首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Navarrete M  Araque A 《Neuron》2010,68(1):113-126
Endocannabinoids and their receptor CB1 play key roles in brain function. Astrocytes express CB1Rs that are activated by endocannabinoids released by neurons. However, the consequences of the endocannabinoid-mediated neuron-astrocyte signaling on synaptic transmission are unknown. We show that endocannabinoids released by hippocampal pyramidal neurons increase the probability of transmitter release at CA3-CA1 synapses. This synaptic potentiation is due to CB1R-induced Ca(2+) elevations in astrocytes, which stimulate the release of glutamate that activates presynaptic metabotropic glutamate receptors. While endocannabinoids induce synaptic depression in the stimulated neuron by direct activation of presynaptic CB1Rs, they indirectly lead to synaptic potentiation in relatively more distant neurons by activation of CB1Rs in astrocytes. Hence, astrocyte calcium signal evoked by endogenous stimuli (neuron-released endocannabinoids) modulates synaptic transmission. Therefore, astrocytes respond to endocannabinoids that then potentiate synaptic transmission, indicating that astrocytes are actively involved in brain physiology.  相似文献   

2.
The major psychoactive component of cannabis derivatives, delta9-THC, activates two G-protein coupled receptors: CB1 and CB2. Soon after the discovery of these receptors, their endogenous ligands were identified: lipid metabolites of arachidonic acid, named endocannabinoids. The two major main and most studied endocannabinoids are anandamide and 2-arachidonyl-glycerol. The CB1 receptor is massively expressed through-out the central nervous system whereas CB2 expression seems restricted to immune cells. Following endocannabinoid binding, CB1 receptors modulate second messenger cascades (inhibition of adenylate cyclase, activation of mitogen-activated protein kinases and of focal-adhesion kinases) as well as ionic conductances (inhibition of voltage-dependent calcium channels, activation of several potassium channels). Endocannabinoids transiently silence synapses by decreasing neurotransmitter release, play major parts in various forms of synaptic plasticity because of their ability to behave as retrograde messengers and activate non-cannabinoid receptors (such as vanilloid receptor type-1), illustrating the complexity of the endocannabinoid system. The diverse cellular targets of endocannabinoids are at the origin of the promising therapeutic potentials of the endocannabinoid system.  相似文献   

3.

Background

Hippocampal CA1 pyramidal neurons receive two excitatory glutamatergic synaptic inputs: their most distal dendritic regions in the stratum lacunosum-moleculare (SLM) are innervated by the perforant path (PP), originating from layer III of the entorhinal cortex, while their more proximal regions of the apical dendrites in the stratum radiatum (SR) are innervated by the Schaffer-collaterals (SC), originating from hippocampal CA3 neurons. Endocannabinoids (eCBs) are naturally occurring mediators capable of modulating both GABAergic and glutamatergic synaptic transmission and plasticity via the CB1 receptor. Previous work on eCB modulation of excitatory synapses in the CA1 region largely focuses on the SC pathway. However, little information is available on whether and how eCBs modulate glutamatergic synaptic transmission and plasticity at PP synapses.

Methodology/Principal Findings

By employing somatic and dendritic patch-clamp recordings, Ca2+ uncaging, and immunostaining, we demonstrate that there are significant differences in low-frequency stimulation (LFS)- or DHPG-, an agonist of group I metabotropic glutamate receptors (mGluRs), induced long-term depression (LTD) of excitatory synaptic transmission between SC and PP synapses in the same pyramidal neurons. These differences are eliminated by pharmacological inhibition with selective CB1 receptor antagonists or genetic deletion of the CB1 receptor, indicating that these differences likely result from differential modulation via a CB1 receptor-dependent mechanism. We also revealed that depolarization-induced suppression of excitation (DSE), a form of short-term synaptic plasticity, and photolysis of caged Ca2+-induced suppression of Excitatory postsynaptic currents (EPSCs) were less at the PP than that at the SC. In addition, application of WIN55212 (WIN) induced a more pronounced inhibition of EPSCs at the SC when compared to that at the PP.

