首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malondialdehyde - a product of lipid peroxidation due to free radical reaction was estimated in the culture filtrates of early senescent mutants of Neurospora crassa and the effects of vitamin E, vitamin C and Sodium selenite (free radical scavengers) in malondialdehyde contents were studied. From the results obtained, it could not be established that increased free radical reaction was the sole factor for the early senescence of all the mutants; and the free radical scavengers had very little effect on the malondialdehyde content of the selected early senescent mutants.  相似文献   

2.
Our previous report demonstrated that, when vitamin deficiency is associated with high contents of long chain polyunsaturated fatty acids (LCPUFA) n3, lipid peroxidation susceptibility in rat heart and liver increases. In this paper, we evaluated the effect of the same dietary administration on lipid composition and antioxidant defenses of rat kidney. Results showed that vitamin B(6) deficiency, when associated with a fish oil diet, as compared to vegetable oil condition, increased relative kidney weight and decreased pyridoxal-5P contents. The different LCPUFA n3 dietary contents produced, on kidney phospholipids, effects interlaced with those of vitamin B(6) deficiency; in particular fish oil and vitamin B(6) deficient diet caused a significant decrease of arachidonic acid showing that the processes of elongation and desaturation of linoleic acid were slowed. Also, peroxidation susceptibility was higher, as demonstrated both by increased TBARS formation and glutathione peroxidase activity, and by decreased vitamin E contents and reduced glutathione/oxidized glutathione ratio.  相似文献   

3.
1. Relationship between quinone recycling, glucuronidation and benzo(a)pyrene (BaP) oxygenation was investigated in uninduced mouse liver microsomes--native and modified by Fe3+.FeEDTA and/or superoxide (O2-.)-initiated lipid peroxidation. 2. A functional coupling between glucuronidation of reduced quinones and BaP metabolism, not discernible during BaP metabolism by native uninduced microsomes, was demonstrable in the presence of a model quinone, vitamin K3 (menadione). 3. Menadione inhibited BaP oxygenation in microsomal preparations, by siphoning off electrons from cytochrome P-450, while addition of UDPGA reversed this effect by glucuronidation of menadiol. 4. Fe3+.FeEDTA and/or O2-.-initiated lipid peroxidation decreased, to different extent, the microsomal enzymatic activities involved in quinone metabolism. The most sensitive was quinone reductase activity, which was reduced by 77%. Under peroxidative conditions menadione was a less effective inhibitor of BaP metabolism. 5. The important role of the balance between quinone reductase and UDP-glucuronyltransferase activities in the coupling with BaP oxygenation is discussed. A mechanism by which vitamin K3 could exert a regulatory effect on BaP metabolism is proposed.  相似文献   

4.
Rats were given a 0.05% polychlorinated biphenyls (PCB) diet supplemented with adequate nutrients for 10 days and not only PCB-induced lipid peroxidation as measured by thiobarbituric acid (TBA)-reactive substances but also variations of lipid peroxides scavengers in liver and its subcellular fractions (nuclei and cell debris, mitochondrial, microsomal and cytosolic fractions) were investigated. The lipid peroxidation in liver and subcellular fractions in the PCB-treated group increased significantly except in the nuclei and cell debris fraction. The increase in lipid peroxidation in the microsomal fraction appeared to be associated in part with the decrease in vitamin E (alpha-tocopherol) content and induction of drug-metabolizing enzymes. In the cytosolic fraction, the total lipid content increased, glutathione peroxidase (GSHPx) activity decreased and the quantity of free radical-reactive substances suppressing lipid peroxidation was low as measured by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) value. From these results, the increase in lipid peroxidation in the cytosolic fraction in the PCB-treated group was ascribed to the abundance and availability of oxidizable substrate attended with fatty liver, to the decline in GSHPx activity, and to the insufficiency in antioxygenic activity as observed by the decrease in the DPPH value.  相似文献   

