首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid binding (IC(50) = 3.6 microM), and potent AMPA receptor agonist activity on cortical neurons (EC(50) = 0.25 microM), whereas (R)-ACPA was essentially inactive. Like (S)-ACPA, (S)-demethyl-ACPA displayed high AMPA receptor affinity (IC(50) = 0.039 microM), but was found to be a relatively weak AMPA receptor agonist (EC(50) = 12 microM). The stereoselectivity observed for demethyl-ACPA was high when based on AMPA receptor affinity (eudismic ratio = 250), but low when based on electrophysiological activity (eudismic ratio = 10). (R)-Demethyl-ACPA also possessed a weak NMDA receptor antagonist activity (IC(50) = 220 microM). Among the enantiomers tested, only (S)-demethyl-ACPA showed activity at metabotropic receptors, being a weak antagonist at the mGlu(2) receptor subtype (K(B) = 148 microM).  相似文献   

2.
Two 3-(5-tetrazolylmethoxy) analogues, 1a and 1b, of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA), a selective AMPA receptor agonist, and (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), a GluR5-preferring agonist, were synthesized. Compounds 1a and 1b were pharmacologically characterized in receptor binding assays, and electrophysiologically on homomeric AMPA receptors (GluR1-4), homomeric (GluR5 and GluR6) and heteromeric (GluR6/KA2) kainic acid receptors, using two-electrode voltage-clamped Xenopus laevis oocytes expressing these receptors. Both analogues proved to be antagonists at all AMPA receptor subtypes, showing potencies (Kb=38-161 microM) similar to that of the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxazolyl]propionic acid (AMOA) (Kb=43-76 microM). Furthermore, the AMOA analogue, 1a, blocked two kainic acid receptor subtypes (GluR5 and GluR6/KA2), showing sevenfold preference for GluR6/KA2 (Kb=19 microM). Unlike the iGluR antagonist (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid [(S)-ATPO], the corresponding tetrazolyl analogue, 1b, lacks kainic acid receptor effects. On the basis of docking to a crystal structure of the isolated extracellular ligand-binding core of the AMPA receptor subunit GluR2 and a homology model of the kainic acid receptor subunit GluR5, we were able to rationalize the observed structure-activity relationships.  相似文献   

3.
2-Amino-3-[3-hydroxy-5-(2-thiazolyl)-4-isoxazolyl]propionic acid (1) is a potent AMPA receptor agonist with moderate affinity for native kainic acid (KA) receptors, whereas (S)-E-4-(2,2-dimethylpropylidene)glutamic acid (3) show high affinity for the GluR5 subtype of KA receptors and much lower affinity for the GluR2 subtype of AMPA receptors. As an attempt to develop new pharmacological tools for studies of GluR5 receptors, (S)-E-4-(2-thiazolylmethylene)glutamic acid (4a) was designed as a structural hybrid between 1 and 3. 4a was shown to be a potent GluR5 agonist and a high affinity ligand and to indiscriminately bind to the AMPA receptor subtypes GluR1-4 with lower affinities. Compounds 4b-h, in which the 2-thiazolyl substituent of 4a was replaced by other heterocyclic rings, which have previously been incorporated as 5-substituents in AMPA analogues, as exemplified by 1 were also synthesized. Compounds 4b-h were either inactive (4e,f) or weaker than 4a as affinity ligands for GluR1-4 and GluR5 with relative potencies comparable with those of the corresponding AMPA analogues as AMPA receptor agonists. Compounds 4a-h may be useful tools for the progressing pharmacophore mapping of the GluR5 agonist binding site.  相似文献   

