首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overview of the voltage-gated sodium channel family   总被引:11,自引:0,他引:11  
Selective permeation of sodium ions through voltage-dependent sodium channels is fundamental to the generation of action potentials in excitable cells such as neurons. These channels are large integral membrane proteins and are encoded by at least ten genes in mammals. The different sodium channels have remarkably similar functional properties, but small changes in sodium-channel function are biologically relevant, as underscored by mutations that cause several human diseases of hyperexcitability.  相似文献   

2.
三氟氯氰菊酯对棉铃虫神经细胞钠及钙通道作用机理研究   总被引:13,自引:0,他引:13  
用膜片钳技术对比分析了棉铃虫三氟氯氰菊脂抗性品系(R)及其同源对照品系(S)幼虫了体培养中枢神经细胞Na^2 通道的门控特性及杀虫剂对R和S神经细胞Na^ 、Ca^ 通道门控过程的影响。结果表明,S神经细胞Na^ 通道电流(S-INa)在-50-40mV激活,-20mV左右达峰值,R神经细胞Na^2 通道电流(R-INa)在-40mV左右激活,-10-0mV达峰值,即R-INa激活电压与峰值电压均向正电位方向移动约10mV,提示二者Na^ 通道控特性不同,R神经细胞Na^ 通道功能发生了变异。三氟氯氰菊酯作用后,S-INgn R-ISs的I-V曲线均向负电位方向移动的10mV,S-INa在20min后基本消失,而R-INa被阻断需时约90min,延长近5倍,其幅值有减小再增大的现象。对Ca^2 通道分析表明,杀虫剂作用后,R及S神经细胞Ca^2 通道电流的I-V曲线均向负电位移动10-20mV,提示三氟氯氰菊酯对Ca^2 通道的门控过程也有影响。与R-INa幅值起伏变化相联系,可推知杀虫剂对神经细胞的毒性作用中,Na^2 、Ca^2 通道均受影响。  相似文献   

3.
Modeling the electrophysiology of suprachiasmatic nucleus neurons   总被引:1,自引:0,他引:1  
Neurons in the SCN act as the central circadian (approximately 24-h) pacemaker in mammals. Using measurements of the ionic currents in SCN neurons, the authors fit a Hodgkin-Huxley-type model that accurately reproduces slow (approximately 28 Hz) neural firing as well as the contributions of ionic currents during an action potential. When inputs of other SCN neurons are considered, the model accurately predicts the fractal nature of firing rates and the appearance of random bursting. In agreement with experimental data, the molecular clock within these neurons modulates the firing rate through small changes in the concentration of internal calcium, calcium channels, or potassium channels. Predictions are made on how signals from other neurons can start, stop, speed up, or slow down firing. Only a slow sodium inactivation variable and voltage do not reach equilibrium during the interval between action potentials, and based on this finding, a reduced model is formulated.  相似文献   

4.
Neurons integrate and encode complex synaptic inputs into action potential outputs through a process termed "intrinsic excitability." Here, we report the essential contribution of fibroblast growth factor homologous factors (FHFs), a family of voltage-gated sodium channel binding proteins, to this process. Fhf1-/-Fhf4-/- mice suffer from severe ataxia and other neurological deficits. In mouse cerebellar slice recordings, WT granule neurons can be induced to fire action potentials repetitively (approximately 60 Hz), whereas Fhf1-/-Fhf4-/- neurons often fire only once and at an elevated voltage spike threshold. Sodium channels in Fhf1-/-Fhf4-/- granule neurons inactivate at more negative membrane potential, inactivate more rapidly, and are slower to recover from the inactivated state. Altered sodium channel physiology is sufficient to explain excitation deficits, as tested in a granule cell computer model. These findings offer a physiological mechanism underlying human spinocerebellar ataxia induced by Fhf4 mutation and suggest a broad role for FHFs in the control of excitability throughout the CNS.  相似文献   

5.
6.
7.
Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks.  相似文献   

8.
Voltage-gated sodium channels are heteromeric transmembrane proteins involved in the conduction of sodium ion currents in response to membrane depolarization. In humans, nine homologous genes, SCN1A–11A, which encode different isoforms of the voltage-gated sodium channel family, are known. Sodium channel isoforms exhibit different kinetic properties that determine different types of neurons. Mutations in different channels are described in patients with various congenital disorders, from epilepsy to congenital insensitivity to pain. This review presents an analysis of the current literature on the properties of different isoforms of voltage-gated sodium channels and associated diseases.  相似文献   

9.
Tottering mice, in which a single gene lesion leads to prolonged hyperexcitability and spontaneous epilepsy, were studied to determine whether enhanced electrical activity leads to down regulation of sodium channels in central neurons. The number of sodium channels in synaptosomes, as assessed by saxitoxin binding, was decreased from 5.38 +/- 0.06 pmol/mg protein in coisogenic controls to 3.85 +/- 0.10 pmol/mg protein (P less than 0.001) in tottering mice without a change in the KD for saxitoxin. Neurotoxin-activated 22Na+ influx per sodium channel was increased 80% in tottering mice (P less than 0.001). Evidently, the increased level of electrical excitability characteristic of the tottering phenotype causes down regulation of the sodium-channel number and alteration of channel function in the nerve terminals of central neurons.  相似文献   