5.
The interaction of microsomes with iron and NADPH to generate active oxygen radicals was determined by assaying for low level chemiluminescence. The ability of several ferric complexes to catalyze light emission was compared to their effect on microsomal lipid peroxidation or hydroxyl radical generation. In the absence of added iron, microsomal light emission was very low; chemiluminescence could be enhanced by several cycles of freeze-thawing of the microsomes. The addition of ferric ammonium sulfate, ferric-citrate, or ferric-ADP produced an increase in chemiluminescence, whereas ferric-EDTA or -diethylenetriaminepentaacetic acid (detapac) were inhibitory. The same response to these ferric complexes was found when assaying for malondialdehyde as an index of microsomal lipid peroxidation. In contrast, hydroxyl radical generation, assessed as oxidation of chemical scavengers, was significantly enhanced in the presence of ferric-EDTA and -detapac and only weakly elevated by the other ferric complexes. Ferric-desferrioxamine was essentially inert in catalyzing any of these reactions. Chemiluminescence and lipid peroxidation were not affected by superoxide dismutase, catalase, or competitive hydroxyl radical scavengers whereas hydroxyl radical production was decreased by the latter two but not by superoxide dismutase. Chemiluminescence was decreased by the antioxidants propylgallate or glutathione and by inhibiting NADPH-cytochrome P-450 reductase with copper, but was not inhibited by metyrapone or carbon monoxide. The similar pattern exhibited by ferric complexes on microsomal light emission and lipid peroxidation, and the same response of both processes to radical scavenging agents, suggests a close association between chemiluminescence and lipid peroxidation, whereas both processes can be readily dissociated from free hydroxyl radical generation by microsomes.  相似文献   

6.
In this paper we demonstrate that ascorbic acid specifically prevents NADPH-initiated cytochrome P450 (P450)-mediated microsomal lipid peroxidation in the absence of free iron. Lipid peroxidation has been evidenced by the formations of conjugated dienes, lipid hydroperoxide and malondialdehyde. Other scavengers of reactive oxygen species including superoxide dismutase, catalase, glutathione, -tocopherol, uric acid, thiourea, mannitol, histidine, -carotene and probucol are ineffective to prevent the NADPH-initiated P450-mediated free iron-independent microsomal lipid peroxidation. Using a reconstituted system comprised of purified NADPH-P450 reductase, P450 and isolated microsomal lipid or pure L--phosphatidylcholine diarachidoyl, a mechanism has been proposed for the iron-independent microsomal lipid peroxidation and its prevention by ascorbic acid. It is proposed that the perferryl moiety P450 Fe3+. O2 initiates lipid peroxidation by abstracting methylene hydrogen from polyunsaturated lipid to form lipid radical, which then combines with oxygen to produce the chain propagating peroxyl radical for subsequent formation of lipid peroxides. Apparently, ascorbic acid prevents initiation of lipid peroxidation by interacting with P450 Fe3+. O2. (Mol Cell Biochem 166: 35-44, 1997)  相似文献   

7.
Reactive oxygen species (ROS) have been implicated in the etiology of indomethacin-induced gastric mucosal damage. This study investigated ascorbic acid (vitamin C)'s protective effects against oxidative gastric mucosal damage induced by indomethacin. Ascorbic acid is a powerful antioxidant because it can donate a hydrogen atom and form a relatively stable ascorbyl free radical. We have investigated alterations in the levels of myeloperoxidase, antioxidant system enzymes (glutathione S-transferase, superoxide dismutase, glutathione reductase, catalase, glutathione peroxidase), lipid peroxidation and glutathione, as markers for ulceration process following oral administration of ascorbic acid, famotidine, lansoprazole, and ranitidine in rats with indomethacin-induced ulcers. In the present study, we found that (1) ascorbic acid, famotidine, lansoprazole and ranitidine reduced the development of indomethacin-induced gastric damages; (2) the administration of indomethacin caused a significant decrease in the levels of superoxide dismutase, glutathione peroxidase, glutathione S-transferase and glutathione, and an increase in the lipid peroxidation level; (3) the administration of ascorbic acid reversed the trend, inducing a significant increase of these enzymes' levels and a reduction in lipid peroxidation level in tissues; and (4) catalase, glutathione reductase and myeloperoxidase activities, increased by indomethacin, were found to be lower in the ascorbic acid, famotidine, lansoprazole and ranitidine-treated groups. The results indicate that the gastroprotective properties of ascorbic acid could be related to its positive effects on the antioxidant system and myeloperoxidase activity in indomethacin-induced gastric ulcers in rats.  相似文献   

8.
Reduced glutathione (GSH) delays microsomal lipid peroxidation via the reduction of vitamin E radicals, which is catalyzed by a free radical reductase (Haenen, G.R.M.M. et al. (1987) Arch. Biochem. Biophys. 259, 449-456). Lipoic acid exerts its therapeutic effect in pathologies in which free radicals are involved. We investigated the interplay between lipoic acid and glutathione in microsomal Fe2+ (10 microM)/ascorbate (0.2 mM)-induced lipid peroxidation. Neither reduced nor oxidized lipoic acid (0.5 mM) displayed protection against microsomal lipid peroxidation, measured as thiobarbituric acid-reactive material. Reduced lipoic acid even had a pro-oxidant activity, which is probably due to reduction of Fe3+. Notably, protection against lipid peroxidation was afforded by the combination of oxidized glutathione (GSSG) and reduced lipoic acid. It is shown that this effect can be ascribed completely to reduction of GSSG to GSH by reduced lipoic acid. This may provide a rationale for the therapeutic effectiveness of lipoic acid.  相似文献   

