首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the chick the inducing power of the hypoblast for primitive streak was assumed to reach its maximum at the beginning of the primitive streak stage and to last until its completion. It was therefore of interest to trace the protein synthetic activity of the epiblast and hypoblast during five successive developmental stages and to correlate them with the known morphogenetic events.The investigation was done along two lines: 1) A quantitative survey was made of the uptake of tritiated phenylalanine into epiblasts versus hypoblasts and their incorporation into trichloroacetic acid-precipitable protein. 2) Incorporation of label into protein was followed by a comparative investigation of the electropherograms of epiblast versus hypoblast at the different stages.The quantitative survey has shown an almost uniform and rather low incorporation of label into protein in the hypoblast layer with a very short period of doubled activity between full hypoblast and initial primitive streak (p.s.). During this period the inductive capacity of the hypoblast for primitive streak was supposed to reach its maximal value.The qualitative survey indicated different patterns of incorporation in the two layers studied. Of special interest are two peaks (III and IV) which appear in the hypoblast previous to p.s. formation at the time of its augmented synthetic activity which also coincides with the onset of its inductive capacity. At later stages two similar peaks appear in the epiblast. It is suggested that a protein included in the above peaks might represent the inductor of the primitive streak.  相似文献   

2.
The hypoblast (equivalent to the mouse anterior visceral endoderm) of the chick embryo plays a role in regulating embryonic polarity. Surprisingly, hypoblast removal causes multiple embryonic axes to form, suggesting that it emits an inhibitor of axis formation. We show that Cerberus (a multifunctional antagonist of Nodal, Wnt, and BMP signaling) is produced by the hypoblast and inhibits primitive streak formation. This activity is mimicked by Cerberus-Short (CerS), which only inhibits Nodal. Nodal misexpression can initiate an ectopic primitive streak, but only when the hypoblast is removed. We propose that, during normal development, the primitive streak forms only when the hypoblast is displaced away from the posterior margin by the endoblast, which lacks Cerberus.  相似文献   

3.
4.
The competence of stage XIII chick epiblast which under the influence of an inductive hypoblast is directed to form a normal primitive streak, is affected by 5-bromodeoxyuridine (BUdR). The BUdR-treated epiblast forms an atypical primitive streak and no axial mesoderm. However, a nonorganized mesenchymal layer is formed between the epiblast and the hypoblast, and atypical neural tissue in the epiblast. BUdR interferes neither with hypoblast formation nor with its inductivity even when blastoderms are treated with BUdR as early as uterine stage VIII and later.  相似文献   

5.
The marginal zone of the chick embryo has been shown to play an important role in the formation of the hypoblast and of the primitive streak. In this study, time-lapse filming, fate mapping, ablation and transplantation experiments were combined to study its contribution to these structures. It was found that the deep (endodermal) portion of the posterior marginal zone contributes to the hypoblast and to the junctional endoblast, while the epiblast portion of the same region contributes to the epiblast of the primitive streak and to the definitive (gut) endoderm derived from it. Within the deep part of the posterior marginal zone, a subpopulation of HNK-1-positive cells contributes to the hypoblast. Removal of the deep part of the marginal zone prevents regeneration of the hypoblast but not the formation of a primitive streak. Removal of both layers of the marginal zone leads to a primitive streak of abnormal morphology but mesendodermal cells nevertheless differentiate. These results show that the two main properties of the posterior marginal zone (contributing to the hypoblast and controlling the site of primitive streak formation) are separable, and reside in different germ layers. This conclusion does not support the idea that the influence of the posterior marginal zone on the development of axial structures is due to it being the source of secondary hypoblast cells.  相似文献   

