首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TraT protein is a cell-surface-exposed, outer membrane lipoprotein specified by large, usually conjugative, F-like plasmids. Two biological activities have been associated with the protein: (i) prevention of self-mating of cells carrying identical or closely related conjugative plasmids, by blocking the formation of stable mating aggregates; and (ii) resistance to the bactericidal activities of serum, possibly by inhibiting the correct assembly or efficient functioning of the terminal membrane attack complex of complement. The protein therefore interacts not only with components of the outer membrane but also with specific external agents. In conjugative plasmids the traT gene lies within the region necessary for the conjugal transfer of DNA (tra), although its expression is not necessarily dependent on the expression of other tra genes. Recently, however, the gene has been discovered in isolation from other tra genes in nonconjugative virulence-associated plasmids, providing further evidence that the TraT protein may have a role in pathogenesis. The nucleotide sequences of several traT genes have been determined, and comparison of the corresponding amino acid sequences suggests that a central region of five amino acid residues flanked by hydrophobic domains determines the specificity of the protein in surface exclusion. Additionally, studies of mutants with different amino acid alterations within the hydrophobic domains have shown that insertion of charged residues disrupts normal outer membrane integrity. This review considers our current knowledge of the distribution, structure, and biological role(s) of the protein. Recent applications of the protein in studies of the unusual permeability properties of the outer membrane and for the transport of foreign antigenic determinants to the bacterial cell surface are also discussed.  相似文献   

2.
The TraT protein is a highly cell-surface-exposed lipoprotein specified by F-like plasmids that confers serum resistance and blocks the conjugative transfer of plasmids to cells bearing identical or closely related plasmids, a process known as surface exclusion. The TraT protein specified by the antibiotic-resistance plasmid R6-5 was purified to apparent homogeneity. When added to mating mixtures, TraT blocked the transfer of plasmids belonging to Surface Exclusion Group IV (Sfx IV) but had no significant effect on the transfer of plasmids belonging to other groups. Additionally, the purified protein has a protective effect on bacterial cells incubated in serum, indicating that it does not have to be located on the cell surface to mediate serum resistance. To localize regions of the protein that were responsible for surface exclusion specificity, the amino acid sequence of the TraT protein specified by CoIB2-K98 (Sfx II) was determined by cloning and sequencing of the corresponding gene. Comparison of the derived sequence with those of the F and R100-1 proteins indicated that surface exclusion specificity of TraT is determined by single alterations in a five-amino-acid region (residues 116-120). This was confirmed by segment swapping experiments in which the specificity of the R6-5 TraT protein (Sfx IV) was switched to that of the CoIB2-K98 protein (Sfx II). Our results suggest that the region defined by residues 116-120 is located on the external face of the outer membrane and interacts specifically with the donor cell in surface exclusion.  相似文献   

3.
Escherichia coli K12 strain W3110/SM bearing a plasmid containing the traT gene (traT+ strain) was more resistant to the bactericidal activity of guinea pig serum than the same strain bearing this plasmid without the traT gene (traT- strain). A murine mAb was generated against synthetic TraT peptide (86-99). This antibody reacted only with denatured TraT protein, but it was used for monitoring TraT protein by immunoblotting during purification of the protein. Six mAb were then generated against partially purified traT protein from the solubilized membrane fraction of the traT+ strain. These mAb reacted with the native protein even on living cells, and their F(ab) fragments were found to suppress the inhibitory effect of the TraT protein on the bactericidal activity of serum. TraT protein was purified from solubilized membranes of the traT+ strain by ion exchange and gel filtration chromatographies. The purified TraT protein inhibited the lysis of sensitized erythrocytes by serum complement. Its inhibitory action was mainly on the C6 step. It strongly inhibited the reaction of C6 with EAC14b2a3b and excess C5, C7, C8, and C9. TraT protein also inhibited the reaction of C7-deficient human serum with guinea pig erythrocytes when it was activated by cobra venom factor. It did not inhibit the reaction of preformed C5b6 complexes. However, TraT did not have any effect on the cleavage of 125I[C5] to 125I[C5b] in similar conditions. It also partially inhibited the reaction steps of C4, C5, and factor B and limited guinea pig complement serum in 0.1% gelatin veronal buffered saline, pH 7.4, containing 10 mM EDTA with their respective preceding intermediate cells. It had no effect on either the binding of C3 to EAC14b2a or the cleavage of C3b by factors H and I. TraT protein probably inhibits the formation of C5b6 complex or causes structural alteration of the complex to a nonfunctional form.  相似文献   