Conclusions/Significance

Our results suggest that CB1 dependent LTD and DSE are differentially expressed at the PP versus SC synapses in the same neurons, which may have an impact on synaptic scaling, integration and plasticity of hippocampal CA1 pyramidal neurons.  相似文献   

4.
Inverse agonism and neutral antagonism at cannabinoid CB1 receptors   总被引:14,自引:0,他引:14  
Pertwee RG 《Life sciences》2005,76(12):1307-1324
There are at least two types of cannabinoid receptor, CB1 and CB2, both G protein coupled. CB1 receptors are expressed predominantly at nerve terminals and mediate inhibition of transmitter release whereas CB2 receptors are found mainly on immune cells, one of their roles being to modulate cytokine release. Endogenous cannabinoid receptor agonists also exist and these "endocannabinoids" together with their receptors constitute the "endocannabinoid system". These discoveries were followed by the development of a number of CB1- and CB2-selective antagonists that in some CB1 or CB2 receptor-containing systems also produce "inverse cannabimimetic effects", effects opposite in direction from those produced by cannabinoid receptor agonists. This review focuses on the CB1-selective antagonists, SR141716A, AM251, AM281 and LY320135, and discusses possible mechanisms by which these ligands produce their inverse effects: (1) competitive surmountable antagonism at CB1 receptors of endogenously released endocannabinoids, (2) inverse agonism resulting from negative, possibly allosteric, modulation of the constitutive activity of CB1 receptors in which CB1 receptors are shifted from a constitutively active "on" state to one or more constitutively inactive "off" states and (3) CB1 receptor-independent mechanisms, for example antagonism of endogenously released adenosine at A1 receptors. Recently developed neutral competitive CB1 receptor antagonists, which are expected to produce inverse effects through antagonism of endogenously released endocannabinoids but not by modulating CB1 receptor constitutive activity, are also discussed. So too are possible clinical consequences of the production of inverse cannabimimetic effects, there being convincing evidence that released endocannabinoids can have "autoprotective" roles.  相似文献   

5.
In hippocampus endocannabinoids modulate synaptic function and plasticity and increase tyrosine phosphorylation of several proteins, including focal adhesion kinase (FAK). Autophosphorylation of FAK on Tyr-397 is generally a critical step for its activation, allowing the recruitment of Src family kinases, and phosphorylation of FAK and associated proteins. We have examined the mechanisms of the regulation of FAK by cannabinoids in rat and mouse hippocampal slices. Anandamide and 2-arachidonoylglycerol, two endocannabinoids, and Delta9-tetrahydrocannabinol, stimulated tyrosine phosphorylation of FAK+6,7, a neuronal splice isoform of FAK, on several residues including Tyr-397. Cannabinoids increased phosphorylation of p130-Cas, a protein associated with FAK, but had no effect on PYK2, a tyrosine kinase related to FAK and enriched in hippocampus. Pharmacological experiments and the use of knockout mice demonstrated that the effects of cannabinoids were mediated through CB1 receptors. These effects were sensitive to manipulation of cAMP-dependent protein kinase, suggesting that they were mediated by inhibition of a cAMP pathway. PP2, an Src family kinase inhibitor, prevented the effects of cannabinoids on p130-Cas and on FAK+6,7 tyrosines 577 and 925, but not 397, indicating that FAK autophosphorylation was upstream of Src family kinases in response to CB1-R stimulation. Endocannabinoids increased the association of Fyn, but not Src, with FAK+6,7. In hippocampal slices from Fyn -/- mice, the levels of p130-Cas were increased, and the effects of endocannabinoids on tyrosine phosphorylation, including of Tyr-397, were completely abolished. These results demonstrate the specific functional association of Fyn with FAK+6,7 in a pathway regulated by endocannabinoids, in which Fyn may play roles dependent and independent of its catalytic activity.  相似文献   

6.
Cachope R  Mackie K  Triller A  O'Brien J  Pereda AE 《Neuron》2007,56(6):1034-1047
Endocannabinoids are well established as inhibitors of chemical synaptic transmission via presynaptic activation of the cannabinoid type 1 receptor (CB1R). Contrasting this notion, we show that dendritic release of endocannabinoids mediates potentiation of synaptic transmission at mixed (electrical and chemical) synaptic contacts on the goldfish Mauthner cell. Remarkably, the observed enhancement was not restricted to the glutamatergic component of the synaptic response but also included a parallel increase in electrical transmission. This effect involved the activation of CB1 receptors and was indirectly mediated via the release of dopamine from nearby varicosities, which in turn led to potentiation of the synaptic response via a cAMP-dependent protein kinase-mediated postsynaptic mechanism. Thus, endocannabinoid release can potentiate synaptic transmission, and its functional roles include the regulation of gap junction-mediated electrical synapses. Similar interactions between endocannabinoid and dopaminergic systems may be widespread and potentially relevant for the motor and rewarding effects of cannabis derivatives.  相似文献   

