首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages.  相似文献   

2.
The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism.  相似文献   

3.
A total of 33 Rhizobium meliloti bacteriophages were studied. Of those, 21 were isolated in northern France from field soil in which Medicago sativa L. was grown. The other 12 phages were obtained by UV light and mitomycin C induction from 46 R. meliloti strains. Rhizobiophages were characterized by their morphology, host range, serological properties, restriction endonuclease patterns, DNA-DNA homologies, and DNA molecular weights. Five morphotypes were observed showing tailed phages with icosahedral heads. The categories of morphotypes included the Myoviridae (11 phages), Siphoviridae (3 morphotypes and 20 phages), and Podoviridae (2 phages). Type NM1 phage (Siphoviridae) is highly unusual because of the presence of transverse bars on the phage tail. Soil phages had broad host ranges, whereas phages isolated from bacterial cultures showed more or less narrow host ranges. Restriction endonuclease patterns and DNA-DNA hybridization experiments showed that the five phage type genomes were unrelated. Molecular weights of phage type DNAs were estimated, and they corresponded to values expected for capsid sizes, except for phage NM8. Type M11S (Siphoviridae) did not correspond to any other described Rhizobium phages and represents a new species.  相似文献   

4.
Thirteen virulent phages and two temperate phages of two closely related bacterial species (Lactobacillus lactis and L. bulgaricus) were compared for their protein composition, their antigenic properties, their restriction endonuclease patterns, and their DNA homology. The immunoblotting studies and the DNA-DNA hybridizations showed that the phages could be differentiated into two groups. One group contained 2 temperate phages of L. bulgaricus and 11 virulent phages of L. lactis. Inside each group, at least two common proteins of identical sizes could be detected for each phage. These proteins were able to cross-react in immunoblotting experiments with an antiserum raised against one phage of the same group. Temperate phage DNAs showed partial homology with DNAs from some virulent phages. These homologies seem to be located on the region coding for the structural proteins since recombinant plasmids coding for one of the major phage proteins of one phage were able to hybridize with the DNAs from phages of the same group. These results suggest that temperate and virulent phages may be related to one another.  相似文献   

5.
Covalent circular λ DNA molecules produced in Escherichia coli (λ) host cells by infection with labeled λ bacteriophages are cut following superinfection with λ phages damaged by exposure to psoralen and 360 nm light. This cutting of undamaged covalent circular molecules is referred to as “cutting in trans”, and could be a step in damage-induced recombination (Ross &; Howard-Flanders, 1977). Similar experiments performed with the temperate phage 186, which is not homologous with phage λ, showed cutting in trans and damage-induced recombination to occur in homoimmune crosses with phage 186 also. Double lysogens carrying both λ and 186 prophages were used in a test for specificity in cutting in trans and in damage-induced recombination. The double lysogens were infected with 3H-labeled 186 and 32P-labeled λ phages. When these doubly infected lysogens containing covalent circular phage DNA molecules of both types were superinfected with psoralen-damaged 186 phages and incubated, the covalent circular 186 DNA was cut, while λ DNA remained intact. Similarly, superinfection with damaged λ phages caused λ, but not 186, DNA to be cut. Evidently, cutting in trans was specific to the covalent circular DNA homologous to the DNA of the damaged phages. Homoimmune phage-prophage genetic crosses were performed in the double lysogenic host infected with genetically marked λ and 186 phages. Damage-induced recombination was observed in this system only between the damaged phage DNA and the homologous prophage, none being detected between other homolog pairs present in the same cell. This result makes it unlikely that the damaged phage DNA induces a general state of enhanced strand cutting and genetic recombination affecting all homolog pairs present in the host cell. The simplest interpretation of the specificity in cutting and in recombination is as follows. When they have been incised, the damaged phage DNA molecules are able to pair directly with their undamaged covalent circular homologs. The latter molecules are cut in a recA + -dependent reaction by a recombination endonuclease that cuts the intact member of the paired homologs.  相似文献   

