首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S A Lewis  W Gu  N J Cowan 《Cell》1987,49(4):539-548
Mammalian cells express a spectrum of tubulin isotypes whose relationship to the diversity of microtubule function is unknown. To examine whether different isotypes are segregated into functionally distinct microtubules, we generated immune sera capable of discriminating among the various naturally occurring beta-tubulin isotypes. Cloned fusion proteins encoding each isotype were used first to tolerogenize animals against shared epitopes, and then as immunogens to elicit a specific response. In experiments using these sera, we show that there is neither complete nor partial segregation of beta-tubulin isotypes: both interphase cytoskeletal and mitotic spindle microtubules are mixed copolymers of all expressed beta-tubulin isotypes. Indeed, a highly divergent isotype normally expressed only in certain hematopoietic cells is also indiscriminately assembled into all microtubules both in their normal context and when transfected into HeLa cells.  相似文献   

2.
This study was to investigate the effect of phenethyl isothiocyanate (PEITC), a constituent of many edible cruciferous vegetables, on the expression of α- and β-tubulins, which are the main components of microtubules in prostate cancer cells. Flow cytometry, light microscopy and western blot were used to study the cell cycle distribution, morphology changes and the expression of α- and β-tubulins in prostate cancer cells treated with PEITC. The results showed that PEITC-induced G2-M cell phase arrest and inhibited the expression of α- and β-tubulin proteins in a number of human prostatic carcinoma cell lines. Further, it is showed that this inhibitory effect could be reversed by antioxidant N-acetyl cysteine and proteasome inhibitor MG132. Finally, it is concluded that PEITC inhibited the expression of α- and β-tubulins in prostate cancer cells, which is at least related to the oxygen reaction species and protein degradation.  相似文献   

3.
The availability of isotype-specific antisera for beta-tubulin, coupled with genetic and biochemical analysis, has allowed the determination of beta-tubulin isotype expression and distribution in Chinese hamster ovary (CHO) cells. Using genetic manipulations involving selection for colcemid resistance followed by reversion and reselection for drug resistance, we have succeeded in isolating cell lines that exhibit three major and one minor beta-tubulin spots by two-dimensional gel electrophoresis. In concert with isotype-specific antibodies, analysis of these mutants demonstrates that CHO cells express two copies of isotype I, at least one copy of isotype IV, and very small amounts of isotype V. All three isotypes assemble into both cytoplasmic and spindle microtubules and are similar in their responses to cold, colcemid, and calcium-induced depolymerization. They have comparable turnover rates and are equally sensitive to depression of synthesis upon colchicine treatment. These results suggest that beta-tubulin isotypes are used interchangeably to assemble microtubule structures in CHO cells. However, of 18 colcemid-resistant mutants with a demonstrable alteration in beta-tubulin, all were found to have the alteration in isotype I, thus leaving open the possibility that subtle differences in isotype properties may exist.  相似文献   

4.
5.
Pluripotent P19 embryonal carcinoma (EC) cells were differentiated along the neuronal and muscle pathways. Comparisons of class I, II, III, and IV beta tubulin isotypes in total and colchicine-stable microtubule (MT) arrays from uncommitted EC, neuronal, and muscle cells were made by immunoblotting and by indirect immunofluorescence microscopy. In undifferentiated EC cells the relative amounts of these four isotypes are the same in both the total and stable MT populations. Subcellular sorting of beta tubulin isotypes was demonstrated in both neuronal and muscle differentiated cells. During neuronal differentiation, class II beta tubulin is preferentially incorporated into the colchicine-stable MTs while class III beta tubulin is preferentially found in the colchicine-labile MTs. The subcellular sorting of class II into stable MTs correlates with the increased staining of MAP 1B, and with the expression of MAP 2C and tau. Although muscle differentiated cells express class II beta tubulin, stable MTs in these cells do not preferentially incorporate this isotype but instead show increased incorporation of class IV beta tubulin. Muscle cells do not show high levels of MAP 1B and do not express MAP 2C or tau. These results are consistent with the hypothesis that a subcellular sorting of tubulin isotypes is the result of a complex interaction between tubulin isotypes and MT-associated proteins.  相似文献   

