首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A male specimen of a new strepsipteran genus and species ( Protoxenos janzeni gen. et sp. nov.) and family (Protoxenidae fam. nov.) found in Baltic amber is described and illustrated. It shows features which are apparently more plesiomorphic than in hitherto known strepsipterans, such as laterally inserted eight-segmented antennae, very robust mandibles with a broad base, a prominent galea, a comparatively short, transverse metapostnotum, hindwings that are feebly extended in a rostrocaudal direction, and equally sclerotized abdominal tergites and sternites. Based on a cladistic analysis of 46 characters of males of 11 genera and three outgroup taxa, P. janzeni is the sister group of all other known strepsipterans, and Mengea the sister group of Strepsiptera s.s . Eoxenos is the sister group of the remaining extant strepsipterans and Mengenillidae is therefore paraphyletic. Newly established groundplan features of Strepsiptera will facilitate the clarification of the systematic position of the Order in future studies.  相似文献   

2.
Molecular evidence of the monophyly of the Halteria (Strepsiptera + Diptera) is reviewed. The majority of morphological characters, which have classically been used to establish a Strepsiptera + Coleoptera sister group, are rejected, because they are based on erroneous interpretations of strepsipteran morphology. The scorings of 31 morphological characters, which directly relate to the phylogenetic position of Strepsiptera, are provided, and their distribution and optimization on the molecular + morphological tree is discussed. Of these, 13 characters specifically support the placement of Strepsiptera within the Mecopterida; seven of which are based on the optimization of inapplicable or missing data, and six of which are based on states that can be scored for Strepsiptera. Only a single character (posteromotorism) suggests a sister group relationship with the Coleoptera. The morphological and molecular data are largely congruent, and suggest that the Strepsiptera are sister group to the Diptera.  相似文献   

3.
Abstract:  A taxonomic revision of mackerel-like fishes (Scombridae, Scombroidei, Perciformes) from the Monte Bolca localities in Italy is presented as part of continuing research into phylogenetic relationships of fossil and Recent scombroids. Three new genera are proposed: † Godsilia , † Pseudauxides and † Thunnoscomberoides . In addition, species generally known as † Thynnus bolcensis , † Thynnus lanceolatus , † Scombrosarda propterygia , † Scomberomorus speciosus and † Scomberomorus tenuis are renamed † Thunnoscomberoides bolcensis comb. nov., † Godsilia lanceolata comb. nov., † Auxides propterygius comb. nov. and † Pseudauxides speciosus comb. nov., respectively. † S. tenuis , a nomen nudum , is a junior synonym of † P. speciosus . Provisional phylogenetic hypotheses of these Monte Bolca scombrids are as follows. † Auxides and † Pseudauxides are most likely primitive sister taxa of the mackerels Scomber and Rastrelliger with † Pseudauxides as the most primitive. † Godsilia may be placed between Scombrinae and Scomberomorinae. † Thunnoscomberoides seems to fit between Scombrinae and Thunnini.  相似文献   

4.
Neale Monks 《Palaeontology》2002,45(4):689-707
The Hamitidae are a family of mid–Cretaceous heteromorph ammonites including lineages leading to four other families. Problems are outlined in trying to describe the phylogeny of completely extinct groups such as these heteromorph ammonites using the existing cladistic terminology, which is largely concerned with extant taxa and their ancestors. To solve these problems, two new terms are proposed: †crown groups and †stem groups, which are equivalent to crown and stem groups in terms of the evolutionary history of a clade, but are not defined on the basis of extant taxa. Instead they are defined by the topology of the phylogenetic tree, the †crown group being a clade defined by synapomorphies but which gave rise to no descendants. A †stem group is a branch of a phylogenetic tree which comprises the immediate sister groups of a given †crown group but is not itself a clade. Examples of these terms are described here with reference to the phylogeny of the Hamitidae and their descendants. The Hamitidae are paraphyletic and form †stem groups to a number of †crown groups, namely the Anisoceratidae, Baculitidae, Scaphitidae, and Turrilitidae. The definitions of the genera and subgenera are refined with respect to the type species and the clades within which they occur, and four new genera are described: Eohamites , Helicohamites , Sziveshamites , and Planohamites .  相似文献   