7.
Jo YH  Chen YJ  Chua SC  Talmage DA  Role LW 《Neuron》2005,48(6):1055-1066
Recently developed therapeutics for obesity, targeted against cannabinoid receptors, result in decreased appetite and sustained weight loss. Prior studies have demonstrated CB1 receptors (CB1Rs) and leptin modulation of cannabinoid synthesis in hypothalamic neurons. Here, we show that depolarization of perifornical lateral hypothalamus (LH) neurons elicits a CB1R-mediated suppression of inhibition in local circuits thought to be involved in appetite and "natural reward." The depolarization-induced decrease in inhibitory tone to LH neurons is blocked by leptin. Leptin inhibits voltage-gated calcium channels in LH neurons via the activation of janus kinase 2 (JAK2) and of mitogen-activated protein kinase (MAPK). Leptin-deficient mice are characterized by both an increase in steady-state voltage-gated calcium currents in LH neurons and a CB1R-mediated depolarization-induced suppression of inhibition that is 6-fold longer than that in littermate controls. Our data provide direct electrophysiological support for the involvement of endocannabinoids and leptin as modulators of hypothalamic circuits underlying motivational aspects of feeding behavior.  相似文献   

8.
Cannabinoids (CB) can act as retrograde synaptic mediators of depolarization-induced suppression of inhibition or excitation in hippocampus. This mechanism may underlie the impairment of some cognitive processes produced by these compounds, including short-term memory formation in the hippocampus. In this study, we investigated several compounds known to interact with CB receptors, evaluating their effects on K(+)-evoked release of [3H]D-aspartate ([3H]D-ASP) and [3H]GABA from superfused synaptosomes isolated from the rat hippocampus. [3H]D-ASP and [3H]GABA release were inhibited to different degrees by the synthetic cannabinoids WIN 55,212-2; CP 55,940, and arachidonyl-2'-chloroethylamide/N-(2-chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (ACEA), as well as by the endocannabinoids, anandamide (AEA), and 2-arachidonoylglycerol (2-AG). Both types of release were also inhibited by capsaicin. The inhibition produced by each of the cannabinoid compounds and capsaicin was unaffected by capsazepine or by the CB1-receptor antagonists AM-251 and SR141716A. The mechanism underlying AEA- and synthetic CB-induced inhibition of the release of [3H]GABA and [3H]D-ASP from rat hippocampal synaptosomes might not involve activation of presynaptic CB1 receptors.  相似文献   

9.
A new Conus peptide ligand for mammalian presynaptic Ca2+ channels.   总被引:15,自引:0,他引:15  
Voltage-sensitive Ca2+ channels that control neurotransmitter release are blocked by omega-conotoxin (omega-CgTx) GVIA from the marine snail Conus geographus, the most widely used inhibitor of neurotransmitter release. However, many mammalian synapses are omega-CgTx-GVIA insensitive. We describe a new Conus peptide, omega-CgTx-MVIIC, that is an effective inhibitor of omega-CgTx-GVIA-resistant synaptic transmission. Ca2+ channel targets that are inhibited by omega-CgTx-MVIIC but not by omega-CgTx-GVIA include those mediating depolarization-induced 45Ca2+ uptake in rat synaptosome preparations, "P" currents in cerebellar Purkinje cells, and a subset of omega-CgTx-GVIA-resistant currents in CA1 hippocampal pyramidal cells. The characterization of omega-CgTx-MVIIC by a combination of molecular genetics and chemical synthesis defines a general approach for obtaining ligands with novel receptor subtype specificity from Conus.  相似文献   