6.
We have investigated the patterns of tissue flow underlying the formation of the primitive streak in the chick embryo. Analysis of time-lapse sequences of brightfield images to extract the tissue velocity field and of fluorescence images of small groups of DiI-labelled cells have shown that epiblast cells move in two large-scale counter-rotating streams, which merge at the site of streak formation. Despite the large-scale tissue flows, individual cells appear to move little relative to their neighbours. As the streak forms, it elongates in both the anterior and posterior directions. Inhibition of actin polymerisation via local application of the inhibitor latrunculin A immediately terminates anterior extension of the streak tip, but does not prevent posterior elongation. Inhibition of actin polymerisation at the base of the streak completely inhibits streak formation, implying that continuous movement of cells into the base of the forming streak is crucial for extension. Analysis of cycling cells in the early embryo shows that cell-cycle progression in the epiblast is quite uniform before the primitive streak forms then decreases in the central epiblast and incipient streak and increases at the boundary between the area pellucida and area opaca during elongation. The cell-cycle inhibitor aphidicolin, at concentrations that completely block cell-cycle progression, permits initial streak formation but arrests development during extension. Our analysis suggests that cell division maintains the cell-flow pattern that supplies the streak with cells from the lateral epiblast, which is critical for epiblast expansion in peripheral areas, but that division does not drive streak formation or the observed tissue flow.  相似文献   

7.
To investigate the contribution of the epiblast cell behavior to the primitive streak formation, we examined the motility of a single epiblast cell from pre-streak stage embryo in vitro . On the substratum that was evenly coated with laminin gel, epiblast cells attached well to the gel and one or a few very long and broad cellular processes protruded from their spherical cell bodies; however, they hardly locomoted on it. Unexpectedly, after overnight culture, half of the single cells dissolved the laminin gel beneath them to make well-like holes, and invaded in the holes. On the substratum lined parallel with the fibrous laminin gels supplemented with fibronectin, they locomoted actively in accordance with the alignment. That is, they were subjected to contact guidance. In locomotion they looked like snails, extending one or a few long and broad processes in a forward direction from the spherical cell bodies. However, on the substratum lined with laminin or fibronectin only, they did not locomote actively. Individual chick pre-streak epiblast cells had already been committed to invade, and their migratory nature existed in each cell, even though they were isolated from the epithelial sheet. The implication of these findings on the cellular basis of primitive streak formation will be discussed.  相似文献   

8.
Axis formation is a highly regulated process in vertebrate embryos. In mammals, inductive interactions between an extra-embryonic layer, the visceral endoderm, and the embryonic layer before gastrulation are critical both for anterior neural patterning and normal primitive streak formation. The role(s) of the equivalent extra-embryonic endodermal layer in the chick, the hypoblast, is still less clear, and dramatic effects of hypoblast on embryonic gene expression have yet to be demonstrated. We present evidence that two genes later associated with the gastrula organizer (Gnot-1 and Gnot-2) are induced by hypoblast signals in prestreak embryos. The significance of this induction by hypoblast is discussed in terms of possible hypoblast functions and the regulation of axis formation in the early embryo. Several factors known to be expressed in hypoblast, and retinoic acid, synergistically induce Gnot-1 and Gnot-2 expression in blastoderm cell culture. The presence of retinoic acid in prestreak embryos has not yet been directly demonstrated, but exogenous retinoic acid appears to mimic the effects of hypoblast rotation on primitive streak extension, raising the possibility that retinoid signaling plays some role in the pregastrula embryo.  相似文献   

9.
We have used a computer simulation system to examine formation of the chick primitive streak and to test the proposal (Wei and Mikawa Development 127 (2000) 87) that oriented cell division could account for primitive streak elongation. We find that this proposal is inadequate to explain elongation of the streak. In contrast, a correctly patterned model streak can be generated if two putative mechanisms are operative. First, a subpopulation of precursor cells that is known to contribute to the streak is assigned a specific, but simple, movement pattern. Second, additional cells within the epiblast are allowed to incorporate into the streak based on near-neighbor relations. In this model, the streak is cast as a steady-state system with continuous recruitment of neighboring epiblast cells, egress of cells into deeper layers and an internal pattern of cell movement. The model accurately portrays elongation and maintenance of a robust streak, changes in the composition of the streak and defects in the streak after experimental manipulation.  相似文献   