4.
The pYV plasmid of Yersinia encodes a lipoprotein, YlpA, related to TraT   总被引:12,自引:2,他引:12  
A series of lipoproteins was detected in the membrane fraction of Yersinia enterocolitica W227, a typical strain from serotype O:9. At least two of them, YlpA and YlpB, are encoded by the pYV plasmid. The sequence of ylpA reveals the presence of a typical lipoprotein signal peptide. The mature YlpA protein would be 223 residues long with a calculated molecular weight of 23798 for the proteic moiety of the molecule. YlpA shares 88% identical residues with the TraT protein encoded by plasmid pED208, 80% identity with TraT proteins encoded by plasmids R100 and F, and 77% identity with the TraT protein encoded by the virulence plasmid of Salmonella typhimurium. The ylpA gene hybridized with the pYV plasmid of Yersinia pseudotuberculosis, suggesting that this gene is conserved among Yersinia spp. The production of YlpA is controlled by virF and only occurs at 37 degrees C in the absence of Ca2+ ions. This co-regulation with the yop genes suggests that ylpA is a virulence determinant. However, mutations in ylpA clearly affect neither the resistance to human serum nor the virulence for intravenously inoculated mice.  相似文献   

5.
A Charbit  J C Boulain  A Ryter    M Hofnung 《The EMBO journal》1986,5(11):3029-3037
The LamB protein is a trimeric integral outer membrane protein from Escherichia coli K12 which functions as a pore for maltodextrins and a receptor for bacteriophages. When inserted into two selected sites of LamB, a foreign antigen, the C3 epitope from poliovirus, was exposed at the cell surface with its normal antigenic properties. Since these genetic insertions did not affect in any essential way the routing, activity and folding of the LamB protein, we conclude that the two corresponding LamB sites are at the cell surface as predicted by our recent model. We discuss the implications of our results for the study of protein topology with a single epitope and the direct cloning and cell surface expression of epitopes of interest as well as the development of live vaccines or diagnostic tests.  相似文献   

6.
Evidence that TraT interacts with OmpA of Escherichia coli   总被引:10,自引:0,他引:10  
I Riede  M L Eschbach 《FEBS letters》1986,205(2):241-245
The OmpA protein is one of the major outer membrane proteins of Escherichia coli. Among other functions the protein serves as a receptor for several phages and increases the efficiency of F-mediated conjugation when present in recipient cells. TraT is an F-factor-coded outer membrane lipoprotein involved in surface exclusion, the mechanism by which E. coli strains carrying F-factors become poor recipients in conjugation. To determine a possible interaction of TraT with OmpA, the influence of TraT on phage binding to cells was measured. Because TraT inhibits inactivation of OmpA-specific phages it is suggested that TraT interacts directly with OmpA. Sequence homology of TraT with proteins 38, the phage proteins recognizing outer membrane proteins, supports this finding. A model of protein interactions is discussed.  相似文献   

7.
ThetraT gene is one of the F factor transfer genes and encodes an outer membrane protein which is involved in interactions between anEscherichia coli and its surroundings. This protein was altered so as to permit the expression of foreign proteins on the outer membrane ofE. coli in this study. A 729-bp DNA fragment, including the leader and entire structural gene sequence oftraT, was amplified and obtained by PCR. This sequence was then subcloned downstream of thetac promoter of pDR540, resulting in a TraT expression vector, pT2. Here, we report that the expression of TraT protein, fused either with a partial pre-S antigen of hepatitis B virus (60 and 98 amino acids, respectively) or with the snake venom rhodostomin (72 amino acids), was successfully achieved on the outer membrane ofE. coli, using the pT2 plasmid. This result was demonstrated using dot blot and immunofluorescence analysis. This finding supports the notion that the pT2 plasmid can be used as anE. coli display system. This system can detect a foreign peptide of about 100 amino acid residues in length on the bacterial surface.  相似文献   