6.
An unusual, spontaneous, phage sk1-resistant mutant (RMSK1/1) of Lactococcus lactis C2 apparently blocks phage DNA entry into the host. Although no visible plaques formed on RMSK1/1, this host propagated phage at a reduced efficiency. This was evident from center-of-infection experiments, which showed that 21% of infected RMSK1/1 formed plaques when plated on its phage-sensitive parental strain, C2. Moreover, viable cell counts 0 and 4 h after infection were not significantly different from those of an uninfected culture. Further characterization showed that phage adsorption was normal, but burst size was reduced fivefold and the latent period was increased from 28.5 to 36 min. RMSK1/1 was resistant to other, but not all, similar phages. Phage sensitivity was restored to RMSK1/1 by transformation with a cloned DNA fragment from a genomic library of a phage-sensitive strain. Characterization of the DNA that restored phage sensitivity revealed an open reading frame with similarity to sequences encoding lysozymes (β-1,4-N-acetylmuramidase) and lysins from various bacteria, a fungus, and phages of Lactobacillus and Streptococcus and also revealed DNA homologous to noncoding sequences of temperate phage of L. lactis, DNA similar to a region of phage sk1, a gene with similarity to tRNA genes, a prophage attachment site, and open reading frames with similarities to sun and to sequences encoding phosphoprotein phosphatases and protein kinases. Mutational analyses of the cloned DNA showed that the region of homology with lactococcal temperate phage was responsible for restoring the phage-sensitive phenotype. The region of homology with DNA of lactococcal temperate phage was similar to DNA from a previously characterized lactococcal phage that suppresses an abortive infection mechanism of phage resistance. The region of homology with lactococcal temperate phage was deleted from a phage-sensitive strain, but the strain was not phage resistant. The results suggest that the cloned DNA with homology to lactococcal temperate phage was not mutated in the phage-resistant strain. The cloned DNA apparently suppressed the mechanism of resistance, and it may do so by mimicking a region of phage DNA that interacts with components of the resistance mechanism.  相似文献   

7.
P Li  B Chen  Z Song  Y Song  Y Yang  P Ma  H Wang  J Ying  P Ren  L Yang  G Gao  S Jin  Q Bao  H Yang 《Gene》2012,507(2):125-134
As one of the pathogens of hospital-acquired infections, Acinetobacter baumannii poses great challenges to the public health. A. baumannii phage could be an effective way to fight multi-resistant A. baumannii. Here, we completed the whole genome sequencing of the complete genome of A. baumannii phage AB1, which consists of 45,159bp and is a double-stranded DNA molecule with an average GC content of 37.7%. The genome encodes one tRNA gene and 85 open reading frames (ORFs) and the average size of the ORF is 531bp in length. Among 85 ORFs, only 14 have been identified to share significant sequence similarities to the genes with known functions, while 28 are similar in sequence to the genes with function-unknown genes in the database and 43 ORFs are uniquely present in the phage AB1 genome. Fourteen function-assigned genes with putative functions include five phage structure proteins, an RNA polymerase, a big sub-unit and a small sub-unit of a terminase, a methylase and a recombinase and the proteins involved in DNA replication and so on. Multiple sequence alignment was conducted among those homologous proteins and the phylogenetic trees were reconstructed to analyze the evolutionary courses of these essential genes. From comparative genomics analysis, it turned out clearly that the frame of the phage genome mainly consisted of genes from Xanthomonas phages, Burkholderia ambifaria phages and Enterobacteria phages and while it comprises genes of its host A. baumannii only sporadically. The mosaic feature of the phage genome suggested that the horizontal gene transfer occurred among the phage genomes and between the phages and the host bacterium genomes. Analyzing the genome sequences of the phages should lay sound foundation to investigate how phages adapt to the environment and infect their hosts, and even help to facilitate the development of biological agents to deal with pathogenic bacteria.  相似文献   