10.
11.
Interactions with ankyrinG are crucial to the localization of voltage-gated sodium channels (VGSCs) at the axon initial segment and for neurons to initiate action potentials. However, the molecular nature of these interactions remains unclear. Here we report that VGSC-alpha, but not -beta, subunits bind to ankyrinG using pull-down assays. Further dissection of this activity identifies a conserved 9-amino acid motif ((V/A)P(I/L)AXXE(S/D)D) required for ankyrinG binding. This motif is also required for the localization of chimeric neurofascin/sodium channel molecules to the initial segment of cultured hippocampal neurons. The conserved nature of this motif suggests that it functions to localize sodium channels to a variety of "excitable" membrane domains both inside and outside of the nervous system.  相似文献   

12.
用组织荧光和免疫细胞化学相结合法研究含脱辅基蛋白E(ApoE)的脂蛋白是否可被中枢神经元所吸收。实验结果如下: 1.含ApoE的脂蛋白仅被注射针迹附近的神经元所吸收。 2.只有表达出低密度脂蛋白(LDL)受体的神经元才能吸收含ApoE的脂蛋白。 3.不能表达LDL受体的神经元不能吸收含ApoE的脂蛋白。 实验结果表明,含ApoE的脂蛋白、LDL受体的表达及ApoE-LDL受体的相互作用是哺乳动物中枢神经系统内实现胆固醇运输和维持胆固醇代谢平衡的重要机制。  相似文献   

13.
肖悦梅  Pitas  RE  Boyles  JK 《生物物理学报》1992,8(3):401-406
用组织荧光和免疫细胞化学相结合法研究含脱辅基蛋白E(ApoE)的脂蛋白是否可被中枢神经元所吸收。实验结果如下: 1.含ApoE的脂蛋白仅被注射针迹附近的神经元所吸收。 2.只有表达出低密度脂蛋白(LDL)受体的神经元才能吸收含ApoE的脂蛋白。 3.不能表达LDL受体的神经元不能吸收含ApoE的脂蛋白。 实验结果表明,含ApoE的脂蛋白、LDL受体的表达及ApoE-LDL受体的相互作用是哺乳动物中枢神经系统内实现胆固醇运输和维持胆固醇代谢平衡的重要机制。  相似文献   

14.
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.  相似文献   

15.
16.
1. The CNS from invertebrate animals such as slugs, snails, leeches, and cockroaches, can be isolated and kept alive for many hours. 2. The electrical and pharmacological properties of invertebrate CNS neurons have many similarities and it is probable that the basic rules governing the CNS evolved more than 600 million years ago. 3. The nerve cells can show sodium action potentials, calcium action potentials, EPSP, IPSP, biphasic potentials, electrogenic sodium pump potentials, and a variety of potassium, sodium, calcium and chloride currents. 4. Invertebrate CNS ganglia contain identifiable individual nerve cells whose properties and responses to neurotransmitters and drugs are constant and repeatable from preparation to preparation. 5. It was possible to set up an isolated CNS-nerve trunk-muscle preparation and study the transport of radioactive material from the CNS to the muscle and from muscle to CNS. This has provided information about axoplasmic transport in both invertebrate and vertebrate preparations. 6. The methods developed from studies of invertebrate isolated CNS preparations have been applied to vertebrate isolated CNS preparations. 7. In addition to thin slices of the mammalian brain, it is possible to keep 5 cm lengths of the whole mammalian spinal cord and brain stem alive for many hours. 8. The isolated mammalian spinal cord has functional ipsilateral and contralateral reflexes, ascending and descending pathways, extensive sensory integrative local area networks, and inhibitory interneuron circuits. Much of the in vivo circuitry is functional in vitro. 9. The isolated mammalian spinal cord and brain stem can be developed to include functional higher brain circuits that will provide increased understanding of the control and integrative action of the mammalian central nervous system.  相似文献   

17.
18.
19.
20.
This video describes the fabrication and use of a microfluidic device to culture central nervous system (CNS) neurons. This device is compatible with live-cell optical microscopy (DIC and phase contrast), as well as confocal and two photon microscopy approaches. This method uses precision-molded polymer parts to create miniature multi-compartment cell culture with fluidic isolation. The compartments are made of tiny channels with dimensions that are large enough to culture neurons in well-controlled fluidic microenvironments. Neurons can be cultured for 2-3 weeks within the device, after which they can be fixed and stained for immunocytochemistry. Axonal and somal compartments can be maintained fluidically isolated from each other by using a small hydrostatic pressure difference; this feature can be used to localize soluble insults to one compartment for up to 20 h after each medium change. Fluidic isolation enables collection of pure axonal fraction and biochemical analysis by PCR. The microfluidic device provides a highly adaptable platform for neuroscience research and may find applications in modeling CNS injury and neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号