8.
We are developing a genetic approach to study with a single antibody the folding and topology of LamB, an integral outer membrane protein from Escherichia coli K-12. This approach consists of inserting the same reporter foreign antigenic determinant (the C3 epitope from poliovirus) at different sites of LamB so that the resulting hybrid proteins have essentially kept the in vivo biological properties of LamB and therefore its cellular location and structure; the corresponding sites are called permissive sites. A specific monoclonal antibody can then be used to examine the position of the reporter epitope with respect to the protein and the membrane. We present an improved and efficient procedure that led us to identify eight new permissive sites in LamB. These sites appear to be distributed on both sides of the membrane. At one of them (after residue 253), the C3 epitope was detected on intact bacteria, providing the first direct argument for exposure of the corresponding LamB region at the cell surface. At this site as well as at four others (after residues 183, 219, 236, and 352), the C3 epitope could be detected with the C3 monoclonal antibody at the surface of the extracted trimeric LamB-C3 hybrid proteins. We provide a number of convergent arguments showing that the hybrid proteins are not strongly distorted with respect to the wild-type protein so that the conclusions drawn are also valid for this protein. These conclusions are essentially in agreement with the proposed folding model for the LamB protein. They agree, in particular, with the idea that regions 183 and 352 are exposed to the periplasm. In addition, they suggest that region 236 is buried at the external face of the outer membrane and that region 219 is exposed to the periplasm. Including the 3 sites previously determined, 11 permissive sites are now available in LamB, including 3 at the cell surface and most probably at least 3 in the periplasm. We discuss the nature of such sites, the generalization of this approach to other proteins, and possible applications.  相似文献   

9.
We have targeted two foreign B cell antigenic determinants to different locations in the Escherichia coli cell to examine what effect this had on antibody responses elicited by the recombinant bacteria. The two epitopes were the 132-145 peptide from the PreS2 region of hepatitis B virus and the C3 neutralization epitope of poliovirus type 1. They were each expressed in two forms either on the surface, as part of the outer-membrane protein LamB, or soluble in the periplasm, as part of the periplasmic protein MalE. When live bacteria expressing the foreign epitope at the cell surface were used for immunization of mice, they induced T cell-independent antibody responses characterized by a rapid induction of IgM and IgG antibodies. In contrast, when the same foreign epitope was inserted into the MalE protein, the antibody response was only detectable after 3 wk, belonged only to the IgG class and was strictly T cell dependent. This study has therefore identified two major pathways by which epitopes expressed by bacterial cells can stimulate specific antibody responses. The first pathway is mediated by direct activation of B cells by bacterial cell-surface Ag and does not require T cell help. The second pathway is T cell dependent and concerns Ag that can be released from the bacteria in a soluble form. We have also studied the effect of the exact position of the B cell antigenic determinant within the LamB protein and with respect to the outer membrane by comparing the immunogenicity of the PreS epitope inserted at three different permissive sites of LamB. The data indicated that to obtain an antibody response with intact bacteria, the epitope must be protruding sufficiently from the outside of the outer membrane. In contrast, when semipurified hybrid proteins were used as immunogen, the exact position of the B cell antigenic determinant within solubilized LamB protein does not influence its immunogenicity.  相似文献   

10.
We report the crystal structure of MalE-B133, a recombinant form of the maltodextrin-binding protein (MBP) of Escherichia coli carrying an inserted amino-acid sequence of a B-cell epitope from the preS2 region of the hepatitis B virus (HBV). The structure was determined by molecular replacement methods and refined to 2.7 Å resolution. MalE-B133 is an insertion/deletion mutant of MBP in which residues from positions 134 to 142, an external α helix in the wild-type structure, are replaced by a foreign peptide segment of 19 amino acids. The inserted residues correspond to the preS2 sequence from positions 132 to 145 and five flanking residues that arise from the creation of restriction sites. The conformation of the recombinant protein, excluding the inserted segment, closely resembles that of wild-type MBP in the closed maltose-bound form. MalE-B133 was shown by previous studies to display certain immunogenic and antigenic properties of the hepatitis B surface antigen (HBsAg), which contains the preS2 region. The crystal structure reveals the conformation of the first nine epitope residues (preS2 positions 132 to 140) exposed on the surface of the molecule. The remaining five epitope residues (preS2 positions 141 to 145) are not visible in electron density maps. The path of the polypeptide chain in the visible portion of the insert differs from that of the deleted segment in the structure of wild-type MBP, displaying a helical conformation at positions 134 to 140 (preS2 sequence numbering). A tripeptide (Asp-Pro-Arg) at the N terminus of the helix forms a stable structural motif that may be implicated in the cross-reactivity of anti-HBsAg antibodies with the hybrid protein. Proteins 27:1–8 © 1997 Wiley-Liss, Inc.  相似文献   