4.
We tested the hypothesis that subtypes of glutamate receptors (GluRs) are differentially expressed during corticogenesis. The neocortex of fetal sheep (term = approximately 145 days) was evaluated by immunoblotting and immunohistochemistry to determine the protein expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (GluR1, GluR2/GluR3 [GluR2/3], and GluR4), kainate (KA) receptors (GluR6/GluR7 [GluR6/7]), and a metabotropic GluR (mGluR5). AMPA/KA receptors and mGluR5 were expressed in neocortex by midgestation. GluR1 and mGluR5 expression increased progressively, with expression being maximal just before birth and then decreasing postnatally. GluR2/3 and GluR6/7 levels increased progressively during corticogenesis to reach adult levels near term. GluR4 was expressed at low levels during corticogenesis and in adult neocortex. The localizations of GluRs in the developing neocortex were distinct. Each GluR had a differential localization within the marginal zone, cortical plate, and subplate. GluR subtypes were expressed in laminar patterns before major cytoarchitectonic segregation occurred based on Nissl staining, although connectional patterns were emergent by midgestation based on labeling of corticostriatal projections with DiI. The GluR localizations changed during cortical plate segregation, resulting in highly differential distributions in the neocortex at term. AMPA/KA receptors were expressed transiently in proliferative zones and in developing white matter. Oligodendrocytes in fetal brain expressed AMPA receptors. The expression of ion channel and metabotropic GluR subtypes is dynamic during corticogenesis, with subtype- and subunit-specific regulation occurring during the laminar segregation of the cortical plate and differentiation of the neocortex.  相似文献   

5.
We have previously shown that (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (2-Me-Tet-AMPA) is a selective agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, markedly more potent than AMPA itself, whereas the isomeric compound 1-Me-Tet-AMPA is essentially inactive. We here report the enantiopharmacology of 2-Me-Tet-AMPA in radioligand binding and cortical wedge electrophysiological assay systems, and using cloned AMPA (GluR1-4) and kainic acid (KA) (GluR5, 6, and KA2) receptor subtypes expressed in Xenopus oocytes. 2-Me-Tet-AMPA was resolved using preparative chiral HPLC. Zwitterion (-)-2-Me-Tet-AMPA was assigned the (R)-configuration based on an X-ray crystallographic analysis supported by the elution order of (-)- and (+)-2-Me-Tet-AMPA using four different chiral HPLC columns and by circular dichroism spectra. None of the compounds tested showed detectable affinity for N-methyl-D-aspartic acid (NMDA) receptor sites, and (R)-2-Me-Tet-AMPA was essentially inactive in all of the test systems used. Whereas (S)-2-Me-Tet-AMPA showed low affinity (IC(50) = 11 microM) in the [(3)H]KA binding assay, it was significantly more potent (IC(50) = 0.009 microM) than AMPA (IC(50) = 0.039 microM) in the [(3)H]AMPA binding assay, and in agreement with these findings, (S)-2-Me-Tet-AMPA (EC(50) = 0.11 microM) was markedly more potent than AMPA (EC(50) = 3.5 microM) in the electrophysiological cortical wedge model. In contrast to AMPA, which showed comparable potencies (EC(50) = 1.3-3.5 microM) at receptors formed by the AMPA receptor subunits (GluR1-4) in Xenopus oocytes, more potent effects and a substantially higher degree of subunit selectivity were observed for (S)-2-Me-Tet-AMPA: GluR1o (EC(50) = 0.16 microM), GluR1o/GluR2i (EC(50) = 0.12 microM), GluR3o (EC(50) = 0.014 microM) and GluR4o (EC(50) = 0.009 microM). At the KA-preferring receptors GluR5 and GluR6/KA2, (S)-2-Me-Tet-AMPA showed much weaker agonist effects (EC(50) = 8.7 and 15.3 microM, respectively). It is concluded that (S)-2-Me-Tet-AMPA is a subunit-selective and highly potent AMPA receptor agonist and a potentially useful tool for studies of physiological AMPA receptor subtypes.  相似文献   

