首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of aldolase with regulatory proteins of rabbit skeletal muscle were investigated by moving-boundary electrophoresis. A salt-dependent interaction of troponin, tropomyosin and the tropomyosin-troponin complex with aldolase was detected, the tropomyosin-troponin complex displaying a greater affinity for the enzyme than did either regulatory protein alone. The results indicate that aldolase possesses multiple binding sites (three or more) for these muscle proteins. Quantitative studies of the binding of aldolase to actin-containing filaments showed the interaction to be influenced markedly by the presence of these muscle regulatory proteins on the filaments. In imidazole/HCl buffer, I 0.088, pH 6.8, aldolase binds to F-actin with an affinity constant of 2 x 10(5) M-1 and a stoicheiometry of one tetrameric aldolase molecule per 14 monomeric actin units. Use of F-actin-tropomyosin as adsorbent results in a doubling of the stoicheiometry without significant change in the intrinsic association constant. With F-actin-tropomyosin-troponin a lower binding constant (6 x 10(4) M-1) but even greater stoicheiometry (4:14 actin units) are observed. The presence of Ca2+ (0.1 mM) decreases this stoicheiometry to 3:14 without affecting significantly the magnitude of the intrinsic binding constant.  相似文献   

2.
Previously reported results of equilibrium-partition experiments on the interaction of aldolase with actin-containing filaments [Walsh, Winzor, Clarke, Masters & Morton (1980) Biochem. J. 186, 89-98] have been subjected to a more rigorous theoretical analysis involving consideration of the consequences of cross-linking interactions between enzyme and filament. The experimental results obtained with F-actin-tropomyosin are best described by a model with one binding site per heptameric repeat unit of filament and a value of 39000 M-1 for the site binding constant, k. Similar analyses of the influence of Ca2+ on aldolase binding to F-actin--tropomyosin--troponin substantiate the existence of two equivalent binding sites (k = 14900 M-1) for the enzyme on each repeat unit of the thin filament. The Ca2+-sensitivity of this interaction reflects either a decrease in the strength of aldolase binding to these two sites (k = 8200 M-1) or the elimination of one site.  相似文献   

3.
Electron micrographs of the paracrystals formed when fructose bisphosphate aldolase (EC 4.1.2.13) is added to actin-containing filaments were analysed by computer methods so that ultrastructural changes could be correlated with the various stoicheiometries of binding determined in the preceding paper [Walsh, Winzor, Clarke, Masters & Morton (1980) Biochem. J. 186, 89-98]. Paracrystals formed with aldolase and either F-actin or F-actin-tropomyosin have a single light transverse band every 38 nm, which is due to aldolase molecules cross-linking the filaments. In contrast, the paracrystals formed between aldolase and F-actin-tropomyosin-troponin filaments show two transverse bands every 38 nm: a major band, interpreted as aldolase binding to troponin, and a minor band, interpreted as aldolase cross-linking the filaments. The intensity of the minor band varies with Ca2+ concentration, being greatest when the Ca2+ concentration is low. A model for the different paracrystal structures which relates the various patterns and binding stoicheiometries to structural changes in the actin-containing filaments is proposed.  相似文献   

4.
Electron-microscopy observation show that when aldolase binds to F-actin or F-actin-tropomyosin, highly ordered paracrystalline structures are formed consisting of tightly packed filament bundles cross-banded at 36 nm intervals. Morphologically different paracrystalline arrays are formed between aldolase and F-actin-tropomyosin-troponin. The filament bundles are far more extensive and are characterized by a prominent cross-striation at 38nm intervals. It is suggested that this reflects an interaction between troponin and aldolase.  相似文献   

5.
Actin-containing filaments in cultures of differentiating chick skeletal muscle were examined by indirect immunofluorescence and transmission electron microscopy (TEM). As early as 20 h in culture, a large proportion of the pre-fusion population appeared as elongated, bipolar cells which contained actin filaments parallel to the longitudinal axis of the cell. During fusion, most of the mononucleated cells were bipolar and contained actin filament bundles which appeared to extend the entire length of the cell body and lie in close proximity to the plasma membrane. Striations were observed within actin filament bundles only after fusion had been completed. The small number of non-myogenic cells present in the cultures were not observed to display a bipolar morphology, orientation of actin fibers parallel to the longitudinal axis of the cell, or striations in their actin filament bundles.  相似文献   