10.
Safo PK  Regehr WG 《Neuron》2005,48(4):647-659
The long-term depression (LTD) of parallel fiber (PF) synapses onto Purkinje cells plays a central role in motor learning. Endocannabinoid release and LTD induction both depend upon activation of the metabotropic glutamate receptor mGluR1, require postsynaptic calcium increases, are synapse specific, and have a similar dependence on the associative activation of PF and climbing fiber synapses. These similarities suggest that endocannabinoid release could account for many features of cerebellar LTD. Here we show that LTD induction is blocked by a cannabinoid receptor (CB1R) antagonist, by inhibiting the synthesis of the endocannabinoid 2-arachidonyl glycerol (2-AG), and is absent in mice lacking the CB1R. Although CB1Rs are prominently expressed presynaptically at PF synapses, LTD is expressed postsynaptically. In contrast, a previously described transient form of inhibition mediated by endocannabinoids is expressed presynaptically. This indicates that Purkinje cells release 2-AG that activates CB1Rs to both transiently inhibit release and induce a postsynaptic form of LTD.  相似文献   

11.
Chevaleyre V  Castillo PE 《Neuron》2004,43(6):871-881
Repetitive activation of glutamatergic fibers that normally induces long-term potentiation (LTP) at excitatory synapses in the hippocampus also triggers long-term depression at inhibitory synapses (I-LTD) via retrograde endocannabinoid signaling. Little is known, however, about the physiological significance of I-LTD. Here, we show that synaptic-driven release of endocannabinoids is a highly localized and efficient process that strongly depresses cannabinoid-sensitive inhibitory inputs within the dendritic compartment of CA1 pyramidal cells. By removing synaptic inhibition in a restricted area of the dendritic tree, endocannabinoids selectively "primed" nearby excitatory synapses, thereby facilitating subsequent induction of LTP. This induction of local metaplasticity is a novel mechanism by which endocannabinoids can contribute to the storage of information in the brain.  相似文献   

12.
Kreitzer AC  Carter AG  Regehr WG 《Neuron》2002,34(5):787-796
Endocannabinoids serve as retrograde messengers in many brain regions. These diffusible lipophilic molecules are released by postsynaptic cells and regulate presynaptic neurotransmitter release. Here we describe an additional mechanism that mediates the spread of endocannabinoid signaling to distant inhibitory synapses. Depolarization of cerebellar Purkinje cells reduced the firing rate of nearby interneurons, and this reduction in firing was blocked by the cannabinoid receptor antagonist AM251. The cannabinoid receptor agonist WIN55,212-2 also reduced firing rates in interneurons, and this inhibition arose from the activation of a small potassium conductance. Thus, endocannabinoids released from the dendrites of depolarized neurons can lead to inhibition of firing in nearby cells. Because interneurons can project over several hundred micrometers, this inhibition of firing allows cells to regulate synaptic inputs at distances well beyond the limits of endocannabinoid diffusion.  相似文献   

13.
Postsynaptic Ca2+ signal influences synaptic transmission through multiple mechanisms. Some of them involve retrograde messengers that are released from postsynaptic neurons in a Ca2+-dependent manner and modulate transmitter release through activation of presynaptic receptors. Recent studies have revealed essential roles of endocannabinoids in retrograde modulation of synaptic transmission. Endocannabinoid release is induced by either postsynaptic Ca2+ elevation alone or activation of postsynaptic Gq/11-coupled receptors with or without Ca2+ elevation. The former pathway is independent of phospholipase Cbeta (PLCbeta) and requires a large Ca2+ elevation to a micromolar range. The latter pathway requires PLCbeta and is facilitated by a moderate Ca2+ elevation to a submicromolar range. This facilitation is caused by Ca2+-dependency of receptor-driven PLCbeta activation. The released endocannabinoids then activate presynaptic cannabinoid receptor type 1 (CB1), and suppress transmitter release from presynaptic terminals. Both CB1 receptors and Gq/11-coupled receptors are widely distributed in the brain. Thus, the endocannabinoid-mediated retrograde modulation may be an important and widespread mechanism in the brain, by which postsynaptic events including Gq/11-coupled receptor activation and Ca2+ elevation can retrogradely influence presynaptic function.  相似文献   