11.
The ferrichrome-iron receptor of Escherichia coli K-12 is FhuA (M(r), 78,992), the first component of an energy-dependent, high-affinity iron uptake pathway. FhuA is also the cognate receptor for bacteriophages T5, T1, phi 80, and UC-1, for colicin M and microcin 25, and for albomycin. To probe the topological organization of FhuA which enables recognition of these different ligands, we generated a library of 16 insertion mutations within the fhuA gene. Each insertion spliced a 13-amino-acid antigenic determinant (the C3 epitope of poliovirus) at a different position within FhuA. Immunoblotting of outer membranes with anti-FhuA and anti-C3 antibodies indicated that 15 of 16 FhuA.C3 proteins were present in the outer membrane in amounts similar to that observed for plasmid-encoded wild-type FhuA. One chimeric protein with the C3 epitope inserted after amino acid 440 of FhuA was present in the outer membrane in greatly reduced amounts. Strains overexpressing FhuA.C3 proteins were subjected to flow cytometric analysis using anti-FhuA monoclonal antibodies. Such analysis showed that (i) the chimeric proteins were properly localized and (ii) the wild-type FhuA protein structure had not been grossly altered by insertion of the C3 epitope. Twelve of sixteen strains expressing FhuA.C3 proteins were proficient in ferrichrome transport and remained sensitive to FhuA-specific phages. Three FhuA.C3 proteins, with insertions after amino acid 321, 405, or 417 of FhuA, were detected at the cell surface by flow cytometry using anti-C3 antibodies. These three chimeric proteins were all biologically active. We conclude that amino acids 321, 405, and 417 are surface accessible in wild-type FhuA.  相似文献   

12.
The gene encoding the Pseudomonas aeruginosa phosphate-specific porin OprP was subjected to both linker and epitope insertion mutageneses. Nine of the 13 linker mutant genes expressed protein at levels comparable to those obtained with the wild-type gene. These mutant proteins were shown, by indirect immunofluorescence with an OprP-specific antiserum, to be properly exposed at the cell surface. Four of the linker mutant genes expressed protein at reduced levels which were not detectable at the cell surface. A foreign epitope from the circumsporozoite form of the malarial parasite Plasmodium falciparum was cloned into the linker sites of 12 of the 13 mutant genes. Seven of the resultant epitope insertion mutant genes expressed surface-exposed protein. Two of these mutant genes presented the foreign epitope at surface-accessible regions as assessed by indirect immunofluorescence with a malarial epitope-specific monoclonal antibody. The data from these experiments were used to create a topological model of the OprP monomer.  相似文献   

13.
Earlier studies of a group of monoclonal antibody-resistant (mar) mutants of herpes simplex virus type 1 glycoprotein C (gC) operationally defined two distinct antigenic sites on this molecule, each consisting of numerous overlapping epitopes. In this report, we further define epitopes of gC by sequence analysis of the mar mutant gC genes. In 18 mar mutants studied, the mar phenotype was associated with a single nucleotide substitution and a single predicted amino acid change. The mutations were localized to two regions within the coding sequence of the external domain of gC and correlated with the two previously defined antigenic sites. The predicted amino acid substitutions of site I mutants resided between residues Gln-307 and Pro-373, whereas those of site II mutants occurred between amino acids Arg-129 and Glu-247. Of the 12 site II mutations, 9 induced amino acid substitutions within an arginine-rich segment of 8 amino acids extending from residues 143 to 151. The clustering of the majority of substituted residues suggests that they contribute to the structure of the affected sites. Moreover, the patterns of substitutions which affected recognition by antibodies with similar epitope specificities provided evidence that epitope structures are physically linked and overlap within antigenic sites. Of the nine epitopes defined on the basis of mutations, three were located within site I and six were located within site II. Substituted residues affecting the site I epitopes did not overlap substituted residues of site II, supporting our earlier conclusion that sites I and II reside in spatially distinct antigenic domains. A computer analysis of the distribution of charged residues and the predicted secondary structural features of wild-type gC revealed that the two antigenic sites reside within the most hydrophilic regions of the molecule and that the antigenic residues are likely to be organized as beta sheets which loop out from the surface of the molecule. Together, these data and our previous studies support the conclusion that the mar mutations identified by sequence analysis very likely occur within or near the epitope structures themselves. Thus, two highly antigenic regions of gC have now been physically and genetically mapped to well-defined domains of the protein molecule.  相似文献   