9.
Renal injury is considered as one of the prerequisites for calcium oxalate retention. In order to determine the role of lipid peroxidation related effects for hyperoxaluria, we evaluated the alterations in lipid peroxidation, antioxidants and oxalate synthesizing enzymes in lithogenic rats with response to vitamin E + selenium treatment. In kidney of lithogenic rats, the level of lipid peroxidation and the activities of oxalate synthesizing enzymes were found to be increased whereas the levels/activities of non-enzymatic and enzymatic antioxidants were found to be decreased. The urinary excretion of both oxalate and calcium were significantly elevated. Supplementation of lithogenic rats with vitamin E + selenium decreased the levels of lipid peroxides and the activities of oxalate synthesizing enzymes like glycolic acid oxidase (GAO), lactate dehydrogenase (LDH), xanthine oxidase (XO) with a concomitant increase in the activities of enzymatic antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PDH) and increased levels of non-enzymatic antioxidants like ascorbic acid, alpha-tocopherol and reduced glutathione (GSH). The urinary excretion of oxalate and calcium were normalized. The antioxidants vitamin E + selenium thereby protected from hyperoxaluria.  相似文献   

10.
We investigated the effects of vitamin E and topiramate (TPM) administrations on pentylentetrazol (PTZ)–induced blood and brain toxicity in rats. Forty rats were randomly divided into five equal groups. The first and second groups were used for the control and PTZ groups, respectively. Fifty or 100 mg TPM were administered to rats constituting the third and fourth groups for 7 days, respectively. The TPM and vitamin E combination was given to animals in the fifth group. At the end of 7 days, all groups except the first received a single dose of PTZ. Blood and brain samples were taken at 3 hrs after PTZ administration. Lipid peroxidation levels of plasma, erythrocyte, brain cortex and brain microsomal fraction; nitric oxide levels of serum; and the number of spikes and epileptiform discharges of the EEG were increased by PTZ administration. Plasma and brain vitamin E concentration, erythrocyte glutathione peroxidase (GSH-Px) activity and latency to first spike of the EEG were decreased by PTZ. Plasma lipid peroxidation levels in the third group and plasma and erythrocyte lipid peroxidation levels in the fifth group were decreased compared to the second group, whereas brain vitamin C, vitamin E, erythrocyte GSH-Px and reduced glutathione (GSH) values increased in the fifth group. Brain microsomal GSH levels and EEG records in the third, fourth and fifth groups were restored by the TPM and vitamin E treatment. In conclusion, TPM and vitamin E seems to have protective effects on PTZ-induced blood and brain toxicity by inhibiting free radicals and supporting the antioxidant redox system.  相似文献   

11.
We examined whether short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs. Four-week-old guinea pigs were given a scorbutic diet (20 g/animal/day) with and without adequate ascorbic acid (400 mg/animal/day) in drinking water for 3 weeks. The serum concentrations of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 14.1 and 4.1%, respectively, of those in the adequate group. The retinal contents of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 6.4 and 27.3%, respectively, of those in the adequate group. The retinal content of thiobarbituric acid-reactive substances, an index of lipid peroxidation, was 1.9-fold higher in the deficient group than in the adequate group. Retinal reduced glutathione and vitamin E contents in the deficient group were 70.1 and 69.4%, respectively, of those in the adequate group. This ascorbic acid deficiency did not affect serum thiobarbituric acid-reactive substances and reduced glutathione concentrations but increased serum vitamin E concentration. These results indicate that short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs without disrupting systemic antioxidant status.  相似文献   

12.
The effect of methionine or citrate on antioxidant defense system has been studied in urolithic rat. Liver weight and its protein concentration did not change in the rats fed with calculi producing diet (CPD) when compared to normal diet fed rats. Feeding rats along with citrate (c-CPD) or methionine (m-CPD) improved their body weight gain. Liver microsomes and mitochondria fractions of CPD and c-CPD fed groups showed increased susceptibility for lipid peroxidation in presence of ascorbate and t-butyl hydroperoxide when compared to either control or m-CPD fed groups. Increased superoxide dismutase and xanthine oxidase activities, decreased catalase, glutathione peroxidase and glucose-6-phosphate dehydrogenase activities, decreased concentrations of reduced glutathione, total thiols, ascorbic acid and vitamin-E and increased formation of hydroxyl radical, hydroperoxides and diene conjugates were observed in the liver of both CPD fed group as well as c-CPD fed group. Except SOD and xanthine oxidase, all other parameters were normalized in m-CPD fed group. This suggested that feeding methionine reduced the susceptibility for lipid peroxidation by restoration of the level of free radical scavengers.  相似文献   

