首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article applies a combined input−output and life cycle inventory (LCI) method to the calculation of emissions and material requirements of the Czech economy in 2003. The main focus is on materials and emissions embodied in the international trade of the Czech Republic. Emissions and material extraction avoided due to imports are calculated according to an input−output approach that assumes the same production technology for imports as for domestic production. Because not all products are provided by the domestic economy, the LCI data are incorporated into the monetary input−output model.
The results show that incorporating the LCI data into an input−output model is reasonable. The emissions embodied in the international trade of the Czech Republic are comparable to the domestic emissions. We compare the economy-wide material flow indicators, such as direct material input, domestic material consumption, and physical trade balance, to their raw material equivalents. The results of our calculation show that the Czech Republic exerts environmental pressure on the environment in other countries through international trade.
We argue that raw material equivalents should be used to express the flows across national boundaries. Furthermore, we recommend a raw material consumption indicator for international comparisons.  相似文献   

2.
Global production chains carry environmental and socioeconomic impacts embodied in each traded good and service. Even though labor and energy productivities tend to be higher for domestic production in high‐income countries than those in emerging economies, this difference is significantly reduced for consumption, when including imported products to satisfy national demand. The analysis of socioeconomic and environmental aspects embodied in consumption can shed a light on the real level of productivity of an economy, as well as the effects of rising imports and offshoring. This research introduces a consumption‐based metric for productivity, in which we evaluate the loss of productivity of developed nations resulting from imports from less‐developed economies and offshoring of labor‐intensive production. We measure the labor, energy, and greenhouse gas emissions footprints in the European Union's trade with the rest of the world through a multiregional input‐output model. We confirm that the labor footprint of European imports is significantly higher than the one of exports, mainly from low‐skilled, labor‐intensive primary sectors. A high share of labor embodied in exports is commonly associated with low energy productivities in domestic industries. Hence, this reconfirms that the offshoring of production to cheaper and low‐skilled, labor‐abundant countries offsets, or even reverts, energy efficiency gains and climate‐change mitigation actions in developed countries.  相似文献   

3.
Environmental Impacts of Products: A Detailed Review of Studies   总被引:2,自引:0,他引:2  
Environmental effects of economic activities are ultimately driven by consumption, via impacts of the production, use, and waste management phases of products and services ultimately consumed. Integrated product policy (IPP) addressing the life‐cycle impacts of products forms an innovative new generation of environmental policy. Yet this policy requires insight into the final consumption expenditures and related products that have the greatest life‐cycle environmental impacts. This review article brings together the conclusions of 11 studies that analyze the life‐cycle impacts of total societal consumption and the relative importance of different final consumption categories. This review addresses in general studies that were included in the project Environmental Impacts of Products (EIPRO) of the European Union (EU), which form the basis of this special issue. Unlike most studies done in the past 25 years on similar topics, the studies reviewed here covered a broad set of environmental impacts beyond just energy use or carbon dioxide (CO2) emissions. The studies differed greatly in basic approach (extrapolating LCA data to impacts of consumption categories versus approaches based on environmentally extended input‐output (EEIO) tables), geographical region, disaggregation of final demand, data inventory used, and method of impact assessment. Nevertheless, across all studies a limited number of priorities emerged. The three main priorities, housing, transport, and food, are responsible for 70% of the environmental impacts in most categories, although covering only 55% of the final expenditure in the 25 countries that currently make up the EU. At a more detailed level, priorities are car and most probably air travel within transport, meat and dairy within food, and building structures, heating, and (electrical) energy‐using products within housing. Expenditures on clothing, communication, health care, and education are considerably less important. Given the very different approaches followed in each of the sources reviewed, this result hence must be regarded as extremely robust. Recommendations are given to harmonize and improve the methodological approaches of such analyses, for instance, with regard to modeling of imports, inclusion of capital goods, and making an explicit distinction between household and government expenditure.  相似文献   