6.
The effect of ionic strength on the adsorption of aldolase to synthetic thin filaments derived from rabbit skeletal muscle has been investigated by partition equilibrium experiments, the results being interpreted in terms of the intrinsic association constant for the interaction of four sites on aldolase with two sites per filament repeat unit. At physiological ionic strength, values of 10,000 and 2000 m?1 were obtained for this equilibrium constant in the absence and presence, respectively, of calcium ions. Comparison of binding curves obtained with synthetic thin filaments and myofibrils indicated a lesser extent of enzyme adsorption to the myofibrillar system, a difference attributed to the covert nature of many of the potential binding sites on the filaments in the assembly of the myofibril. On the basis of the quantitative information on the effect of ionic strength on the adsorption of aldolase, a case is made for the probable occurrence of the enzyme-filament interaction as a physiologically significant phenomenon in skeletal muscle.  相似文献   

7.
8.
《The Journal of cell biology》1977,74(3):1016-1023
The interaction of fructose diphosphate aldolase with F-actin, F-actin- tropomyosin, and F-actin-tropomyosin-troponin has been studied by using negative staining. In the absence of troponin, minor aggregates of aldolase and the F-actin filaments are formed. A well-ordered lattice structure is only formed in the case of the fully reconstituted filament when the filament-to-filament spacing is 18nm, and the cross- bridge spacing is 38.7 nm. Evidence is presented that the lattice is due to an interaction between troponin and aldolase. The minimum subunit structure of troponin, still capable of giving rise to a lattice, is the troponin-IT complex, which indicates that troponin-C is not involved in aldolase binding.  相似文献   

9.
Calcium-induced fragmentation of skeletal muscle nebulin filaments.   总被引:1,自引:0,他引:1  
When chicken breast muscle myofibrils were treated with a solution containing 0.1 mM CaCl2 and 30 micrograms of leupeptin/ml, nebulin filaments were fragmented into 200-, 180-, 40-, 33-, and 23-kDa subfragments. All the subfragments except the 180-kDa one were released from the myofibrils. The fragmentation of nebulin filaments seems to be induced by the binding of large amounts of calcium ions. Similar changes took place in nebulin filaments in post-mortem skeletal muscle. It has been proposed that nebulin co-exists with thin (actin) filaments and participates in stabilizing their organization [Wang, K. & Wright, J. (1988) J. Cell Biol. 107, 2199-2212]. Thus, the above result suggests that Ca-induced fragmentation of nebulin filaments destabilizes the organization of thin filaments and is a key factor in meat tenderization during post-rigor aging.  相似文献   

10.
11.
Cross-linking of myosin subfragment 1 (S1) with a molar excess of actin in vitro reveals the presence of an actin-S1-actin complex. It is absolutely essential that actin be present in molar excess over S1 so that the decoration of F-actin with S1 be incomplete. However, the excess of actin may not be available in the overlap zone of sarcomeres of skeletal muscle. We therefore found it necessary to test for the presence of the actin-S1-actin complex in vivo. Myofibrils from rabbit skeletal muscle were reacted with zero-length cross-linker, the products were resolved by polyacrylamide gel electrophoresis and analyzed by Western blots using antibodies against actin and against heavy and light chains of myosin. The cross-linking produced the evidence of formation of actin-S1-actin complex.  相似文献   

12.
1. We report here on a novel action of insulin which shows that the hormone stimulates binding of phosphofructokinase (PFK) and aldolase to muscle cytoskeleton. 2. This effect was demonstrated both in vivo, by injection of insulin, in the tibialis anterior and gastrocnemius muscles, as well as in vitro, in the isolated rat diaphragm muscle incubated with insulin. 3. Insulin exerted this effect at physiologic range of concentrations and very rapidly (about 50% stimulation of binding occurred within 1 min). 4. The possible physiological significance of this rapid action of insulin, is to provide local ATP, generated by the accelerated cytoskeletal glycolysis, for other rapidly insulin-stimulated membrane-cytoskeleton processes.  相似文献   