6.
More than 50 structures have been reported on the ligand-binding core of the ionotropic glutamate receptor iGluR2 that belongs to the 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid-type of receptors. In contrast, the ligand-binding core of the kainic acid-type receptor iGluR5 has only been crystallized with three different ligands. Hence, additional structures of iGluR5 are needed to broaden the understanding of the ligand-binding properties of iGluR5, and the conformational changes leading to channel opening and closing. Here, we present two structures of the ligand-binding core of iGluR5; one as a complex with the partial agonist (2S,3S,4S)-3-carboxymethyl-4-[(1Z,3E,5R)-5-carboxy-1-methyl-hexa-1,3-dienyl]-pyrrolidine-2-carboxylic acid (domoic acid) and one as a complex with the antagonist (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid ((S)-ATPO). In agreement with the partial agonist activity of domoic acid, the ligand-binding core of the iGluR5 complex is stabilized by domoic acid in a conformation that is 11 degrees more open than the conformation observed in the full agonist (S)-glutamic acid complex. This is primarily caused by the 5-carboxy-1-methyl-hexa-1,3-dienyl moiety of domoic acid and residues Val685-Thr690 of iGluR5. An even larger domain opening of 28 degrees is introduced upon binding of the antagonist (S)-ATPO. It appears that the span of domain opening is much larger in the ligand-binding core of iGluR5 (30 degrees) compared with what has been observed in iGluR2 (19 degrees ). Similarly, much larger variation in the distances between transmembrane linker residues in the two protomers comprising the dimer is observed in iGluR5 as compared with iGluR2.  相似文献   

7.
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) class of ionotropic glutamate receptors comprises four different subunits: iGluR1/iGluR2 and iGluR3/iGluR4 forming two subgroups. Three-dimensional structures have been reported only of the ligand-binding core of iGluR2. Here, we present two X-ray structures of a soluble construct of the R/G unedited flip splice variant of the ligand-binding core of iGluR4 (iGluR4i(R)-S1S2) in complex with glutamate or AMPA. Subtle, but important differences are found in the ligand-binding cavity between the two AMPA receptor subgroups at position 724 (Tyr in iGluR1/iGluR2 and Phe in iGluR3/iGluR4), which in iGluR4 may lead to displacement of a water molecule and hence points to the possibility to make subgroup specific ligands.  相似文献   

8.
(S)-Glutamic acid (Glu), the major excitatory neurotransmitter in the central nervous system, operates through ionotropic as well as metabotropic receptors and is considered to be involved in certain neurological disorders and degenerative brain diseases that are currently without any satisfactory therapeutic treatment. Until recently, development of selective Glu receptor agonists had mainly been based on lead compounds, which were frequently naturally occurring excitants structurally related to Glu. These Glu receptor agonists generally contain heterocyclic acidic moieties, which has stimulated the use of bioisosteric replacement approaches for the design of subtype-selective agonists. Furthermore, most of these leads are conformationally restricted and stereochemically well-defined Glu analogs. Crystallization of the agonist binding domain of the GluR2 subunit of the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of ionotropic Glu receptors in the presence or absence of an agonist has provided important information about ligand-receptor interaction mechanisms. The availability of these binding domain crystal structures has formed the basis for rational design of ligands, especially for the AMPA and kainate subtypes of ionotropic Glu receptors. This mini-review will focus on structure-activity relationships on AMPA and kainate receptor agonists with special emphasis on stereochemical and three-dimensional aspects.  相似文献   

9.
In order to identify new subtype-selective (S)-glutamate (Glu) receptor ligands we have synthesized (RS)-2-amino-3-(3-hydroxy-1,2,5-thiadiazol-4-yl)propionic acid [(RS)-TDPA]. Resolution of (RS)-TDPA by chiral chromatography was performed using a Crownpac CR(+) column affording (R)- and (S)-TDPA of high enantiomeric purity (enantiomeric excess=99.9%). An X-ray crystallographic analysis revealed that the early eluting enantiomer has R-configuration. Both enantiomers showed high affinity as well as high agonist activity at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, determined using a [(3)H]AMPA binding assay and an electrophysiological model, respectively. The affinities and agonist activities obtained for (R)-TDPA (IC(50)=0.265 microM and EC(50)=6.6 microM, respectively) and (S)-TDPA (IC(50)=0.065 microM and EC(50)=20 microM, respectively) revealed a remarkably low AMPA receptor stereoselectivity, (S)-TDPA showing the highest affinity and (R)-TDPA the most potent agonist activity. In addition, (S)-TDPA was shown to interact with synaptosomal Glu uptake sites displacing [(3)H](R)-aspartic acid (IC(50 ) approximately 390 microM). An enantiospecific and subtype-selective agonist activity was observed for (S)-TDPA at group I metabotropic Glu (mGlu) receptors (EC(50)=13 microM at mGlu(5) and EC(50)=95 microM at mGlu(1)).  相似文献   