4.
This article describes a method for determining the environmental load of Dutch private consumption. The method generates detailed information about consumption-related environmental impacts. The environmental load of households (direct) and production (indirect) was determined for 360 expenditure categories reported in the Dutch Expenditure Survey. The indirect environmental load was calculated with linked input-output tables covering worldwide production and trade. The environmental load per Euro turnover of industries was linked to consumer expenditures. With this method we can quantify several types of environmental load per expenditure category and per economic production region.
It was found that food production, room heating, and car use are the most important elements in the environmental load of Dutch private consumption. The impacts taking place abroad were—with the exception of emission of greenhouse gases and road traffic noise—found to be larger than domestic impacts. Most land use was found to take place in developing (non-OECD) countries, whereas most emissions occur in industrialized (OECD) countries.  相似文献   

5.
Japan depends heavily on imports for its food supply. Since 2000, the food self‐sufficiency ratio has remained approximately 40% on a caloric basis. Japanese food wastage (i.e., food losses and food waste) is estimated to have been 6.42 million tonnes (50 kg per capita of wastage) in 2012. These values indicate that food wastage leads to wasted natural resources and excessive greenhouse gas (GHG) emissions both in Japan and in countries that export to Japan. This study estimates Japanese food wastage by food item to evaluate impacts on land and water resources and global GHG emissions during the processing, distribution, and consumption phases of the food supply chain while also considering the feed crops needed for livestock production. Despite uncertainties due to data limitations, in 2012, 1.23 million hectares of harvested land were used to produce food that was eventually wasted, and 413 million m3 of water resources were wasted due to Japanese food wastage in agricultural production. Furthermore, unnecessary GHG emissions were 3.51 million tonnes of CO2 eq. in agricultural production and 0.49 million tonnes of CO2 eq. in international transportation. The outcomes of the present study can be used to develop countermeasures to food wastage in industrializing Asian countries where food imports are projected to increase and food wastage issues in the consumption stage are expected to become as serious as they currently are in Japan.  相似文献   

6.
The discussion forum on life cycle assessment (LCA) on September 15, 2011, aimed at summarizing recent environmentally extended input?Coutput analysis (EE-IOA) and the combination with LCA for the computation of environmental impact of imports. Input?Coutput tables (IOT) represent the financial flows in a country or economic regions. Extending IOT with information on emissions and resource uses allows for the analysis of environmental impacts due to production and consumption activities in a country. This instrument is called EE-IOA. It enables the analysis of total environmental impacts of countries or economic regions. The combination with trade statistics and LCA was presented as an alternative to multiregional input?Coutput models for determining environmental impacts of imports over the whole life cycle. The 45th LCA forum gathered several international speakers who provided a broad and qualified view on the topic. The theoretical background, results for different countries and regions, uncertainties, and possible improvement options for EE-IOA were discussed. The following main conclusions were drawn at the end of the discussion forum: EE-IOA is a useful instrument for analyzing the total environmental impacts of countries and the main drivers of environmental impacts. As a next important step, the participants would like to see an increase in user friendliness of EE-IOA combined with LCA, e.g., by harmonizing data, data formats, and classifications.  相似文献   

7.
Input-output modeling is a useful tool for tracing environmental impacts of consumption. Because it includes impacts originating from production layers of infinite order (capturing the entire economy), input-output modeling is highly relevant for studies operating in a life-cycle context. In this article we show how the input-output approach can be used to enumerate the problem of sustainable consumption. Based on a literature survey including research done by the authors we present measures of the emissions of carbon dioxide at different spatial levels: nation, city, and household. Further, we take more environmental effects into account and introduce the concept of environmental efficiency by combining input-output modeling and data envelopment analysis. Finally, we discuss the policy relevance of the different measures. The article demonstrates that input-output modeling has a wide range of life-cycle oriented applications when combined with other data sources such as detailed trade statistics, foreign input-output and environmental statistics, and household expenditure data.  相似文献   