5.
6.
7.
This investigation was the first cladistic analysis using morphological data of first instar larvae of Strepsiptera. The analysis of representatives of nearly all known families of Strepsiptera supports the division of Strepsiptera into Mengenillidia and Stylopidia. Corioxenidae and Elenchidae are placed at the base of Stylopidia. Halictophagidae is the sister group to Xeninae + Myrmecolacidae + Stylopinae. Xeninae is placed as the sister group to Myrmecolacidae + Stylopinae. Stylopidae are paraphyletic. Thus, Xenidae stat. n. is re-established. A sister-group relationship between Myrmecolacidae and Elenchidae is not supported on characters of first instar larvae.  相似文献   

8.
Long-Branch Abstractions   总被引:11,自引:1,他引:11  
Recent attention has been focused on the sensitivities of various tree reconstructing algorithms to sequence rate heterogeneity (long-branch attraction). Phylogenetic conclusions from two recent empirical studies have been indicted as artifacts attributable to long-branch attraction. Siddall et al. (1995) concluded that Myxozoa are cnidarians and sister group to Polypodium based on 18S rDNA and morphology. Hanelt et al. (1996) argued that this result is due to long-branch attraction. Whiting et al. (1997) concluded that the Strepsiptera are sister group to Diptera based on parsimony analysis of 18S rDNA, 28S rDNA, and morphology. Huelsenbeck (1997) argued that this result also is attributable to long-branch attraction. We demonstrate that the analyses and arguments dismissing these results as the effects of long-branch attraction are fundamentally flawed. The criteria employed by these authors were applied arbitrarily by them to the groups that they did not want, and yet using those same criteria, there is more reason to exclude other taxa besides Polypodium and there is more reason to disbelieve monophyly of Diptera than monophyly of Strepsiptera with Diptera. Moreover, it is asserted, long-branch attraction cannot explain the presence of nematocysts in Myxozoa and halteres in Strepsiptera. For these reasons, and in light of the demonstration that long branches cannot attract each other in their mutual absence, we conclude that the monophyly of Myxozoa + Polypodium and Strepsiptera + Diptera is not due to long-branch attraction. We suggest that maximum likelihood methods are extremely sensitive to taxon and character sampling and that these data sets are demonstrative of the long-branch repulsion problem.  相似文献   

9.
An evolutionary scenario for the enigmatic group Strepsiptera is provided, based on the results of a comprehensive cladistic analysis of characters of all life stages. A recently described fossil--+Protoxenos janzeni--the most archaic strepsipteran, sheds new light on the early evolution of the group and reduces the "morphological gap" between Strepsiptera and other insects. It weakens both current hypotheses--Coleoptera+Strepsiptera and Diptera+Strepsiptera (="Halteria"). The splitting into +Protoxenos (Protoxenidae) and the remaining Strepsiptera was linked with a distinct size reduction and many morphological changes. Unlike males of extant strepsipteran species, +Protoxenos was still able to process food. Mengeidae (+Mengea), with two small species, is the sister group of extant Strepsiptera. A unique characteristic of extant males (Strepsiptera s. str.) is the mouthfield sclerite. It is part of an air uptake apparatus which belongs to an extremely modified air-filled "balloon gut". Besides this, male strepsipterans possess specialised antennae and compound eyes, a strongly developed flight apparatus, large testes, and a sperm pump, whereas other organ systems are strongly reduced (e.g., fat body, malpighian tubules). Males are designed to find females within a few hours and to copulate. A dramatic change is linked with the split into Mengenillidae and Stylopidia. The change to pterygote hosts and the permanent endoparasitism of the females are evolutionary novelties acquired by the latter clade, and linked with far-reaching morphological transformations, e.g. the presence of unique brood organs. Hairy tarsal adhesive devices are present in males and guarantee efficient attachment to the host during copulation. A well-founded clade within Stylopidia is Stylopiformia, which are characterised by a unique fissure-shaped birth opening. The evolutionary development towards the most specialised and successful forms (parasites of aculeate Hymenoptera [e.g., Xenidae+Stylopidae], ca. 46% of the species) is a stepwise process. The presented evolutionary scenario comprises a complex network of functionally correlated morphological changes in primary larvae, secondary larvae, females and males.  相似文献   