13.
Extra actin filaments at the periphery of skeletal muscle myofibrils.   总被引:2,自引:0,他引:2  
Myofibrils isolated from a variety of vertebrate muscle fibers have a set of peripheral filaments associated with the periphery of the Z line free to move away from the surface of the myofibril. Decoration with myosin subfragment 1 shows that these are actin filaments.  相似文献   

14.
Rabbit muscle aldolase binds NADPH with a 1:1 stoichiometry and with a dissociation constant 18 microM. Three sites of the dinucleotide are involved in the binding: the adenosyl diphosphate moiety, the nicotinamide-ribose, and the nicotinamide ring. These data show the existence of a specific dinucleotide binding site in the aldolase molecule.  相似文献   

15.
16.
Specific anion binding to fructose diphosphate aldolase from rabbit muscle   总被引:7,自引:0,他引:7  
A Ginsburg  A H Mehler 《Biochemistry》1966,5(8):2623-2634
  相似文献   

17.
18.
Using electron microscopy and optical diffraction, Ca2+-dependent binding of a glycolytic enzyme (aldolase) to thin filaments of isolated skeletal muscle I-disks have been revealed. On the micrographs of negatively stained I-disks the cross-striation determined by troponin-tropomyosin complex distribution has a period of about 38 nm. The width of troponin-tropomyosin stripes is 5-6 nm. On the optical diffraction patterns from isolated I-disks the meridional reflections measuring 38.5, 19.2, 12.8 nm are present. On the micrographs of isolated I-disks, treated with aldolase in the absence of Ca2+ (1 mM EGTA) the width of periodic transverse stripes (period approximately 38 nm) increases from 5-6 nm to 25-28 nm due to the interaction of aldolase with thin filaments. On the optical diffraction patterns from I-disks treated with aldolase in the absence of Ca2+ (1 mM EGTA) the strong meridional reflection equal to 38.5 nm is present, while the reflections equal to 19.2 nm are absent. The optical diffraction patterns from I-disks treated with aldolase in the presence of Ca2+ (greater than or equal to 10(-5) M) do not, as a rule, differ from those obtained from I-disks not treated with aldolase, i.e. they contain the three above reflections. The binding of aldolase to thin filaments in the absence of Ca2+ is the reason of disappearance of meridional reflections equal to 19.2 and 12.8 nm.  相似文献   

19.
Separated thick filaments have been prepared for electron microscopy by a method involving freeze-drying and shadowing. In the resulting filaments the individual heads of myosin molecules can be seen surrounding the filament shaft, which appears relatively smooth. Pairs of heads can frequently be seen to be emanating from a common origin. Myosin heads are found at distances up to 500 Å from the edge of the shaft.  相似文献   

20.
The monoclinic crystalline form of aldolase from rabbit skeletal muscle grown at 29 degrees C is catalytically active in the direction of aldol cleavage. Activity was assayed for in a crystallization buffer containing 45% saturated ammonium sulfate using chemically unmodified single crystals cut to precise dimensions. Diffusion effects on velocities from assays employing aldolase crystals do not appear to be limiting when cut single crystals are crushed. Assays of crushed crystals are linear with respect to both time and enzyme concentration. Kinetic constants are reported for both substrates fructose 1-phosphate and fructose 1,6-phosphate. Maximal velocities and binding constants determined differ by no more than a factor of 2 between the crystalline and the soluble state of the enzyme. Analysis of the kinetic constants for fructose 1-phosphate as substrate shows that binding of substrate does not change in going to the crystalline state. Release of product is reduced roughly 2-fold in the crystalline state. A similar conclusion can be reached in the case of fructose 1,6-phosphate as substrate provided the "on" steps of substrate and product are only diffusion limited but independent of the physical state of the enzyme. It is not possible to distinguish between a more sluggish conformational change during catalysis or simply tighter product binding in the crystalline state as compared to the soluble enzyme state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号