10.
The effect of lesions induced by bilateral intracerebroventricular (i.c.v.) injection of quinolinate (250 nmol of QUIN/ventricle), a selective N-methyl-D-aspartate (NMDA) receptor agonist, on [3H]glutamate ([3H]Glu) binding to the main types of both ionotropic and metabotropic glutamate receptors (iGluR and mGluR) was investigated in synaptic membrane preparations from the hippocampi of 50-day-old rats. The membranes from QUIN injured brains revealed significantly lowered binding in iGluR (by 31%) as well as in mGluR (by 22%) as compared to the controls. Using selected glutamate receptor agonists as displacers of [3H]Glu binding we found that both the NMDA-subtype of iGluR and group I of mGluR are involved in this decrease of binding. Suppression of nitric oxide (NO) production by N(G)-nitro-L-arginine (50 nmol of NARG/ventricle) or the increase of NO generation by 3-morpholinylsydnoneimine (5 nmol of SIN-1/ventricle) failed to alter [3H]Glu or [3H]CPP (3-((D)-2-carboxypiperazin-4-yl)-[1,2-(3)H]-propyl-1-phosphonic acid; NMDA-antagonist) binding declines caused by QUIN-lesions. Thus, our findings indicate that both the NMDA-subtype of iGluR and group I of mGluR are susceptible to the QUIN-induced neurodegeneration in the rat hippocampus. However, the inhibition of NO synthesis did not reveal any protective action in the QUIN-evoked, NMDA-receptor mediated decrease of [3H]Glu binding. Therefore, the additional mechanisms of QUIN action, different from direct NMDA receptor activation/NO production (e.g. lipid peroxidation induced by QUIN-Fe-complexes) cannot be excluded.  相似文献   

11.
In newborn pigs, vasodilation of pial arterioles in response to glutamate is mediated via carbon monoxide (CO), a gaseous messenger endogenously produced from heme degradation by a heme oxygenase (HO)-catalyzed reaction. We addressed the hypothesis that ionotropic glutamate receptors (iGluRs), including N-methyl-D-aspartic acid (NMDA)- and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA)/kainate-type receptors, expressed in cortical astrocytes mediate glutamate-induced astrocyte HO activation that leads to cerebral vasodilation. Acute vasoactive effects of topical iGluR agonists were determined by intravital microscopy using closed cranial windows in anesthetized newborn pigs. iGluR agonists, including NMDA, (±)1-aminocyclopentane-cis-1,3-dicarboxylic acid (cis-ACPD), AMPA, and kainate, produced pial arteriolar dilation. Topical L-2-aminoadipic acid, a gliotoxin that selectively disrupts glia limitans, reduced vasodilation caused by iGluR agonists, but not by hypercapnia, bradykinin, or sodium nitroprusside. In freshly isolated and cultured cortical astrocytes constitutively expressing HO-2, iGluR agonists NMDA, cis-ACPD, AMPA, and kainate rapidly increased CO production two- to threefold. Astrocytes overexpressing inducible HO-1 had high baseline CO but were less sensitive to glutamate stimulation of CO production when compared with HO-2-expressing astrocytes. Glutamate-induced astrocyte HO-2-mediated CO production was inhibited by either the NMDA receptor antagonist (R)-3C4HPG or the AMPA/kainate receptor antagonist DNQX. Accordingly, either antagonist abolished pial arteriolar dilation in response to glutamate, NMDA, and AMPA, indicating functional interaction among various subtypes of astrocytic iGluRs in response to glutamate stimulation. Overall, these data indicate that the astrocyte component of the neurovascular unit is responsible for the vasodilation response of pial arterioles to topically applied glutamate via iGluRs that are functionally linked to activation of constitutive HO in newborn piglets.  相似文献   