10.
The phylogenetic relationships of nine species of freshwater sponges, representing the families Spongillidae, Lubomirskiidae, and Metaniidae, were inferred from analyses of 18S rDNA, cytochrome oxidase subunit I (COI) mtDNA, and internal transcribed spacer 2 (ITS2) rDNA sequences. These species form a strongly supported monophyletic group within the Demospongiae, with the lithistid Vetulina stalactites as the sister taxon. Within the freshwater sponge clade, the basal taxon is not resolved. Depending upon the method of analysis and sequence, the metaniid species, Corvomeyenia sp., or the spongillid species, Trochospongilla pennsylvanica , emerges as the basal species. Among the remaining freshwater sponge species, the spongillids, Spongilla lacustris and Eunapius fragilis , form a sister group to a clade comprised of the spongillid species, Clypeatula cooperensis , Ephydatia fluviatilis , and Ephydatia muelleri , and the lubomirskiid species, Baikalospongia bacillifera and Lubomisrkia baicalensis . C. cooperensis is the sister taxon of E. fluvialitis , and E. muelleri is the sister taxon of ( B. bacillifera + L. baicalensis ). The family Spongillidae and the genus Ephydatia are thus paraphyletic with respect to the lubomirskiid species; Ephydatia is also paraphyletic to C. cooperensis . We suggest that C. cooperensis be transferred to the genus Ephydatia and that the family Lubomirskiidae be subsumed into the Spongillidae.  相似文献   

11.

Background

The extraordinary morphology, reproductive and developmental biology, and behavioral ecology of twisted wing parasites (order Strepsiptera) have puzzled biologists for centuries. Even today, the phylogenetic position of these enigmatic “insects from outer space” [1] remains uncertain and contentious. Recent authors have argued for the placement of Strepsiptera within or as a close relative of beetles (order Coleoptera), as sister group of flies (order Diptera), or even outside of Holometabola.

Methodology/Principal Findings

Here, we combine data from several recent studies with new data (for a total of 9 nuclear genes and ∼13 kb of aligned data for 34 taxa), to help clarify the phylogenetic placement of Strepsiptera. Our results unequivocally support the monophyly of Neuropteroidea ( = Neuropterida + Coleoptera) + Strepsiptera, but recover Strepsiptera either derived from within polyphagan beetles (order Coleoptera), or in a position sister to Neuropterida. All other supra-ordinal- and ordinal-level relationships recovered with strong nodal support were consistent with most other recent studies.

Conclusions/Significance

These results, coupled with the recent proposed placement of Strepsiptera sister to Coleoptera, suggest that while the phylogenetic neighborhood of Strepsiptera has been identified, unequivocal placement to a specific branch within Neuropteroidea will require additional study.  相似文献   

12.
A single male specimen of a new species (†Kinzelbachilla ellenbergeri gen. et sp.n. ) of a new family of the endoparasitic Strepsiptera (†Kinzelbachillidae fam.n.) from Burmese amber is described and evaluated with respect to its systematic placement. Its features come very close to the presumptive groundplan of the order suggested in recent studies. Preserved plesiomorphic features are the following: fully sclerotized head with long coronal suture, small ommatidia not separated by chitinous bridges, absence of microtrichia between ommatidia, eight antennomeres, robust mandibles with dicondylic articulation, galea distinctly developed, free pro‐ and mesotrochanters, slender five‐segmented tarsi without adhesive soles, and equally sclerotized abdominal tergites and sternites. An important character that is not recognizable due to damage is the shape of the metapostnotum. This structure is transverse in the groundplan of Strepsiptera and in †Protoxenos, but elongated and shield‐like in all other known strepsipterans. In a cladistic analyses of 82 characters of adult males and additional characters for females and immatures (scored as unknown for all included fossils) †Kinzelbachilla is placed as sister group of all remaining strepsipterans except for †Protoxenos, followed by †Cretostylops and †Mengea as the third and fourth branches in the stem group, respectively. The position of †Protoxenos as first branch is suggested by three unambiguous apomorphic features of all remaining Strepsiptera, the reduced size of less than 6 mm, mandibles distinctly narrowing distad the basalmost part, and fan‐shaped hindwings which are broader than they are long. The hitherto known fossil stem group strepsipterans do not distinctly narrow the large morphological gap separating this order from its sister group, the Coleoptera. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:07554C01-DEC3-4080-A337-B1F46BC9070F .  相似文献   