8.
Two independent isolates of the gut commensal Lactobacillus johnsonii were sequenced. These isolates belonged to the same clonal lineage and differed mainly by a 40.8-kb prophage, LJ771, belonging to the Sfi11 phage lineage. LJ771 shares close DNA sequence identity with Lactobacillus gasseri prophages. LJ771 coexists as an integrated prophage and excised circular phage DNA, but phage DNA packaged into extracellular phage particles was not detected. Between the phage lysin gene and attR a likely mazE (“antitoxin”)/pemK (“toxin”) gene cassette was detected in LJ771 but not in the L. gasseri prophages. Expressed pemK could be cloned in Escherichia coli only together with the mazE gene. LJ771 was shown to be highly stable and could be cured only by coexpression of mazE from a plasmid. The prophage was integrated into the methionine sulfoxide reductase gene (msrA) and complemented the 5′ end of this gene, creating a protein with a slightly altered N-terminal sequence. The two L. johnsonii strains had identical in vitro growth and in vivo gut persistence phenotypes. Also, in an isogenic background, the presence of the prophage resulted in no growth disadvantage.  相似文献   

9.
The unique characteristics of the waxy mycobacterial cell wall raise questions about specific structural features of their bacteriophages. No structure of any mycobacteriophage is available, although ∼3,500 have been described to date. To fill this gap, we embarked in a genomic and structural study of a bacteriophage from Mycobacterium abscessus subsp. bolletii, a member of the Mycobacterium abscessus group. This opportunistic pathogen is responsible for respiratory tract infections in patients with lung disorders, particularly cystic fibrosis. M. abscessus subsp. bolletii was isolated from respiratory tract specimens, and bacteriophages were observed in the cultures. We report here the genome annotation and characterization of the M. abscessus subsp. bolletii prophage Araucaria, as well as the first single-particle electron microscopy reconstruction of the whole virion. Araucaria belongs to Siphoviridae and possesses a 64-kb genome containing 89 open reading frames (ORFs), among which 27 could be annotated with certainty. Although its capsid and connector share close similarity with those of several phages from Gram-negative (Gram) or Gram+ bacteria, its most distinctive characteristic is the helical tail decorated by radial spikes, possibly host adhesion devices, according to which the phage name was chosen. Its host adsorption device, at the tail tip, assembles features observed in phages binding to protein receptors, such as phage SPP1. All together, these results suggest that Araucaria may infect its mycobacterial host using a mechanism involving adhesion to cell wall saccharides and protein, a feature that remains to be further explored.  相似文献   

10.
A new virulent phage belonging to the Siphoviridae family and able to infect Lactococcus garvieae strains was isolated from compost soil. Phage GE1 has a prolate capsid (56 by 38 nm) and a long noncontractile tail (123 nm). It had a burst size of 139 and a latent period of 31 min. Its host range was limited to only two L. garvieae strains out of 73 tested. Phage GE1 has a double-stranded DNA genome of 24,847 bp containing 48 predicted open reading frames (ORFs). Putative functions could be assigned to only 14 ORFs, and significant matches in public databases were found for only 17 ORFs, indicating that GE1 is a novel phage and its genome contains several new viral genes and encodes several new viral proteins. Of these 17 ORFs, 16 were homologous to deduced proteins of virulent phages infecting the dairy bacterium Lactococcus lactis, including previously characterized prolate-headed phages. Comparative genome analysis confirmed the relatedness of L. garvieae phage GE1 to L. lactis phages c2 (22,172 bp) and Q54 (26,537 bp), although its genome organization was closer to that of phage c2. Phage GE1 did not infect any of the 58 L. lactis strains tested. This study suggests that phages infecting different lactococcal species may have a common ancestor.  相似文献   

11.
Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 ± 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.  相似文献   