8.
We develop a hybrid‐unit energy input‐output (I/O) model with a disaggregated electricity sector for China. The model replaces primary energy rows in monetary value, namely, coal, gas, crude oil, and renewable energy, with physical flow units in order to overcome errors associated with the proportionality assumption in environmental I/O analysis models. Model development and data use are explained and compared with other approaches in the field of environmental life cycle assessment. The model is applied to evaluate the primary energy embodied in economic output to meet Chinese final consumption for the year 2007. Direct and indirect carbon dioxide emissions intensities are determined. We find that different final demand categories pose distinctive requirements on the primary energy mix. Also, a considerable amount of energy is embodied in the supply chain of secondary industries. Embodied energy and emissions are crucial to consider for policy development in China based on consumption, rather than production. Consumption‐based policies will likely play a more important role in China when per capita income levels have reached those of western countries.  相似文献   

9.
Trends of increasing agricultural trade, increased concentration of livestock production systems, and increased human consumption of livestock products influence the distribution of nutrients across the global landscape. Phosphorus (P) represents a unique management challenge as we are rapidly depleting mineable reserves of this essential and non-renewable resource. At the same time, its overuse can lead to pollution of aquatic ecosystems. We analyzed the relative contributions of food crop, feed crop, and livestock product trade to P flows through agricultural soils for 12 countries from 1961 to 2007. Due to the intensification of agricultural production, average soil surface P balances more than tripled from 6 to 21 kg P ha−1 between 1961 and 2007 for the 12 study countries. Consequently, countries that are primarily agricultural exporters carried increased risks for water pollution or, for Argentina, reduced soil fertility due to soil P mining to support exports. In 2007, nations imported food and feed from regions with higher apparent P fertilizer use efficiencies than if those crops were produced domestically. However, this was largely because imports were sourced from regions depleting soil P resources to support export crop production. In addition, the pattern of regional specialization and intensification of production systems also reduced the potential to recycle P resources, with greater implications for livestock production than crop production. In a globalizing world, it will be increasingly important to integrate biophysical constraints of our natural resources and environmental impacts of agricultural systems into trade policy and agreements and to develop mechanisms that move us closer to more equitable management of non-renewable resources such as phosphorus.  相似文献   

10.
Scrutiny of food packaging environmental impacts has led to a variety of sustainability directives, but has largely focused on the direct impacts of materials. A growing awareness of the impacts of food waste warrants a recalibration of packaging environmental assessment to include the indirect effects due to influences on food waste. In this study, we model 13 food products and their typical packaging formats through a consistent life cycle assessment framework in order to demonstrate the effect of food waste on overall system greenhouse gas (GHG) emissions and cumulative energy demand (CED). Starting with food waste rate estimates from the U.S. Department of Agriculture, we calculate the effect on GHG emissions and CED of a hypothetical 10% decrease in food waste rate. This defines a limit for increases in packaging impacts from innovative packaging solutions that will still lead to net system environmental benefits. The ratio of food production to packaging production environmental impact provides a guide to predicting food waste effects on system performance. Based on a survey of the food LCA literature, this ratio for GHG emissions ranges from 0.06 (wine example) to 780 (beef example). High ratios with foods such as cereals, dairy, seafood, and meats suggest greater opportunity for net impact reductions through packaging‐based food waste reduction innovations. While this study is not intended to provide definitive LCAs for the product/package systems modeled, it does illustrate both the importance of considering food waste when comparing packaging alternatives, and the potential for using packaging to reduce overall system impacts by reducing food waste.  相似文献   