13.
Internal and external head structures of males of Strepsiptera were examined and the head of a species of Mengenilla is described in detail. The results suggest a reinterpretation of some structures. The head of basal extant strepsipterans is subprognathous, whereas it is strictly orthognathous in the groundplan of Strepsiptera s.l. The labrum and hypopharynx are not part of the mouthfield sclerite. The labial palps are absent in all strepsipterans. A very slightly modified mandibular articulation is preserved in Eoxenos, whereas it is distinctly reduced in other extant groups. A salivary duct, salivary glands, and a cephalic aorta are absent. The cladistic analysis of 44 characters of the head results in the following branching pattern: (Protoxenos + (Mengea + (Eoxenos + (Mengenilla [Austr.] + Mengenilla) + (Elenchus + Dundoxenos + Xenos + Stylops)))). Most apomorphies of males are associated with the necessity of finding females within a short time span and with a reduced necessity to consume food: large "raspberry" eyes, flabellate antennae with numerous dome-shaped chemoreceptors, Hofeneder's organ, an ovoid sensillum of the maxillary palp, and the simplified condition of the maxilla and the labium. Strepsiptera excl. Protoxenos are supported by the dorsomedian frontal impression, the dorsally shifted antennal insertions, a reduced number of antennal segments, absence of the galea, and probably by the presence of the mouthfield sclerite, which is a unique apomorphic feature. The balloon-gut combined with an unusual air-uptake apparatus is another possible autapomorphy of this clade. It is likely that the last common ancestor of Strepsiptera excl. Protoxenos did not process food. Strepsiptera s.str. are characterized by the strongly reduced condition of the labrum and the absence of the epistomal suture. Eoxenos is the sister group of the remaining Strepsiptera s.str. Synapomorphies of Mengenilla + Stylopidia are the advanced reduction of the mandibular articulation and the secondary absence of the ovoid sensillum. The monophyly of Mengenilla is confirmed, even though a small free labrum is present in Australian species. Derived features of Stylopidia are the absence of the coronal suture and the reduced condition of the frontal suture. Apomorphies that have evolved within Stylopidia are the membranization of parts of the head, the fusion of antennal segments, the increase or decrease of the number of flabellate flagellomeres, reductions and modifications of the mandibles, and modifications of the mouthfield sclerite. The monophyly of Stylopiformia is not unambiguously supported. A position of the mandibles posterior to the mouthfield sclerite (when adducted) is a possible synapomorphy shared by Xenos, Stylops, and other "higher Stylopidia." The blade-like distal part of the mandibles suggests a closer relationship of Elenchus with these taxa.  相似文献   

14.
In the present study, relationships among three genera Acontias, Acontophiops, and Typhlosaurus, that comprise the South African limbless lizard subfamily Acontinae, were assessed with partial sequences of the 16S rRNA mitochondrial DNA gene. In addition, relationships within Acontias were further investigated using sequence data from the cytochrome oxidase I gene (COI). Maximum likelihood and maximum parsimony analyses of the 16S rRNA mtDNA data revealed that within this subfamily, Typhlosaurus is basal while Acontophiops and Acontias are sister taxa. Based on the 16S rRNA mtDNA data, the relationships within Acontias placed A. meleagris orientalis as the sister taxon of A. percivali tasmani, with A. m. orientalis lineacauda morph and A. m. meleagrus being the sister taxa to this group. The small-bodied skinks A. lineatus lineatus and A. l. tristis formed a monophyletic group, with the medium-bodied species A. gracilicauda gracilicauda being their sister taxon. Analyses of the COI gene for Acontias place A. m. orientalis as the sister taxon of A. p. tasmani with both A. meleagris meleagris and A. m. orientalis lineacauda being distinct. In contrast to the 16S rRNA mtDNA data, the COI data placed A. g. gracilicauda as the sister taxon to these medium-bodied species; while the subspecies status of the small-bodied taxa A. l. lineatus and A. l. tristis is reaffirmed. Combined analysis of both gene fragments for Acontias taxa recovered the same clades as found using only COI data. Systematic affinities in Acontias are discussed. These results indicate that Acontias is more species rich than previously thought.  相似文献   