13.
After 2 month of feeding vitamin E-supplemented diet (100.6 and 0 mg/kg; group I-control, II and III, respectively) the concentration of lipid peroxidation products (diene conjugates, malondialdehyde, Schiff's bases) and activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase) was estimated in rat heart and liver. Although the content of alpha-tocopherol in organs of group II was significantly decreased, the concentration of peroxidation products and enzyme activities was unchanged. Moreover, these parameters were constant in rat liver of group III. The heart was more sensitive because in group III to vitamin E deficiency (the alpha-tocopherol level was dropped fourfold) the concentration of diene conjugates and malondialdehyde was increased and superoxide dismutase activity was decreased. Thus insufficiency of vitamin E may result in selective alterations of myocardial functions. In addition, vitamin E may be useful instrument for correction of free radical oxidation and antioxidant system activity in the heart.  相似文献   

14.
It has been suggested that oxidative stress products play an important role in the etiology of epilepsy. We investigated the effects of selenium (Se) administration on topiramate (TPM)- and pentylentetrazol (PTZ)-induced brain toxicity in rats. Forty male Wistar rats were divided into five equal groups. The first and second groups were used as the control and PTZ groups, respectively. TPM, 50 mg, and Se, 0.3 mg, were administered to rats constituting the third and fourth groups, respectively, for 7 days. The combination of 50 mg TPM and Se was given to animals in the fifth group for 7 days. At the end of 7 days all groups except the first received a single dose of PTZ. Brain cortex samples were taken at 3 h of PTZ administration. PTZ resulted in a significant increase in brain cortex and microsomal lipid peroxidation (LP) levels, number of spikes, and epileptiform discharges on the EEG, although brain cortex vitamin E, brain cortex and microsomal reduced glutathione (GSH), and microsomal calcium (Ca) levels, Ca(2+)-ATPase activities, and latency to first spike on the EEG were decreased by PTZ. LP, GSH, vitamin E, and Ca levels and Ca(2+)-ATPase activities were increased by both Se and TPM, although vitamin A and C concentrations were increased by Se only. There were no effects of TPM and Se on brain cortex and microsomal glutathione peroxidase, brain cortex nitric oxide, or beta-carotene levels. In conclusion, TPM and selenium caused protective effects on PTZ-induced brain injury by inhibiting free radical production, regulating calcium-dependent processes, and supporting the antioxidant redox system.  相似文献   

15.
1. The aim of this work was to evaluate the relationships between free radical scavengers and lipid peroxidation in the common mussel Mytilus edulis. 2. Mussels were exposed to compounds known for their ability to produce free radicals (carbon tetrachloride, CCl4) and reactive oxygen species via redox cycling (menadione) and the effects on digestive gland, gills and remaining tissues were studied. 3. Lipid peroxidation parameters and the status of free radical scavengers (glutathione, vitamins A, E and C) were affected more by exposure to menadione than to CCl4. 4. The observed changes in the free radical scavengers content are indicative of a role in detoxication of damaging reactive species.  相似文献   

16.
Vitamin A deficiency has been shown to enhance the mutagenicity of benzo[a]pyrene (Narbonne et al., 1985). Here we report that this is not a result of increased benzo[a]pyrene metabolism but might be a consequence of either a lack of vitamin A or a decreased level of scavengers (ascorbic acid and glutathione) in the liver. However, the addition of vitamin A in vitro in the form of retinyl palmitate strongly inhibits the benzo[a]pyrene mutagenicity. An enhancing effect on the mutagenicity of benzo[a]pyrene is observed with addition of ascorbic acid when incubated with high amounts of the precarcinogen. In vivo addition of high levels of glutathione also reduces the mutagenicity of benzo[a]pyrene.  相似文献   