6.
7.
Several isotypes of the structural protein tubulin have been characterized. Their expression offers a plausible explanation for differences regarding microtubule function. Although sequence variation between tubulin isotypes occurs throughout the entire protein, it is the extreme carboxy-terminal tails (CTTs) that exhibit the greatest concentration of differences. In humans, the CTTs range in length from 9 to 25 residues and because of a considerable number of glutamic acid residues, contain over 1/3 of tubulin's total electrostatic charge. The CTTs are believed to be highly disordered and their precise function has yet to be determined. However, their absence has been shown to result in altered microtubule stability and a reduction in the interaction with several microtubule-associated proteins (MAPs). To characterize the role that CTTs play in microtubule function, we examined the global conformational differences within a set of nine human β-tubulin isotypes using replica exchange molecular dynamics simulations. Through the analysis of the resulting configuration ensembles, we quantified differences such as the CTTs sequence influence on overall flexibility and average secondary structure. Although only minor variations between each CTT were observed, we suggest that these differences may be significant enough to affect interactions with MAPs, thereby influencing important properties such as microtubule assembly and stability.  相似文献   

8.
Mature unfertilized eggs of the sea urchin Lytechinus pictus contain multiple alpha-tubulin mRNAs, which range in size from 1.75 to 4.8 kb, and two beta-tubulin mRNAs, 1.8 and 2.25 kb. These mRNAs were found at similar levels throughout the early cleavage stages. RNA gel blot hybridizations showed that prominent quantitative and qualitative changes in tubulin mRNAs occurred between the early blastula and hatched blastula stages. The overall amounts of alpha- and beta-tubulin mRNAs increased two- to fivefold between blastula and pluteus. These increases were due mainly to a rise in a 1.75-kb alpha RNA and a new 2.0-kb beta RNA. Other, minor changes also occurred during subsequent development. All size classes of alpha- and beta-tubulin RNAs in early and late embryos contained poly(A)+ translatable sequences. As reported earlier, some of each of the alpha RNAs, but neither of the beta RNAs, are translated in the egg and a small portion of each of the stored alpha and beta RNAs is recruited onto polysomes within 30 min of fertilization. In the work described here, subsequent development up to the morula stage was accompanied by a gradual recruitment of tubulin mRNAs into polysomes. By the early blastula stage, most of the maternal tubulin sequences were associated with polysomes. In contrast to the gradual recruitment of maternal sequences throughout cleavage, the tubulin mRNAs which appeared at the blastula stage showed no delay in entering polysomes. The exact fraction of each mRNA that was translationally active at later stages varied somewhat among the individual mRNAs. From the differential hybridization patterns of egg, embryo, and testis RNAs to various tubulin cDNA and genomic DNA probes, it is concluded that at least one gene producing maternal alpha mRNA is different from a second one which is expressed only in testis. Each of the three embryonic beta RNAs is encoded by a different beta gene; at least two of these different beta genes are also expressed in testis.  相似文献   

9.
10.
11.
C D Silflow  J L Rosenbaum 《Cell》1981,24(1):81-88
We constructed and characterized recombinant cDNA clones containing alpha- and beta-tubulin DNA sequences. The inserted DNA was determined to code for alpha- and beta-tubulin by positive hybridization-selection. The selected mRNA was translated in vitro, and the translation products were shown to be alpha- or beta-tubulin by comigration with flagellar alpha- and beta-tubulin on one- and two-dimensional gels and by immunoprecipitation with antibodies specific for alpha- and beta-tubulin. Hybridization of the cloned tubulin probes with Chlamydomonas DNA indicated that there are at least two genes each for alpha- and beta-tubulin in this organism. No evidence of cross-hybridization between alpha- and beta-tubulin DNA sequences was found. Because previous experiments had shown that tubulin synthesis was stimulated in response to flagellar amputation, the tubulin clones were used to analyze the levels of tubulin sequences in RNA from cells before and after deflagellation. Hybridization of the tubulin cDNA probes with total or polyadenylated RNA indicated that tubulin sequences in RNA increased within 8 min following deflagellation, reached maximal levels by 50 min and began to decrease by 80 min after deflagellation. One hybridization band was detected with use of the beta-tubulin probe, but RNA in two size classes hybridized to the alpha-tubulin probe.  相似文献   