11.
中国居民消费隐含的碳排放量变化的驱动因素   总被引:1,自引:0,他引:1  
姚亮  刘晶茹  王如松 《生态学报》2011,31(19):5632-5637
应用基于投入产出技术的生命周期评价(EIO-LCA)核算了1997、2000、2002、2005和2007年5a的中国居民消费隐含的二氧化碳排放量,发现其呈现增加趋势。2007年达到18.53亿t,相当于1997年的1.61倍,年平均增长4.89%. 其次采用结构分解分析(SDA)分析了碳排放效率变化、经济内在结构变迁、消费结构转变、人均消费水平变化、城市化进程和人口总量变化等六项因素对碳排放总量变化的驱动作用。研究发现碳排放效率因素和人均消费水平变化是驱动碳排放变化的两大主要力量,并且作用相反。碳排放效率的持续提高,很大程度上缓解了居民消费的隐含碳排放急剧增加的趋势,是减缓碳排放量的主要因素;而人均消费水平的迅速提高成为推动碳排放增加的主要力量,是推动碳排放增加的主要因素。  相似文献   

12.
Food in general has a high nutrient content, which essentially passes through the human organism and ends up in the sewage system. This high nutrient content in sewage, however, is rarely included in environmental systems analyses of food products or production systems. At the same time, several studies on sewage systems have shown the significance of plant nutrients in sewage system outlets. This means that important environmental effects may be neglected in environmental systems studies of food.
We present a method for including emissions that occur after food consumption in environmental systems analyses of foods. The method uses easily accessible input data to calculate the postconsumption emissions caused by certain food products.
The method was tested by completing the results for eutrophication from seven life-cycle assessments (LCAs) on food products with the corresponding emissions caused by outlets from a sewage plant. The results showed that postconsumption eutrophication was a significant part of the products' total life-cycle impact, ranging from 5.5% (beef) to 86% (apples).
The conclusion is that including postconsumption emissions is important for studies aiming at mapping a product's life cycle to find the most environmentally relevant parts, as well as for eco-labeling purposes. If the purpose of the study is decision support, the postconsumption phase should be included where the decision affects this part of the system, otherwise not. When products are compared, postconsumption emissions should be included if their nutrient contents differ.  相似文献   

13.
To reduce energy consumption and carbon dioxide (CO2) emissions in housing construction, the energy-intensive processes and life-cycle stages should be identified and integrated. The environmental impact of vertically integrated factory-built homes (VIHs) constructed with increased material inputs in Japan's northern island of Hokkaido was assessed using life-cycle inventory (LCI) analysis methods. Manufacturing process energy and CO2 intensities of the homes were evaluated based on the material inputs. They were compared with those of a counterpart home hypothetically built using the vertically integrated construction methods, but in accordance with the specifications of a less material-intensive conventional home (CH) in Hokkaido today. Cumulative household energy consumption and CO2 emissions were evaluated and compared with those of the production stages. The annual household energy consumption was compared among a VIH, a CH, and an average home in Hokkaido. The energy intensity of the VIH was 3.9 GJ production energy per m2 of floor area, 59% higher than that of the CH. Net CO2 emissions during VIH manufacturing processes were 293 kg/m2, after discounting the carbon fixation during tree growth. The cumulative use-phase household energy consumption and CO2 emissions of a VIH will exceed energy consumption and CO2 emissions during the initial production stage in less than six years. Although VIHs housed 21% more residents on average, the energy consumption per m2 was 17% lower than that of a CH. This may indicate that using more materials initially can lead to better energy efficiency.  相似文献   

14.
China has the highest carbon dioxide (CO2) emissions in the world. In China, logistics accounts for a significant portion of the total energy use and CO2 emissions in business‐to‐customer (B2C) retailing. This study focuses on the environmental impacts of B2C delivery in China, focusing on the book retail industry. Mathematical models are proposed based on the practical operations of the “e‐commerce networked delivery” (END) system and the “sustainable networked delivery” (SND) system. The energy consumption and CO2 emissions per book are then determined and compared for the two systems. Furthermore, we contrast the findings with those of similar studies conducted for other countries and provide explanations for the differences. The results show that (1) in general, in China, the SND system is better than the END system in terms of environmental impacts; (2) the END system in China generates fewer environmental impacts than those in the United States and the United Kingdom, while the SND system in China has greater environmental impacts than that in the United States; and (3) the wide use of vehicles such as electric bicycles that have low energy consumption rates contributes to the reduction of environmental impacts per book in both the END and SND systems in China. The limitations of the study and suggestions for future research are also discussed.  相似文献   