10.
Primitive streak formation in the chick embryo involves significant coordinated cell movement lateral to the streak, in addition to the posterior-anterior movement of cells in the streak proper. Cells lateral to the streak are observed to undergo 'polonaise movements', i.e. two large counter-rotating vortices, reminiscent of eddies in a fluid. In this paper, we propose a mechanism for these movement patterns which relies on chemotactic signals emitted by a dipolar configuration of cells in the posterior region of the epiblast. The 'chemotactic dipole' consists of adjacent regions of cells emitting chemo-attractants and chemo-repellents. We motivate this idea using a mathematical analogy between chemotaxis and electrostatics, and test this idea using large-scale computer simulations. We implement active cell response to both neighboring mechanical interactions and chemotactic gradients using the Subcellular Element Model. Simulations show the emergence of large-scale vortices of cell movement. The length and time scales of vortex formation are in reasonable agreement with experimental data. We also provide quantitative estimates for the robustness of the chemotaxis dipole mechanism, which indicate that the mechanism has an error tolerance of about 10% to variation in chemotactic parameters, assuming that only 1% of the cell population is involved in emitting signals. This tolerance increases for larger populations of cells emitting signals.  相似文献   

11.
Summary Chick blastoderms were cultured for 2 h in the presence of35S-sulphate. The distribution of the grains after light microscope autoradiography was compared in blastoderms during the elongation and during the shortening of the primitive streak. A uniform labeling was observed over the cells in both groups. Accumulation of grains was present in both groups at the ventral side of the upper layer, where transmission electron microscope studies have revealed a basal lamina. An additional accumulation of grains occurred over the cells and in the extracellular spaces of the head process and of the rostral part of blastoderms with shortening primitive streaks. This positivity could be correlated with the presence of ingressing and recently ingressed notochordal cells. Treatment of the sections with chondroitinase ABC and/or HNO2 before dipping in the nuclear emulsion demonstrated that at least chondroitin sulphate and N-sulphated heparan sulphate were present.  相似文献   

12.
Fresh pullet eggs (White Leghorn Strain) were incubated to the primitive streak stage of development. Blastoderms were fixed in situ with isotonic aldehyde fixatives and prepared for scanning electron miscropy by means of post-osmication, critical point drying and gold-palladium coating. Cells judged to be in various stages of mitosis by their surface contours were numerous on the ventral surface of the chick blastoderm. Cells which were in the late preparatory stages for mitosis had rounded up from their surroundings. Microvilli dominated the surface. The degree of separation and number of microvilli increased until late metaphase or anaphase. Mitotic cells did not completely separate themselves from adjacent cells. Ruffles and blebs were not prominent during mitotis and long filopodia were absent. A definite localization of microappendages (microvilli, blebs, ruffles) to the area of cytokinesis was evident in early telophase and persisted through daughter cell formation.  相似文献   

13.
The posterior marginal zone (PMZ) of the chick embryo has Nieuwkoop centre-like properties: when transplanted to another part of the marginal zone, it induces a complete embryonic axis, without making a cellular contribution to the induced structures. However, when the PMZ is removed, the embryo can initiate axis formation from another part of the remaining marginal zone. Chick Vg1 can mimic the axis-inducing ability of the PMZ, but only when misexpressed somewhere within the marginal zone. We have investigated the properties that define the marginal zone as a distinct region. We show that the competence of the marginal zone to initiate ectopic primitive streak formation in response to cVg1 is dependent on Wnt activity. First, within the Wnt family, only Wnt8C is expressed in the marginal zone, in a gradient decreasing from posterior to anterior. Second, misexpression of Wnt1 in the area pellucida enables this region to form a primitive streak in response to cVg1. Third, the Wnt antagonists Crescent and Dkk-1 block the primitive streak-inducing ability of cVg1 in the marginal zone. These findings suggest that Wnt activity defines the marginal zone and allows cVg1 to induce an axis. We also present data suggesting some additional complexity: first, the Vg1 and Wnt pathways appear to regulate the expression of downstream components of each other's pathway; and second, misexpression of different Wnt antagonists suggests that different classes of Wnts may cooperate with each other to regulate axis formation in the normal embryo.  相似文献   