12.
13.
14.
Chinese hamster ovary cell mutants resistant to the microtubule stabilizing drug taxol were isolated in a single step. Of these 139 drug-resistant mutants, 59 exhibit an absolute requirement for taxol for normal growth and division, 13 have a partial requirement, and 69 grow normally without the drug. Two-dimensional gel analysis of whole cell proteins reveal "extra" spots representing altered tubulins in 13 of the mutants. Six of these have an altered alpha-tubulin and seven have an altered beta-tubulin. Cells with an absolute dependence on taxol become large and multinucleated when deprived of the drug. In contrast, partially dependent cells exhibit some multinucleation, but most cells appear normal. In one mutant that has an absolute dependence on taxol, the cells appear to die more quickly and their nuclei do not increase in size or number. As previously found for another taxol-dependent mutant (Cabral, F., 1983, J. Cell. Biol., 97:22-29), the taxol dependence of the mutants described in this paper behaves recessively in somatic cell hybrids, and the cells are more susceptible to being killed by colcemid than are the wild-type parental cells. When compared with wild-type cells, taxol-dependent mutants have normal arrays of cytoplasmic microtubules but form much smaller mitotic spindles in the presence of taxol. When deprived of the drug, however, these mutants cannot complete assembly of the mitotic spindle apparatus, as judged by tubulin immunofluorescence. Thus, the defects leading to taxol dependence in these mutants with defined alterations in alpha- and beta-tubulin appear to result from the cell's inability to form a functional mitotic spindle. Reversion analysis indicates that the properties of at least one alpha-tubulin mutant are conferred by the altered tubulin seen on two-dimensional gels.  相似文献   

15.
Duchenne muscular dystrophy (DMD) is a lethal disease characterized by rapid, progressive atrophy of muscle tissues. Timely screening of therapeutic interventions is necessary for the development of effective treatment approaches for DMD. We have developed an in vitro model using a combination of micropatterning of C2C12 skeletal muscle cells and cell traction force microscopy (CTFM). In this model, C2C12 cells were micropatterned on a highly elongated adhesive island such that the cells assumed a shape typical of a myotube. During differentiation, these cells gradually fused together and began expressing dystrophin, a structural protein of myotubes, meanwhile, their contractile forces, represented by cell traction forces, continually increased until the myotubes reached maturation. In addition, the high-degree alignment of cells favored myotube differentiation and dystrophin expression. Since the fundamental structural unit of muscle tissue is myofiber, which is responsible for muscle contraction, such a technology that can directly quantify the contractile forces of the myotube, a precursor of myofiber, may constitute a fast and efficient screening approach for DMD therapies.  相似文献   

16.
Postnatal testis differentiation involves transition through neonatal, pre-meiotic, meiotic, haploid, and mature stages. We have examined the qualitative and quantitative changes in rat testis RNAs that specifically hybridize to cDNAs encoding the cytoskeletal proteins, calmodulin, beta-actin, alpha- and beta-tubulin at ages corresponding to each of these developmental periods. We compared the species and relative levels of specific RNAs from testes of animals engaged in normal spermatogenesis with RNA from germ cell-depleted, Sertoli cell-enriched (SCE) testis. Distinct developmental patterns of expression of the specific RNAs were found with each of the cDNAs in the two animal models. A 2.2 kb (kilobase) actin RNA and a 2.7 kb beta-tubulin RNA are maximal at 5-10 days of age, suggesting these RNAs are required by somatic and germ cells in the postnatal phase prior to puberty. Between 19 and 29 days, when pachytene spermatocytes appear in significant numbers, there is a slight increase in the 2.2-kb actin RNA, but a 4- to 10-fold increase in RNAs hybridizing to cDNAs for calmodulin, alpha- and beta-tubulin. These changes are much less pronounced in the SCE testis than in the normal testis, indicating increases in these RNAs are related to germinal cell maturation. The germ cell-related increase in 1.8-kb beta-tubulin RNA appears to reflect a developmental "switch" in the gene from which the RNA is derived. This hypothesis is based on the observation that the ratio of hybridization of a chicken brain beta-tubulin cDNA versus a rat spleen beta-tubulin cDNA to the 1.8-kb RNA band increases more than 40-fold between 5 and 29 days of age in normal testis, but is constant in SCE testis. These data suggest that a specific beta-tubulin gene is activated in maturing germ cells. Analogously, a 2.1-kb alpha-tubulin RNA is found only in maturing normal testis and increases as spermatids are produced. A 2.0-kb beta-tubulin RNA, not found in normal testes, is maximal in maturing SCE testes, suggesting this RNA is of somatic cell origin. All of the RNA species studied, except the 2.0-kb beta-tubulin RNA, decrease between 5 and 19 days in SCE testes, as Sertoli cell mitotic activity wanes, indicating that their levels may be regulated by the developmental signals that influence mitosis.  相似文献   