17.
Glutathione S-transferases are a group of multifunctional isozymes that play a central role in the detoxification of hydrophobic xenobiotics with electrophilic centers (1). In this study we investigated the effects of in vitro lipid peroxidation on the activity of liver microsomal glutathione S-transferases from rats either supplemented or deficient in both vitamin E and selenium. Increased formation of malondialdehyde (MDA), a by-product of lipid peroxidation, was associated with a decreased activity of rat liver microsomal glutathione S-transferase. The inhibition of glutathione S-transferase occurred rapidly in microsomes from rats fed a diet deficient in both vitamin E and selenium (the B diet) but was delayed for 15 minutes in microsomes from rats fed the same diet but supplemented with these micro-nutrients (B+E+Se diet). Lipid peroxidation inhibits microsomal glutathione S-transferase and this inhibition is modulated by dietary antioxidants.  相似文献   

18.
Lipid peroxidation in the liver of carcinogen-resistant rats   总被引:3,自引:0,他引:3  
Recently, we developed a new strain of rats that exhibit marked resistance to the hepatotoxic and carcinogenic actions of 3'-methyl-4-dimethylaminoazobenzene (3'-MeDAB) and some other carcinogens. In this work, we compared lipid peroxidation in the liver of these carcinogen-resistant (R) rats and the parental Donryu strain rats that are sensitive (S) to hazardous actions of these carcinogens. The liver microsomal fractions of the R group contained less amounts of polyunsaturated fatty acids. Microsomal lipid peroxidation in the presence of exogenous NADPH was much lower in R rats than in S rats. Liver microsomes of R rats were much less active than those of S rats also in producing 4-hydroxynonenal, carbonyl compounds and conjugated diene. The hepatic contents of ascorbic acid, glutathione, alpha-tocopherol and coenzyme Q in the R rats were similar to those in S rats. The activities of the free radical scavenger enzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), in the two groups were also similar. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are both thought to function in disposal of these cytotoxic aldehydes. The liver microsomal and mitochondrial ALDH activities of the two groups were similar. The ADH activity of the liver cytosolic fraction of R rats was nearly twice that of S rats, as measured with 4-hydroxynonenal as substrate. The higher ADH activity may explain the decreased lipid peroxidation in R rats at least partly, if this enzyme is involved in lipid peroxidation.  相似文献   

19.
Different antioxidants and free radical scavengers on aflatoxin production are analysed. The different compounds at different concentration were used: buthylated hydroxyanisole (BHA), buthylated hydroxytoluene (BHT), α-tocopherol (vitamin E), ascorbic acid (vitamin C), reduced glutathione, cysteine, cysteamine. The above compounds were tested in culture ofAspergillus parasiticus supplemented with carbon tetrachloride, a potent stimulating agent of aflatoxin biosynthesis. Cysteamine and BHA highly inhibited the aflatoxin production induced by carbon tetrachloride, the inhibition decreased by lowering the concentration. On the contrary, vitamin E, vitamin C, reduced glutathione and cysteine further enhanced the carbon tetrachloride stimulating effect. The addition of the above compounds did not significantly affect the growth of the fungal mycelia.  相似文献   

20.
The present review deals with the chemical properties of selenium in relation to its antioxidant properties and its reactivity in biological systems. The interaction of selenite with thiols and glutathione and the reactivity of selenocompounds with hydroperoxides are described. After a short survey on distribution, metabolism and organification of selenium, the role of this element as a component of the two seleno-dependent glutathione peroxidases is described. The main features of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are also reviewed. Both enzymes reduce different hydroperoxides to the corresponding alcohols and the major difference is the reduction of lipid hydroperoxides in membrane matrix catalyzed only by the phospholipid hydroperoxide glutathione peroxidase. However, in spite of the different specificity for the peroxidic substrates, the kinetic mechanism of both glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase seems identical and proceeds through a tert-uni ping pong mechanism. In the reaction cycle, indeed, as supported by the kinetic data, the oxidation of the ionized selenol by the hydroperoxide yields a selenenic acid that in turn is reduced back by two reactions with reduced glutathione. Special emphasis has been given to the role of selenium-dependent glutathione peroxidases in the prevention of membrane lipid peroxidation. While glutathione peroxidase is able to reduce hydrogen peroxide and other hydroperoxides possibly present in the soluble compartment of the cell, this enzyme fails to inhibit microsomal lipid peroxidation induced by NADPH or ascorbate and iron complexes. On the other hand, phospholipid hydroperoxide glutathione peroxidase, by reducing the phospholipid hydroperoxides in the membranes, actively prevents lipid peroxidation, provided a normal content of vitamin E is present in the membranes. In fact, by preventing the free radical generation from lipid hydroperoxides, phospholipid hydroperoxide glutathione peroxidase decreases the vitamin E requirement necessary to inhibit lipid peroxidation. Finally, the possible regulatory role of the selenoperoxidases on the arachidonic acid cascade enzymes (cyclooxygenase and lipoxygenase) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号