12.
Abstract: Glutamate activates a family of receptors, known as metabotropic glutamate receptors (mGluRs), that are coupled to various second messenger systems through G proteins. All mGluR subtypes characterized to date in rat brain slices are activated by the glutamate analogue 1-aminocyclopentane-1 S ,3 R -dicarboxylic acid (1 S ,3 R -ACPD). However, few agonists are available that selectively activate specific mGluR subtypes. We report that the glutamate analogue ( R,S )-4-bromohomoibotenate (BrHI) stimulates phosphoinositide hydrolysis in rat cerebral cortical slices in a concentration-dependent manner (EC50 = 190 µ M ). The response to BrHI is stereoselective and is not blocked by ionotropic glutamate receptor antagonists. It is interesting that the responses to BrHI and 1 S ,3 R -ACPD are completely additive, suggesting that these responses are mediated by different receptor subtypes. Consistent with this, the response to BrHI is insensitive to l -2-amino-3-phosphonopropionic acid ( l -AP3), whereas the response to 1 S ,3 R -ACPD is partially blocked by l -AP3. BrHI does not activate metabotropic receptors coupled to changes in cyclic AMP accumulation or activation of phospholipase D. Thus, BrHI seems to activate specifically a phosphoinositide hydrolysis-linked mGluR that is insensitive to 1 S ,3 R -ACPD. This compound may prove useful as a tool for elucidating the roles of different mGluR subtypes in mammalian brain.  相似文献   

13.
The phosphono amino acid, (RS)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl+ ++]propio nic acid (ATPO), is a structural hybrid between the NMDA antagonist (RS)-2-amino-7-phosphonoheptanoic acid (AP7) and the AMPA and GluR5 agonist, (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA). ATPO has been resolved into (S)-ATPO and (R)-ATPO using chiral HPLC, and the absolute stereochemistry of the two enantiomers was established by an X-ray crystallographic analysis of (R)-ATPO. (S)-ATPO and (R)-ATPO were characterized pharmacologically using rat brain membrane binding and electrophysiologically using the cortical wedge preparation as well as homo- or heteromeric GluR1-4, GluR5-6, and KA2 receptors expressed in Xenopus oocytes. (R)-ATPO was essentially inactive as an agonist or antagonist in all test systems. (S)-ATPO was an inhibitor of the binding of [(3)H]AMPA (IC(50) = 16 +/- 1 microM) and of [(3)H]-6-cyano-7-nitroquinoxaline-2,3-dione ([(3)H]CNQX) (IC(50) = 1.8 +/- 0.2 microM), but was inactive in the [(3)H]kainic acid and the [(3)H]-(RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([(3)H]CPP) binding assays. (S)-ATPO did not show detectable agonist effects at any of the receptors under study, but antagonized AMPA-induced depolarization in the cortical wedge preparation (IC(50) = 15 +/- 1 microM). (S)-ATPO also blocked kainic acid agonist effects at GluR1 (K(i) = 2.0 microM), GluR1+2 (K(i) = 3.6 microM), GluR3 (K(i) = 3.6 microM), GluR4 (K(i) = 6.7 microM), and GluR5 (K(i) = 23 microM), but was inactive at GluR6 and GluR6+KA2. Thus, although ATPO is a structural analog of AP7 neither (S)-ATPO nor (R)-ATPO are recognized by NMDA receptor sites.  相似文献   