12.
R H Chesney  J R Scott 《Plasmid》1978,1(2):145-163
Like other plasmids, the P1 and P7 prophages suppress E. coli dnaA(Ts) mutations by integrating into the host chromosome. This conclusion is supported by three lines of evidence: (1) Alkaline sucrose gradients reveal the absence of plasmid DNA in suppressed lysogens; (2) the prophage is linked to host chromosomal markers in conjugation; and (3) auxotrophs whose defect is linked to the prophage are found among suppressed colonies. No phage or bacterial mutation is required for suppression. Integrative suppression by P1 and P7, unlike suppression by F, does not require the host recA+ function. Among suppressed P7 lysogens are some that do not produce phage; these contain defective prophages. The genetic extent of the deletions contained by these defective prophages delineates the prophage regions which are not necessary for suppression of dnaA(Ts). The possible mechanisms of integration and deletion formation are discussed.  相似文献   

13.
The Vibrio cholerae bacterium is the agent of cholera. The capacity to produce the cholera toxin, which is responsible for the deadly diarrhea associated with cholera epidemics, is encoded in the genome of a filamentous phage, CTXφ. Rolling-circle replication (RCR) is central to the life cycle of CTXφ because amplification of the phage genome permits its efficient integration into the genome and its packaging into new viral particles. A single phage-encoded HUH endonuclease initiates RCR of the proto-typical filamentous phages of enterobacteriaceae by introducing a nick at a specific position of the double stranded DNA form of the phage genome. The rest of the process is driven by host factors that are either essential or crucial for the replication of the host genome, such as the Rep SF1 helicase. In contrast, we show here that the histone-like HU protein of V. cholerae is necessary for the introduction of a nick by the HUH endonuclease of CTXφ. We further show that CTXφ RCR depends on a SF1 helicase normally implicated in DNA repair, UvrD, rather than Rep. In addition to CTXφ, we show that VGJφ, a representative member of a second family of vibrio integrative filamentous phages, requires UvrD and HU for RCR while TLCφ, a satellite phage, depends on Rep and is independent from HU.  相似文献   

14.
【目的】枯草芽孢杆菌(Bacillus subtilis)是在自然界中广泛存在的革兰氏阳性菌,其抗逆性极强,能抑制大多数有害菌的繁殖,是常用的产酶菌,用其生产的蛋白酶、淀粉酶占全球工业酶产量的50%。原噬菌体(prophage)整合在宿主基因组中,可为宿主提供基因和生物学功能,非常具有研究价值。以往,有关B. subtilis原噬菌体的报道主要集中于缺陷型原噬菌体(defective prophage),本研究对一株非缺陷型活性原噬菌体(active prophage)的基因组进行解析,以扩充对非缺陷型原噬菌体的认知。【方法】使用丝裂霉素C从枯草芽孢杆菌中诱导一株噬菌体,命名为Bacillus phage Bsu-yong1(简称Bsu-yong1)。对Bsu-yong1进行负染、透射电镜(transmission electron microscopy,TEM)观察,用Illumina MiSeq测定其基因组序列、综合运用生物信息学工具对其进行基因功能注释和系统进化分析。【结果】Bsu-yong1与PBSX类缺陷型原噬菌体在形态上相似,但Bsu-yong1具有完整的噬菌体基因组,这与缺陷型原噬菌体不同,后者在包装过程中不能正确包裹自身的基因组,而是随机包裹一段宿主染色体。Bsu-yong1基因组全长为43 590 bp,G+C含量为41%,含有62个开放阅读框(open reading frame,ORF),呈模块化分布。Bsu-yong1拥有基因编码T7SS效应器LXG多态性毒素(T7SS effector LXG polymorphic toxin)、ImmA/IrrE蛋白和SMI1/KNR4蛋白。前二者为细菌毒素(toxin),后者为抗毒素(antitoxin),toxin-antitoxin是细菌免疫系统重要成员,参与菌间竞争与环境适应。此前,尚未有编码LXG polymorphic toxin的基因在噬菌体中被发现和报道。在基于全基因组比对构建的蛋白谱进化树(proteomic tree)中,Bsu-yong1与噬菌体sv105、rho14、vB_BteM-A9Y聚集形成一个独立的进化支(clade),基因组比对显示它们基因组的复制与调控模块具有高度保守性,它们共享29个核心基因(core gene),均具有PBSX样形态特征。Bsu-yong1与其他噬菌体的进化距离较远。将Bsu-yong1与所有噬菌体进行比对,得到的成对序列比较(pairwise sequence comparison,PASC)最大值为46.72%,小于属边界值(70%)。【结论】vB_Bsu-yong1在有尾纲中代表一个新的未知的属;建议构建一个新的科(family),该科由Bsu-yong1与噬菌体sv105、rho14、vB_BteM-A9Y组成。vB_Bsu-yong携带免疫相关基因,它可能有利于宿主在菌间竞争中获胜和适应环境。本研究丰富了噬菌体基因数据库,拓展了对芽孢杆菌活性原噬菌体的认知。  相似文献   