15.
Previous studies of the efficiency of Chinese electricity industry have been limited in providing insights regarding policy implications of inherent trade‐offs of economic and environmental outcomes. This study proposes a modified data envelopment analysis method combined with materials balance principle to estimate ecological and cost efficiency in the Chinese electricity industry. The economic cost and ecological impact of energy input reallocation strategies for improving efficiency are identified. The possible impacts of pollution taxes upon the levels of sulfur dioxide (SO2) emissions are assessed. Estimation results show that (1) both energy input costs and SO2 could be reduced through increasing technical efficiency. (2) It is possible to adjust energy input mix to attain ecological efficiency, and, correspondingly, SO2 would be reduced by 15%. (3) The Chinese electricity industry would reduce its unit cost by 9% if optimal ecological efficiency is attained and reduce its unit pollution by 13% if optimal cost efficiency is attained, implying that there are positive ecological synergy effects associated with energy cost savings and positive economic synergy effects associated with SO2 pollution reductions. (4) Estimated shadow costs of SO2 reduction are very high, suggesting that, in the short term, the Chinese electricity industry should pursue cost efficiency instead of ecological efficiency, since alternative abatement activities are less costly and some of the abatement cost could be further offset by energy input cost savings. (5) There would be no significant difference between the impacts of pollution discharge fees and pollution taxes on SO2 emissions levels because of the relatively low pollution tax rate.  相似文献   

16.
Bringing about more sustainable consumption patterns is an important challenge for society and science. In this article the concept of household metabolism is applied to analyzing consumption patterns and to identifying possibilities for the development of sustainable household consumption patterns. Household metabolism is determined in terms of total energy requirements, including both direct and indirect energy requirements, using a hybrid method. This method enables us to evaluate various determinants of the environmental load of consumption consistently at several levels—the national level, the local level, and the household level.
The average annual energy requirement of households varies considerably between the Netherlands, the United Kingdom, Norway, and Sweden, as well as within these countries. The average expenditure level per household explains a large part of the observed variations. Differences between these countries are also related to the efficiency of the production sectors and to the energy supply system. The consumption categories of food, transport, and recreation show the largest contributions to the environmental load. A comparison of consumer groups with different household characteristics shows remarkable differences in the division of spending over the consumption categories.
Thus, analyses of different types of households are important for providing a basis for options to induce decreases of the environmental load of household consumption. At the city level, options for change are provided by an analysis of the city infrastructure, which determines a large part of the direct energy use by households (for transport and heating). At the national level, energy efficiency in production and in electricity generation is an important trigger for decreasing household energy requirements.  相似文献   

17.
The study of the environmental footprints of various sectors and industries is increasingly demanded by institutions and by society. In this context, the regional perspective is becoming particularly important, and even more so in countries such as Spain, where the autonomous communities have the primary responsibility for implementing measures to combat environmental degradation and promote sustainable development, in coordination with national strategies. Taking as a case study a Spanish region, Aragon, and significant economic sectors, including agriculture and the food industry, the aim of this work is twofold. First, we calculate the associated environmental footprints (of emissions and water) from the dual perspectives of production (local impacts) and consumption (final destination of the goods produced by the agri‐food industry). Second, through a scenarios analysis, based on a general equilibrium model designed and calibrated specifically for the region, we evaluate the environmental implications of changes in the agri‐food industry (changes in the export and import pattern, as well as in consumer behavior). This model provides a flexible approximation to the environmental impacts, controlling for a wider range of behavioral and economic interactions. Our results indicate that the agri‐food industry has a significant impact on the environment, especially on water resources, which must be responsibly managed in order to maintain the differential advantage that a regional economy can have, compared to other territories.  相似文献   