15.
The beetle suborder Adephaga has been the subject of many phylogenetic reconstructions utilizing a variety of data sources and inference methods. However, no strong consensus has yet emerged on the relationships among major adephagan lineages. Ultraconserved elements (UCEs) have proved useful for inferring difficult or unresolved phylogenies at varying timescales in vertebrates, arachnids and Hymenoptera. Recently, a UCE bait set was developed for Coleoptera using polyphagan genomes and a member of the order Strepsiptera as an outgroup. Here, we examine the utility of UCEs for reconstructing the phylogeny of adephagan families, in the first in vitro application a UCE bait set in Coleoptera. Our final dataset included 305 UCE loci for 18 representatives of all adephagan families except Aspidytidae, and two polyphagan outgroups, with a total concatenated length of 83 547 bp. We inferred trees using maximum likelihood analyses of the concatenated UCE alignment and coalescent species tree methods (astral ii , ASTRID, svdquartets ). Although the coalescent species tree methods had poor resolution and weak support, concatenated analyses produced well‐resolved, highly supported trees. Hydradephaga was recovered as paraphyletic, with Gyrinidae sister to Geadephaga and all other adephagans. Haliplidae was recovered as sister to Dytiscoidea, with Hygrobiidae and Amphizoidae successive sisters to Dytiscidae. Finally, Noteridae was recovered as monophyletic and sister to Meruidae. Given the success of UCE data for resolving phylogenetic relationships within Adephaga, we suggest the potential for further resolution of relationships within Adephaga using UCEs with improved taxon sampling, and by developing Adephaga‐specific probes.  相似文献   

16.
An hypothesis of phylogenetic relationships of Asilidae and its constituent taxa is presented, combining morphological and DNA sequence data in a total evidence framework. It is based on 77 robber fly species, 11 Asiloidea outgroup species, 211 morphological characters of the adult fly, and approximately 7300 bp of nuclear DNA from five genes (18S and 28S rDNA, AATS, CAD, and EF-1α protein-encoding DNA). The equally weighted, simultaneous parsimony analysis under dynamic homology in POY resulted in a single most parsimonious cladogram with a cost of 27,582 (iterative pass optimization; 27,703 under regular direct optimization). Six of the 12 included subfamily taxa are recovered as monophyletic. Trigonomiminae, previously always considered as monophyletic based on morphology, is shown to be non-monophyletic. Two of the three Trigonomiminae genera, Holcocephala Jaennicke, 1867 and Rhipidocephala Hermann, 1926, group unexpectedly as the sister taxon to all other Asilidae. Laphriinae, previously seen in the latter position, is the sister group of the remaining Asilidae. Five other subfamily taxa, i.e. Brachyrhopalinae, Dasypogoninae, Stenopogoninae, Tillobromatinae, and Willistonininae, are also shown to be non-monophyletic. The phylogenetic relationships among the higher-level taxa are partly at odds with findings of a recently published morphological study based on more extensive taxon sampling. The total evidence hypothesis is considered as the most informative one, but the respective topologies from the total-evidence, morphology-only, and molecular-only analyses are compared and contrasted in order to discuss the signals from morphological versus molecular data, and to analyze whether the molecular data outcompete the fewer morphological characters. A clade Apioceridae+Mydidae is corroborated as the sister taxon to Asilidae.  相似文献   