15.
Two coliphages, AR1 and LG1, were characterized based on their morphological, host range, and genetic properties. Transmission electron microscopy showed that both phages belonged to the Myoviridae; phage particles of LG1 were smaller than those of AR1 and had an isometric head 68 nm in diameter and a complex contractile tail 111 nm in length. Transmission electron micrographs of AR1 showed phage particles consisting of an elongated isometric head of 103 by 74 nm and a complex contractile tail 116 nm in length. Both phages were extensively tested on many strains of Escherichia coli and other enterobacteria. The results showed that both phages could infect many serotypes of E. coli. Among the enterobacteria, Proteus mirabilis, Shigella dysenteriae, and two Salmonella strains were lysed by the phages. The genetic material of AR1 and LG1 was characterized. Phage LG1 had a genome size of 49.5 kb compared to 150 kb for AR1. Restriction endonuclease analysis showed that several restriction enzymes could degrade DNA from both phages. The morphological, genome size, and restriction endonuclease similarities between AR1 and phage T4 were striking. Southern hybridizations showed that AR1 and T4 are genetically related. The wide host ranges of phages AR1 and LG1 suggest that they may be useful as biocontrol, therapeutic, or diagnostic agents to control and detect the prevalence of E. coli in animals and food.  相似文献   

16.
We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.  相似文献   

17.
The effects of pTR2030 on the replication of four small isometric bacteriophages were examined in Streptococcus cremoris R1. Three lytic phages (652, 720, and 751), which were isolated independently over a 29-year period, were unable to form plaques on a pTR2030 transconjugant of S. cremoris R1. The fourth phage evaluated, phage r1t, was a temperate phage induced from S. cremoris R1 by treatment with mitomycin C. A prophage-cured derivative of S. cremoris R1, designated R1Cs, was isolated and served as a lytic indicator for phage r1t. Strain R1Cs and a derivative of this strain that was relysogenized with r1t, designated R1Cs(r1t), were used as conjugal recipients for transfer of the phage resistance plasmid pTR2030. pTR2030 transconjugants of strains R1Cs and R1Cs(r1t) were evaluated for sensitivity to r1t phage and induction of r1t prophage, respectively. The temperate phage r1t adsorbed eficiently but did not form plaques on the prophage-cured, pTR2030 transconjugant strain T-R1Cs. However, in the r1t lysogen [T-R1Cs(r1t)], pTR2030 did not inhibit prophage induction with mitomycin C, cell lysis, or production of infective r1t phage particles. The data demonstrated that pTR2030-induced resistance inhibited lytic infection by r1t phage from without but did not retard lytic development after prophage induction within the cell. It was suggested that pTR2030-encoded phage resistance to small isometric phages may, therefore, act at the cell surface or membrane to prevent phage DNA passage into the host cell or inhibit early events required for lytic replication of externally infecting phage.  相似文献   