18.
In many cases, policy makers and laymen perceive harmful emissions from chemical plants as the most important source of environmental impacts in chemical production. As a result, regulations and environmental efforts have tended to focus on this area. Concerns about energy use and greenhouse gas emissions, however, are increasing in all industrial sectors. Using a life cycle assessment (LCA) approach, we analyzed the full environmental impacts of producing 99 chemical products in Western Europe from cradle to factory gate. We applied several life cycle impact assessment (LCIA) methods to cover various impact areas. Our analysis shows that for both organic and inorganic chemical production in industrial countries, energy‐related impacts often represent more than half and sometimes up to 80% of the total impacts, according to a range of LCIA methods. Resource use for material feedstock is also important, whereas direct emissions from chemical plants may make up only 5% to 10% of the total environmental impacts. Additionally, the energy‐related impacts of organic chemical production increase with the complexity of the chemicals. The results of this study offer important information for policy makers and sustainability experts in the chemical industry striving to reduce environmental impacts. We identify more sustainable energy production and use as an important option for improvements in the environmental profile of chemical production in industrial countries, especially for the production of advanced organic and fine chemicals.  相似文献   

19.
Unsustainable private consumption causes energy and environmental problems. This occurs directly (resource depletion and emissions through using cars for transport) or indirectly (purchase of consumer goods and services for which the production uses energy and emits damaging gases). A hybrid energy analysis proved that indoor energy consumption, mobility, and vacations are the main consumer categories from an energy point of view. Although energy is often used as a proxy for environmental load from private consumption, there are other proxies like methane (CH4), sulfur oxides (SOx), and land use. This article describes the results of the extension of the hybrid energy analysis with energy and ten environmental stressors (CH4, nitrous oxide [N2O], nitrogen, phosphate, SOx, nitrogen oxides [NOx], ammonia [NH3], nonmethane volatile organic compounds [NMVOCs], particulate matter [PM10], and land use), combined in five impact categories (global warming potential [GWP], acidification, eutrophication, summer smog, and land use). Household consumption was analyzed by dividing Dutch household expenditure into 368 consumer items in 11 categories. The results show that food impacts, in particular, are underestimated when only energy is taken into account. Food makes the highest contribution in three out of five impact categories when all ten stressors are taken into account. Within the food domain, meat and dairy consumer items have the highest environmental impact, about 45% of total food impact on average across all five impact categories. Looking in detail (368 consumer items), there are nine food items in the top ten most‐polluting items. Salad oil and cheese are the most polluting food items.  相似文献   

20.
We examine decoupling conditions of domestic extraction of materials, energy use, and sulfur dioxide (SO2) emissions from gross domestic product (GDP) for two BRIC (Brazil, Russia, India and China) countries (i.e., China and Russia) and two Organisation for Economic Co‐operation and Development (OECD) countries (Japan and the United States) during 2000–2007, using a pair of decoupling indicators for resource use (Dr) and waste emissions (De) and the decoupling chart, which can distinguish between absolute decoupling, relative decoupling, and non‐decoupling. We find that (1) during 2000–2007, decoupling between environmental indicators and GDP was higher in the two OECD countries as compared with the two BRIC countries. The key reason is that these countries were in different development stages with different economic growth rates. (2) Changes in environmental policies can significantly influence the degree of decoupling in a country. (3) China, Japan, and the United States were more successful in decoupling SO2 emissions from GDP than in decoupling material and energy use from GDP. The main reason is that, unlike resource use, waste emissions (e.g., SO2 emissions) can be reduced by effective end‐of‐pipe treatment. (4) The decoupling indicator is different from the changing rate of resource use and waste emissions. If two countries have different GDP growth rates, even though they may have similar values using the decoupling indicator, they may show different rates of change for resource use and waste emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号