14.
Endocannabinoids are lipid signaling mediators that exert an important neuromodulatory role and confer neuroprotection in several types of brain injury. Excitotoxicity and stroke can induce neural progenitor (NP) proliferation and differentiation as an attempt of neuroregeneration after damage. Here we investigated the mechanism of hippocampal progenitor cell engagement upon excitotoxicity induced by kainic acid administration and the putative involvement of the CB1 cannabinoid receptor in this process. Adult NPs express kainate receptors that mediate proliferation and neurosphere generation in vitro via CB1 cannabinoid receptors. Similarly, in vivo studies showed that excitotoxicity-induced hippocampal NPs proliferation and neurogenesis are abrogated in CB1-deficient mice and in wild-type mice administered with the selective CB1 antagonist rimonabant (N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazolecarboxamide; SR141716). Kainate stimulation increased basic fibroblast growth factor (bFGF) expression in cultured NPs in a CB1-dependent manner as this response was prevented by rimonabant and mimicked by endocannabinoids. Likewise, in vivo analyses showed that increased hippocampal expression of bFGF, as well as of brain-derived neurotrophic factor and epidermal growth factor, occurs upon excitotoxicity and that CB1 receptor ablation prevents this induction. Moreover, excitotoxicity increased the number of CB1+ bFGF+ cells, and this up-regulation preceded NP proliferation. In summary, our results show the involvement of the CB1 cannabinoid receptor in NP proliferation and neurogenesis induced by excitotoxic injury and support a role for bFGF signaling in this process.  相似文献   

15.
Cannabinoid receptors and their ligands   总被引:12,自引:0,他引:12  
There are at least two types of cannabinoid receptors, CB(1) and CB(2), both coupled to G proteins. CB(1) receptors exist primarily on central and peripheral neurons, one of their functions being to modulate neurotransmitter release. CB(2) receptors are present mainly on immune cells. Their roles are proving more difficult to establish but seem to include the modulation of cytokine release. Endogenous agonists for cannabinoid receptors (endocannabinoids) have also been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol and 2-arachidonyl glyceryl ether. Other endocannabinoids and cannabinoid receptor types may also exist. Although anandamide can act through CB(1) and CB(2) receptors, it is also a vanilloid receptor agonist and some of its metabolites may possess yet other important modes of action. The discovery of the system of cannabinoid receptors and endocannabinoids that constitutes the "endocannabinoid system" has prompted the development of CB(1)- and CB(2)-selective agonists and antagonists/inverse agonists. CB(1)/CB(2) agonists are already used clinically, as anti-emetics or to stimulate appetite. Potential therapeutic uses of cannabinoid receptor agonists include the management of multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, vasodilation that accompanies advanced cirrhosis, and cancer. Following their release onto cannabinoid receptors, endocannabinoids are removed from the extracellular space by membrane transport and then degraded by intracellular enzymic hydrolysis. Inhibitors of both these processes have been developed. Such inhibitors have therapeutic potential as animal data suggest that released endocannabinoids mediate reductions both in inflammatory pain and in the spasticity and tremor of multiple sclerosis. So too have CB(1) receptor antagonists, for example for the suppression of appetite and the management of cognitive dysfunction or schizophrenia.  相似文献   

16.
K P Scholz  R J Miller 《Neuron》1992,8(6):1139-1150
Spontaneous miniature excitatory postsynaptic currents (MEPSCs) were recorded by whole-cell voltage-clamp techniques in cultured rat hippocampal pyramidal neurons. The specific adenosine A1 receptor agonist cyclopentyladenosine (CPA) reduced the frequency of MEPSCs without affecting their amplitude distribution or kinetic properties. This action was blocked by pretreatment of the cells with pertussis toxin. In the presence of divalent cation Ca2+ channel blockers, CPA was still effective in reducing the frequency of MEPSCs. It was shown that this effect cannot be explained by changes in basal Ca2+ influx. These results suggest that neurotransmitters that produce presynaptic inhibition at hippocampal synapses utilize several mechanisms, one of which may involve inhibition of some component of the quantal release apparatus that occurs independently of inhibition of Ca2+ influx.  相似文献   