17.
18.
《The Journal of cell biology》1983,97(4):1055-1061
Two Chinese hamster ovary cell lines with mutated beta-tubulins (Grs-2 and Cmd-4) and one that has a mutation in alpha-tubulin (Tax-1) are temperature sensitive for growth at 40.5 degrees C. To determine the functional defect in these mutant cells at the nonpermissive temperature, they were characterized with respect to cell cycle parameters and microtubule organization and function after relatively short periods at 40.5 degrees C. At the nonpermissive temperature all the mutants had normal appearing cytoplasmic microtubules. Premature chromosome condensation analysis failed to show any discrete step in the interphase cell cycle in which these mutants are arrested. These cells, however, show several defects at the nonpermissive temperature that appear related to the function of microtubules during mitosis. Time-lapse studies showed that mitosis was lengthened in the three mutant lines at 40.5 degrees C as compared with the wild-type cells at this temperature, resulting in a higher proportion of cells in mitosis after temperature shift. There was also a large increase in multinucleated cells in mutant populations after incubation at the nonpermissive temperature. Immunofluorescent studies using a monoclonal anti--alpha-tubulin antibody showed that the mutant cells had a high proportion of abnormal spindles at the nonpermissive temperature. The two altered beta-tubulins and the altered alpha-tubulin all were found to cause a similar phenotype at the high temperature that results in mitotic delay, defective cytokinesis, multinucleation, and ultimately, cell death. We conclude that spindle formation is the limiting microtubule function in these mutant cell lines at the nonpermissive temperature and that these cell lines will be of value for the study of the precise role of tubulin in mammalian spindle formation.  相似文献   

19.
Metazoan growth and development is maintained by populations of undifferentiated cells, commonly known as stem cells. Stem cells possess several characteristic properties, including dividing through self-renewing divisions and generating progeny that differentiate to have specialized cell fates. Multiple signaling pathways have been identified which coordinate stem cell proliferation with maintenance and differentiation. Relatively recently, the small, non-protein coding microRNAs (miRNAs) have been identified to function as important regulators in stem cell development. Individual miRNAs are capable of directing the translational repression of many mRNAs targets, generating widespread changes in gene expression. In addition, dysfunction of miRNA expression is commonly associated with cancer development. Cancer stem cells, which are likely responsible for initiating and maintaining tumorigenesis, share many similarities with stem cells and some mechanisms of miRNA function may be in common between these two cell types.  相似文献   

20.
Metazoan growth and development is maintained by populations of undifferentiated cells, commonly known as stem cells. Stem cells possess several characteristic properties, including dividing through self-renewing divisions and generating progeny that differentiate to have specialized cell fates. Multiple signaling pathways have been identified which coordinate stem cell proliferation with maintenance and differentiation. Relatively recently, the small, non-protein coding microRNAs (miRNAs) have been identified to function as important regulators in stem cell development. Individual miRNAs are capable of directing the translational repression of many mRNAs targets, generating widespread changes in gene expression. In addition, dysfunction of miRNA expression is commonly associated with cancer development. Cancer stem cells, which are likely responsible for initiating and maintaining tumorigenesis, share many similarities with stem cells and some mechanisms of miRNA function may be in common between these two cell types.Key words: stem cell, miRNA, mammalian, neuroblast, pluripotency, cancer, ESC, self-renewal  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号