14.
Monoclonal antibodies (MAbs) to the hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus delineate seven overlapping antigenic sites which form a continuum on the surface of the molecule. Antibodies to five of these sites neutralize viral infectivity principally by preventing attachment of the virion to cellular receptors. Through the identification of single amino acid substitutions in variants which escape neutralization by MAbs to these five antigenic sites, a neutralization map of HN was constructed, identifying several residues that contribute to the epitopes recognized by MAbs which block the attachment function of the molecule. These epitopes are defined, at least in part, by three domains on HN: residues 193 to 201; 345 to 353 (which include the only linear epitope we have identified in HN); and a C-terminal domain composed of residues 494, 513 to 521, and 569. To identify HN residues directly involved in receptor recognition, each of the variants was tested for its ability to agglutinate periodate-modified chicken erythrocytes. One variant with a single amino acid substitution at residue 193 was 2.5- to 3-fold more resistant to periodate treatment of erythrocytes than the wild-type virus, suggesting that this residue influences the binding of virus to a sialic acid-containing receptor(s) on the cell surface.  相似文献   

15.
Three mutants of the maltose- or maltodextrin-binding protein encoded by the malE gene of Escherichia coli, with extensive genetic changes, have been purified and crystallized in different crystal forms. Two of these mutant proteins, MalE178 and MalE341, carry net deletions of seven and 13 residues, respectively, near the surface of the molecule. These mutations have very little effect on either the transport activity of the mutant strains or the sugar-binding activity of the purified mutant proteins. The third mutant protein involves the insertion of an 11-residue peptide of the C3 epitope from type 1 poliovirus VP1 protein into the MalE178 deletion mutant, with retention of essentially all the biological properties of the wild-type and the immunological properties of the C3 epitope. We are undertaking three-dimensional structure analysis in order to understand how the protein accommodates these large changes in its surface structure and how the C3 epitope retains its immunological properties in this new environment. The same system could be used to determine easily the structures of other peptide epitopes, especially those in proteins with unknown structures.  相似文献   

16.
To identify the major antigenic determinant of native Salmonella flagella of antigenic type d, we constructed a series of mutated fliCd genes with deletions and amino acid alterations in hypervariable region IV and in region of putative epitopes as suggested by epitope mapping with synthetic octameric peptides (T.M. Joys and F. Schödel, Infect. Immun. 59:3330-3332, 1991). The expressed product of most of the mutant genes, with deletions of up to 92 amino acids in region IV, assembled into functional flagella and conferred motility on flagellin-deficient hosts. Serological analysis of these flagella with different anti-d antibodies revealed that the peptide sequence centered at amino acids 229 to 230 of flagellin was a dominant B-cell epitope at the surface of d flagella, because replacement of these two amino acids alone or together with their flanking sequence by a tripeptide specified by a linker sequence eliminated most reactivity with antisera against wild-type d flagella as tested by enzyme-linked immunosorbent assay or by Western immunoblot. Functional analysis of the mutated flagellin genes with or without an insert suggested that amino acids 180 to 214 in the 5' part of hypervariable region IV (residues 181 to 307 of the total of 505) is important to the function of flagella. The hybrid proteins formed by insertion of peptide sequence pre-S1 12-47 of hepatitis B virus surface antigen into the deleted flagellins assembled into functional flagella, and antibody to the pre-S1 sequence was detected after immunization of mice with the hybrid protein. This suggests that such mutant flagellins containing heterologous epitopes have potential as vaccines.  相似文献   

17.
We previously developed a genetic approach to study, with a single antibody, the topology of the outer membrane protein LamB, an Escherichia coli porin with specificity towards maltodextrins and a receptor for bacteriophage lambda. Our initial procedure consisted of inserting at random the same reporter epitope (the C3 neutralization epitope from poliovirus) into permissive sites of LamB (i.e., sites which tolerate insertions without deleterious effects on the protein activities or the cell). A specific monoclonal antibody was then used to examine the position of the inserted epitope with respect to the protein and the membrane. In the present work, we set up a site-directed procedure to insert the C3 epitope at new sites in order to distinguish between two-dimensional folding models. This allowed us to identify two new surface loops of LamB and to predict another periplasmic exposed region. The results obtained by random and directed epitope tagging are analyzed in light of the recently published X-ray structure of the LamB protein. Study of 23 hybrid LamB-C3 proteins led to the direct identification of five of the nine external loops (L4, L5, L6, L7, and L9) and led to the prediction of four periplasmic loops (I1, I4, I5, and I8) of LamB. Nine of the hybrid proteins did not lead to topological conclusions, and none led to the wrong predictions or conclusions. The comparison indicates that parts of models based on secondary structure predictions alone are not reliable and points to the importance of experimental data in the establishment of outer membrane protein topological models. The advantages and limitations of genetic foreign epitope insertion for the study of integral membrane proteins are discussed.  相似文献   