14.
Two hybrid analogues of the kainic acid receptor agonists, 2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA) and (2S,4R)-4-methylglutamic acid ((2S,4R)-4-Me-Glu), were designed, synthesized, and characterized in radioligand binding assays using cloned ionotropic and metabotropic glutamic acid receptors. The (S)-enantiomers of E-4-(2,2-dimethylpropylidene)glutamic acid ((S)-1) and E-4-(3,3-dimethylbutylidene)glutamic acid ((S)-2) were shown to be selective and high affinity GluR5 ligands, with Ki values of 0.024 and 0.39 microM, respectively, compared to Ki values at GluR2 of 3.0 and 2.0 microM. respectively. Their affinities in the [3H]AMPA binding assay on native cortical receptors were shown to correlate with their GluR2 affinity rather than their GluR5 affinity. No affinity for GluR6 was detected (IC50 > 100 microM).  相似文献   

15.
16.
We present data on the antiepileptic potency of 2-methyl-4-oxo-3H-quinazoline-3-acetyl piperidine (Q5) in juvenile (P9-13) rat hippocampal slices and in particular Q5's action mechanism and target. Q5 (200-500 microM), but not alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/Kainate receptor antagonists blocked low-[Mg2+]-induced seizure-like events (SLE) in the CA3 region. Q5 (100 microM) decreased Glu-induced [35S]guanosine 5'-O-(3-thiotriphosphate) binding enhancement in brain homogenates, without interaction with ionotropic Glu receptor sites and Glu transport. In voltage-clamped CA3 pyramidal cells, Q5 (500 microM) depressed activities of spontaneous excitatory and inhibitory postsynaptic currents without affecting miniature inhibitory currents. Metabotropic Glu receptor (mGluR) subtype antagonists affected network excitability dissimilarly. Intracellular Ca2+ ion transients induced by the mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) were suppressed by Q5. Agreeing predictions obtained by modelling Q5 binding to different experimental conformations of mGlu1, Q5 was bound partially to an mGluR binding site in the presence of 1mM ACPD. Findings suggest the apparent involvement of a novel phenotype of action or a new mGluR subtype in the specific suppression of epileptiform activity by Q5 through the depression of network excitability.  相似文献   

17.
Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA) analogs, and the synthesis, stereochemistry, and enantiopharmacology of 3-methyl-AA (4a-d), 4-methyl-AA (5a-d), 5-methyl-AA (6a-d), and (E)-Delta(4)-5-methyl-AA (7a and 7b) are reported. The compounds were resolved using chiral HPLC and the configurational assignments of the enantiomers were based on X-ray crystallographic analyses, chemical correlation, and CD spectral analyses. The effects of the individual stereoisomers at ionotropic and metabotropic (S)-Glu receptors (iGluRs and mGluRs) were characterized. Compounds with S-configuration at the alpha-carbon generally showed mGluR2 agonist activity of similar or slightly lower potencies than (S)-AA [e.g., EC(50) = 76 microM for (2S,4S)-4-methyl-AA (5a) as compared to EC(50) = 35 microM for (S)-AA]. The position of the methyl substituent had a profound effect on the observed pharmacology, whereas the absolute stereochemistry at the methylated carbon atom had a very limited effect on pharmacology. Structure-activity relationships at iGluRs in the rat cortical wedge preparation showed a complex pattern, some compounds being NMDA receptor agonists [e.g., EC(50) =110 microM for (2S,5RS)-5-methyl-AA (6a,b)] and some compounds showing NMDA receptor antagonist effects [e.g., IC(50) = 300 microM for (2R,4S)-4-methyl-AA (5d)]. The two unsaturated analogs (S)- (7a) and (R)-(E)-Delta(4)-5-methyl-AA (7b) turned out to be a weak AMPA receptor agonist and a weak mixed NMDA/AMPA receptor antagonist, respectively.  相似文献   