17.
Navarrete M  Araque A 《Neuron》2008,57(6):883-893
Cannabinoid receptors play key roles in brain function, and cannabinoid effects in brain physiology and drug-related behavior are thought to be mediated by receptors present in neurons. Neuron-astrocyte communication relies on the expression by astrocytes of neurotransmitter receptors. Yet, the expression of cannabinoid receptors by astrocytes in situ and their involvement in the neuron-astrocyte communication remain largely unknown. We show that hippocampal astrocytes express CB1 receptors that upon activation lead to phospholipase C-dependent Ca2+ mobilization from internal stores. These receptors are activated by endocannabinoids released by neurons, increasing astrocyte Ca2+ levels, which stimulate glutamate release that activates NMDA receptors in pyramidal neurons. These results demonstrate the existence of endocannabinoid-mediated neuron-astrocyte communication, revealing that astrocytes are targets of cannabinoids and might therefore participate in the physiology of cannabinoid-related addiction. They also reveal the existence of an endocannabinoid-glutamate signaling pathway where astrocytes serve as a bridge for nonsynaptic interneuronal communication.  相似文献   

18.
Endocannabinoids are involved in synaptic signaling and neuronal protection; however, our understanding of the mechanisms by which endocannabinoids protect neurons from harmful insults remains elusive. 2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid and a full agonist for cannabinoid receptors (CB1 and CB2), is a substrate for cyclooxygenase-2 (COX-2) and can be metabolized by COX-2. Here we show, however, that 2-AG is also capable of suppressing elevation of hippocampal COX-2 expression in response to proinflammatory and excitotoxic stimuli. 2-AG prevents neurodegeneration from toxic assaults that elevate COX-2 expression and inhibits the COX-2 elevation-enhanced excitatory glutamatergic synaptic transmission. The action of 2-AG on suppression of COX-2 appeared to be mediated via the pertussis toxin-sensitive G protein-coupled CB1 receptor and MAPK/NF-kappaB signaling pathways. Our results reveal that 2-AG functions as an endogenous COX-2 inhibitor protecting neurons from harmful insults by preventing excessive expression of COX-2, which provides a mechanistic basis for opening up new therapeutic approaches for protecting neurons from inflammation- and excitotoxicity-induced neurodegeneration.  相似文献   

19.
Calcium (Ca2+) is a second messenger regulating a wide variety of intracellular processes. Using GABA-and glycinergic synapses as examples, this review analyzes two functions of this unique ion: postsynaptic Ca2+-dependent modulation of receptor-operated channels and Ca2+-induced retrograde regulation of neurotransmitter release from the presynaptic terminals. Phosphorylation, rapid Ca2+-induced modulation via intermediate Ca2+-binding proteins, and changes in the number of functional receptors represent the main pathways of short-and long-term plasticity of postsynaptic receptor-operated channel machinery. Retrograde signaling is an example of synaptic modulation triggered by stimulation of postsynaptic cells and mediated via regulation of presynaptic neurotransmitter release. This mechanism provides postsynaptic neurons with efficient tools to control the presynaptic afferents in an activity-dependent mode. Elevation of intracellular Ca2+ in a postsynaptic neuron triggers the synthesis of endocannabinoids (derivatives of arachidonic acid). Their retrograde diffusion through the synaptic cleft and consequent activation of presynaptic G-protein coupled to CB1 receptors inhibits the release of neurotransmitter. These mechanisms of double modulation, which include control over the function of postsynaptic ion channels and retrograde suppression of the release machinery, play an important role in Ca2+-dependent control of the main excitatory and inhibitory synaptic pathways in the mammalian nervous system.  相似文献   

20.
Endocannabinoids mediate retrograde signal and modulate transmission efficacy at various central synapses. Although endocannabinoid release is induced by either depolarization or activation of G(q/11)-coupled receptors, it is markedly enhanced by the coincidence of depolarization and receptor activation. Here we report that this coincidence is detected by phospholipase Cbeta1 (PLCbeta1) in hippocampal neurons. By measuring cannabinoid-sensitive synaptic currents, we found that the receptor-driven endocannabinoid release was dependent on physiological levels of intracellular Ca(2+) concentration ([Ca(2+)](i)), and markedly enhanced by depolarization-induced [Ca(2+)](i) elevation. Furthermore, we measured PLC activity in intact neurons by using exogenous TRPC6 channel as a biosensor for the PLC product diacylglycerol and found that the receptor-driven PLC activation exhibited similar [Ca(2+)](i) dependence to that of endocannabinoid release. Neither endocannabinoid release nor PLC activation was induced by receptor activation in PLCbeta1 knockout mice. We therefore conclude that PLCbeta1 serves as a coincidence detector through its Ca(2+) dependency for endocannabinoid release in hippocampal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号