14.
15.
16.
17.
Summary The present work demonstrates that a normal stage-XIII hypoblast, if submitted to an X-ray dose of 6,000 rads (sufficient to stop cell division), retains the capacity to induce axis formation on the chick epiblast. Examination of the process of hypoblast formation indicates, in agreement with previous findings, that a hypoblastic layer can form in the absence of cell division from an irradiated stage-X blastoderm. Furthermore, it is observed that this hypoblastic layer, formed in the absence of cell division, can induce the development of an embryonic axis when combined with a normal stage-XIII epiblast.  相似文献   

18.
Three classes of signaling molecule, VG1, WNT and BMP, play crucial roles in axis formation in the chick embryo. Although VG1 and WNT signals have a pivotal function in inducing the primitive streak and Hensen's node in the embryo midline, their action is complemented by that of BMP antagonists that protect the prospective axial tissue from the inhibitory influence of BMPs secreted from the periphery. We have previously reported that a secreted factor, chick Tsukushi (TSK), is expressed in the primitive streak and Hensen's node, where it works as a BMP antagonist. Here, we describe a new crucial function for TSK in promoting formation of the primitive streak and Hensen's node by positively regulating VG1 activity. We provide evidence that TSK directly binds VG1 in vitro, and that TSK and VG1 functionally interact in axis formation, as shown by biological assays performed in chick and Xenopus embryos. Furthermore, we show that alternative splicing of TSK RNA leads to the formation of two isoforms (TSKA, originally designated as TSK, and TSKB) that differ in their C-terminal region. Biochemical and biological assays indicate that TSKB is a much weaker BMP antagonist than TSKA, although both isoforms efficiently interact with VG1. Remarkably, although both TSKA and TSKB are expressed throughout the early extending primitive streak, their expression patterns diverge during gastrulation. TSKA expression concentrates in Hensen's node, a well-known source of anti-BMP signals, whereas TSKB accumulates in the middle primitive streak (MPS), a region known to work as a node-inducing center where VG1 expression is also specifically localized. Loss-of-function experiments demonstrate that TSKB, but not TSKA, function is required in the MPS for induction of Hensen's node. Taken together, these results indicate that TSK isoforms play a crucial role in chick axis formation by locally modulating VG1 and BMP activities during gastrulation.  相似文献   

19.
The patterns of protein synthesis are examined in the hypoblast and in the areas that comprise the epiblast, that is, the area opaca, the marginal zone, and the central area, during the blastula stage which marks the beginning of the interaction between the epiblast and hypoblast for induction of the primitive streak. The results demonstrate that there are distinct qualitative and quantitative differences in protein patterns in individual areas of blastoderm, the differences being most distinct between the hypoblast and any of the component areas of the epiblast. These differences in patterns of proteins suggest that the component areas of the chick blastula have already diverged to different developmental fates before any apparent morphogenetic differentiation, that is, the appearance of the primitive streak.  相似文献   

20.
Avian embryos have a remarkable capacity to regulate: when a pre-primitive streak stage embryo is cut into fragments, each fragment can spontaneously initiate formation of a complete embryonic axis. We investigate the signalling pathways that initiate primitive streak formation and the mechanisms that ensure that only a single axis normally forms. As reported previously, an ectopic primitive streak can be induced by misexpression of Vg1 in the marginal zone. We now show that Vg1 induces an inhibitor that travels across the embryo (3 mm distance) in less than 6 hours. We provide evidence that this inhibitor acts early in the cascade of events downstream of Vg1. We also show that FGF signalling is required for primitive streak formation, in cooperation with Nodal and Chordin. We suggest that three sequential inhibitory steps ensure that a single axis develops in the normal embryo: an early inhibitor that spreads throughout the embryo (which can be induced by Vg1), a second inhibition by Cerberus from the underlying hypoblast, and finally a late inhibition from Lefty emitted by the primitive streak itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号