17.
逗亚科似逗属鱼类的物种界定保持争议, 系统发育关系尚待解决。研究取样似逗属鱼类所有种, 使用核基因多位点序列重建似逗属鱼类的系统发育关系, 运用分子的物种界定方法并结合形态特征分析厘定我国似逗属鱼类的分类。贝叶斯系统发育树结果表明: 桂林似逗与平江似逗是单系种; 似逗与扁嘴似逗是多系种, 前者包括五个谱系A至E, 后者包括两个谱系A与B。POFAD距离分析和Structurama分析的结果表明似逗和扁嘴似逗的每个谱系是独立遗传种群, BP & P分析结果强烈支持它们是不同种。*Beast物种树结果揭示: 扁嘴似逗谱系B位于似逗属鱼类的基部位置; 似逗谱系A与B是姊妹群关系, 似逗谱系C是扁嘴似逗谱系A的姊妹群, 它们一起与桂林似逗形成姊妹群关系; 似逗谱系D与E是姊妹群关系, 它们一起是平江似逗的姊妹群。结合形态证据, 对我国似逗属鱼类分类厘定如下: 限定严格意义似逗包括似逗谱系A+B; 恢复长吻似逗(Pseudogobio longirostris Mori, 1934)给予似逗谱系C分类名; 似逗谱系D与E是隐存种, 桂林似逗与平江似逗是有效种。  相似文献   

18.
Tillandsia L. Subg. Phytarrhiza (Visiani) Baker (Bromeliaceae) is a distinctive group of about 35 epiphytic species. These exhibit a range of habits from xeric to mesic. The evolutionary relationships of the contrasting adaptations need to be established here as well as in the subfamily as a whole. Relations between the subgenus and other tillandsioids are problematical and phylogenetic reconstruction of its member-species would be facilitated by identification of Phytarrhiza's relative (sister taxon) sharing the same most recent common ancestor with Phytarrhiza. This paper examines the two most likely sister taxa, Subg. Pseudo-Catopsis Baker and Subg. Diaphoranthema (Beer) Baker. Diaphoranthema is rejected as sister taxon. The accepted evolutionary tree, rooted by Pseudo-Catopsis, indicates that most habital evolutionary changes in Phytarrhiza have been between mesic and semi-mesic forms and from mesic to xeric forms. Methods developed for testing specific evolutionary hypotheses are broadly applicable.  相似文献   

19.
The late Campanian-early Maastrichtian site of Lo Hueco (Cuenca, Spain) has provided a set of well-preserved crocodyliform skull and lower jaw remains, which are described here and assigned to a new basal eusuchian taxon, Lohuecosuchus megadontos gen. et sp. nov. The reevaluation of a complete skull from the synchronous site of Fox-Amphoux (Department of Var, France) allows us to define a second species of this new genus. Phylogenetic analysis places Lohuecosuchus in a clade exclusively composed by European Late Cretaceous taxa. This new clade, defined here as Allodaposuchidae, is recognized as the sister group of Hylaeochampsidae, also comprised of European Cretaceous forms. Allodaposuchidae and Hylaeochampsidae are grouped in a clade identified as the sister group of Crocodylia, the only crocodyliform lineage that reaches our days. Allodaposuchidae shows a vicariant distribution pattern in the European Late Cretaceous archipelago, with several Ibero-Armorican forms more closely related to each other than with to Romanian Allodaposuchus precedens.  相似文献   

20.
The endemic woodpecker, Xiphidiopicus percussus, from Cuba has been postulated as the sister taxon to the Hispaniolan woodpecker (Melanerpes striatus) and its relationships to the genera Sphyrapicus and Melanerpes have been speculated. We used mitochondrial cytochrome b sequences from a collection of New World picids to investigate the phylogenetic relationships among these species using maximum parsimony and maximum likelihood approaches. Our data suggest that X. percussus is the sister taxon to the Melanerpes woodpeckers, which appear to group into a single distinct clade. Xiphidiopicus percussus is not the sister taxon to M. striatus as has been postulated [Olson, S., 1972. The generic distinction of the Hispaniolan Woodpecker, Chryserpes striatus (Aves: Picidae). Proc. Biol. Soc. Wash. 85, 499-508]. The genus Sphyrapicus appears to have diverged earlier than Xiphidiopicus. Divergence estimates from the cytochrome b sequences indicate that Xiphidiopicus probably diverged sometime in the late Miocene-early Pliocene, and the endemic contemporary species X. percussus on Cuba may be a relict from a group that originated in Central America or North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号