18.
Abstract: A photolabile trifluoromethyldiazoketone derivative of kainate (KA), (2' S ,3' S ,4' R )-2'-carboxy-4'-(2-diazo-1-oxo-3,3,3-trifluoropropyl)-3'-pyrrolidinyl acetate (DZKA), was synthesized and evaluated as an irreversible inhibitor of the high-affinity KA site on rat forebrain synaptic plasma membranes (SPMs). In the absence of UV irradiation, DZKA preferentially blocked [3H]KA binding with an IC50 of 0.63 µ M , a concentration that produced little or no inhibition at AMPA or NMDA sites. At 100 µ M , however, DZKA inhibited [3H]AMPA and l -[3H]glutamate binding by ∼50%. When examined electrophysiologically in HEK293 cells expressing human KA (GluR6) or AMPA (GluR1) subtypes, DZKA acted preferentially at KA receptors as a weak agonist. DZKA also exhibited little or no excitotoxic activity in mixed rat cortical cultures. Irreversible inhibition was assessed by pretreating SPMs with DZKA (50 µ M ) in the presence of UV irradiation, removing unbound DZKA, and then assaying the reisolated SPMs for radioligand binding. This protocol produced a selective and irreversible loss of ∼50% of the [3H]KA sites. The binding was recoverable in SPMs pretreated with DZKA or UV alone. Coincubation with l -glutamate prevented the loss in [3H]KA binding, suggesting that the inactivation occurred at or near the ligand binding site. These results are consistent with the action of DZKA as a photoaffinity ligand for the KA site and identify the analogue as a valuable probe for future investigations of receptor structure and function.  相似文献   

19.
Effects of application of glutamate and glutamatergic ligands were studied to characterize the receptors for glutamate present on the soma membrane of the dorsal unpaired median (DUM) neurons in the thoracic ganglia of the cockroach, Periplaneta americana, using the intracellular recording technique. Application of L-glutamate did not block the GABA-response, and application of beta-guanidino-propionic acid, a competitive antagonist for GABA, failed to block the response to L-glutamate. These results indicate that most of L-glutamate action may not be mediated by a GABA-activated channel. To examine glutamate receptor types on the DUM neurons, glutamate receptor agonists were applied. The ionotropic glutamate receptor (iGluR) agonists evoked depolarizations with the following relative rank of order of potency: kainate > AMPA > quisqualate. Metabotropic glutamate receptor (mGluR) agonists also elicited membrane depolarizations or hyperpolarizations associated with an increase in membrane conductance. The mGluR agonists evoked depolarizations or hyperpolarizations with the following relative rank of order: L-CCG-1 > 1S, 3R-ACPD > L-AP4. Depolarization of the same DUM neuron was detected following exposure of kainate and L-CCG-I, suggesting the coexistence of distinct iGluR and mGluR types. A membrane permeable cAMP analog, CPT-cAMP, could not mimic the effect of mGluR agonists. The mGluR selective antagonists, MCCG and MCPG, failed to antagonize the response to mGluR agonists. The involvement of cAMP in the mGluR response was not confirmed in DUM neurons. Although the functional roles of these receptors are unknown, it might be possible then that these extrasynaptic receptors have a modulatory effect on the excitability of the DUM neurons.  相似文献   

20.
Constitutive expression of mRNA was seen for the vesicular glutamate transporter brain-specific Na(+)-dependent inorganic phosphate cotransporter (BNPI), but not differentiation-associated Na(+)-dependent inorganic phosphate cotransporter, in rat calvarial osteoblasts cultured for 7 and 21 days in vitro (DIV). Three different agonists for ionotropic glutamate receptors (iGluR) at 1mM, as well as 50mM KCl, significantly increased the release of endogenous L-glutamate from osteoblasts cultured for 7DIV when determined 5 min after the addition by using a high performance liquid chromatograph. The inhibitor of desensitization of DL-alpha-amino-3-hydroxy-5-methylisoxasole-4-propionate (AMPA) receptors cyclothiazide significantly potentiated and prolonged the release of endogenous L-glutamate evoked by AMPA in a dose-dependent manner. The release evoked by AMPA was significantly prevented by the addition of an AMPA receptor antagonist as well as by the removal of Ca(2+) ions. These results suggest that endogenous L-glutamate could be released from intracellular vesicular constituents associated with BNPI through activation of particular iGluR subtypes expressed in cultured rat calvarial osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号