential for the structural and functional integrity of skeletal muscle. To test whether the alpha 7 beta 1 integrin can compensate for the absence of dystrophin, we expressed the rat alpha 7 chain in mdx/utr(-/-) mice that lack both dystrophin and utrophin. These mice develop a severe muscular dystrophy highly akin to that in DMD, and they also die prematurely. Using the muscle creatine kinase promoter, expression of the alpha 7BX2 integrin chain was increased 2.0-2.3-fold in mdx/utr(-/-) mice. Concomitant with the increase in the alpha 7 chain, its heterodimeric partner, beta 1D, was also increased in the transgenic animals. Transgenic expression of the alpha 7BX2 chain in the mdx/utr(-/-) mice extended their longevity by threefold, reduced kyphosis and the development of muscle disease, and maintained mobility and the structure of the neuromuscular junction. Thus, bolstering alpha 7 beta 1 integrin-mediated association of muscle cells with the extracellular matrix alleviates many of the symptoms of disease observed in mdx/utr(-/-) mice and compensates for the absence of the dystrophin- and utrophin-mediated linkage systems. This suggests that enhanced expression of the alpha 7 beta 1 integrin may provide a novel approach to treat DMD and other muscle diseases that arise due to defects in the dystrophin glycoprotein complex. A video that contrasts kyphosis, gait, joint contractures, and mobility in mdx/utr(-/-) and alpha 7BX2-mdx/utr(-/-) mice can be accessed at http://www.jcb.org/cgi/content/full/152/6/1207.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号