18.
J Ronco  A Charbit  M Hofnung 《Biochimie》1990,72(2-3):183-189
LamB, an integral outer membrane protein of E coli K12, is highly resistant to protease digestion. We had previously genetically inserted a foreign sequence corresponding to an epitope from the poliovirus next to amino acids 146, 153, 189, and 374 of LamB. In 3 cases (sites 146, 153, 374), insertion of the foreign peptide did not extensively affect the functions of LamB (and therefore folding). In 2 cases (sites 146 and 374) the polio virus epitope was detectable on the bacterial surface with a specific monoclonal antibody. We show here that the 4 modified proteins are sensitive to trypsin, including on intact cells. The sizes of the major cleavage products is that expected for proteolysis at or near the sequences inserted. In 1 case (site 153), this was directly demonstrated by protein sequencing. The results confirm the cell surface exposure of the regions of residues 153 and 374 and provide information on the regions around residues 146 and 189. Perspectives and limitations of this approach for fine studies on the mode of insertion of membrane proteins are briefly discussed.  相似文献   

19.
The expression of mouse mammary tumor virus (MMTV) glycoproteins on the surface of stably infected mouse lymphoma cell line W7MG1 is dramatically increased by glucocorticoid hormones. A variant cell line, W7M.TS1, was selected from W7MG1 for its lack of expression of MMTV glycoproteins on the cell surface in response to treatment with glucocorticoid. Hormonal stimulation of MMTV RNA levels and hormone-induced cytolysis occurred normally in the variant cells. Furthermore, the rates of production of the precursor and mature forms of MMTV glycoproteins in the presence of glucocorticoid were similar in variant and wild-type cells. However, the accumulation of MMTV glycoproteins on the cell surface after hormone treatment was delayed by about 8 h in the variant relative to wild-type cells. The steady-state level of a constitutively expressed cellular protein, T200, on the variant cell surface was comparable to that on wild-type cells. However, in pulse-chase experiments, the appearance of newly synthesized T200 on the cell surface was delayed in the variant compared with wild-type cells. Another glucocorticoid hormone response, removal of H-2 class I antigens from the cell surface, was also delayed in the variant relative to wild-type cells, suggesting that turnover or internalization of cell surface glycoproteins may also be affected in the variant. The defects in the variant cell line were observed at 37 degrees C, but not at 31 degrees C; the variant cells grew normally at both temperatures. This variant phenotype defines a new genetic entity that is important for transport of glycoproteins between internal microsomal compartments and the cell surface.  相似文献   

20.
Surface display of foreign epitopes on the Lactobacillus brevis S-layer   总被引:1,自引:0,他引:1  
So far, the inability to establish viable Lactobacillus surface layer (S-layer) null mutants has hampered the biotechnological applications of Lactobacillus S-layers. In this study, we demonstrate the utilization of Lactobacillus brevis S-layer subunits (SlpA) for the surface display of foreign antigenic epitopes. With an inducible expression system, L. brevis strains producing chimeric S-layers were obtained after testing of four insertion sites in the slpA gene for poliovirus epitope VP1, that comprises 10 amino acids. The epitope insertion site allowing the best surface expression was used for the construction of an integration vector carrying the gene region encoding the c-Myc epitopes from the human c-myc proto-oncogene, which is composed of 11 amino acids. A gene replacement system was optimized for L. brevis and used for the replacement of the wild-type slpA gene with the slpA-c-myc construct. A uniform S-layer, displaying on its surface the desired antigen in all of the S-layer protein subunits, was obtained. The success of the gene replacement and expression of the uniform SlpA-c-Myc recombinant S-layer was confirmed by PCR, Southern blotting MALDI-TOF mass spectrometry, whole-cell enzyme-linked immunosorbent assay, and immunofluorescence microscopy. Furthermore, the integrity of the recombinant S-layer was studied by electron microscopy, which indicated that the S-layer lattice structure was not affected by the presence of c-Myc epitopes. To our knowledge, this is the first successful expression of foreign epitopes in every S-layer subunit of a Lactobacillus S-layer while still maintaining the S-layer lattice structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号