18.
A myovirus-like temperate phage, PhiHAP-1, was induced with mitomycin C from a Halomonas aquamarina strain isolated from surface waters in the Gulf of Mexico. The induced cultures produced significantly more virus-like particles (VLPs) (3.73 x 10(10) VLP ml(-1)) than control cultures (3.83 x 10(7) VLP ml(-1)) when observed with epifluorescence microscopy. The induced phage was sequenced by using linker-amplified shotgun libraries and contained a genome 39,245 nucleotides in length with a G+C content of 59%. The PhiHAP-1 genome contained 46 putative open reading frames (ORFs), with 76% sharing significant similarity (E value of <10(-3)) at the protein level with other sequences in GenBank. Putative functional gene assignments included small and large terminase subunits, capsid and tail genes, an N6-DNA adenine methyltransferase, and lysogeny-related genes. Although no integrase was found, the PhiHAP-1 genome contained ORFs similar to protelomerase and parA genes found in linear plasmid-like phages with telomeric ends. Southern probing and PCR analysis of host genomic, plasmid, and PhiHAP-1 DNA indicated a lack of integration of the prophage with the host chromosome and a difference in genome arrangement between the prophage and virion forms. The linear plasmid prophage form of PhiHAP-1 begins with the protelomerase gene, presumably due to the activity of the protelomerase, while the induced phage particle has a circularly permuted genome that begins with the terminase genes. The PhiHAP-1 genome shares synteny and gene similarity with coliphage N15 and vibriophages VP882 and VHML, suggesting an evolutionary heritage from an N15-like linear plasmid prophage ancestor.  相似文献   

19.
Despite increasing interest in coagulase-negative staphylococci (CoNS), little information is available about their bacteriophages. We isolated and sequenced three novel temperate Siphoviridae phages (StB12, StB27, and StB20) from the CoNS Staphylococcus hominis and S. capitis species. The genome sizes are around 40 kb, and open reading frames (ORFs) are arranged in functional modules encoding lysogeny, DNA metabolism, morphology, and cell lysis. Bioinformatics analysis allowed us to assign a potential function to half of the predicted proteins. Structural elements were further identified by proteomic analysis of phage particles, and DNA-packaging mechanisms were determined. Interestingly, the three phages show identical integration sites within their host genomes. In addition to this experimental characterization, we propose a novel classification based on the analysis of 85 phage and prophage genomes, including 15 originating from CoNS. Our analysis established 9 distinct clusters and revealed close relationships between S. aureus and CoNS phages. Genes involved in DNA metabolism and lysis and potentially in phage-host interaction appear to be widespread, while structural genes tend to be cluster specific. Our findings support the notion of a possible reciprocal exchange of genes between phages originating from S. aureus and CoNS, which may be of crucial importance for pathogenesis in staphylococci.  相似文献   

20.
A novel flagellatropic phage of Salmonella enterica serovar Typhimurium, called iEPS5, was isolated and characterized. iEPS5 has an icosahedral head and a long noncontractile tail with a tail fiber. Genome sequencing revealed a double-stranded DNA of 59,254 bp having 73 open reading frames (ORFs). To identify the receptor for iEPS5, Tn5 transposon insertion mutants of S. Typhimurium SL1344 that were resistant to the phage were isolated. All of the phage-resistant mutants were found to have mutations in genes involved in flagellar formation, suggesting that the flagellum is the adsorption target of this phage. Analysis of phage infection using the ΔmotA mutant, which is flagellated but nonmotile, demonstrated the requirement of flagellar rotation for iEPS5 infection. Further analysis of phage infection using the ΔcheY mutant revealed that iEPS5 could infect host bacteria only when the flagellum is rotating counterclockwise (CCW). These results suggested that the CCW-rotating flagellar filament is essential for phage adsorption and required for successful infection by iEPS5. In contrast to the well-studied flagellatropic phage Chi, iEPS5 cannot infect the ΔfliK mutant that makes a polyhook without a flagellar filament, suggesting that these two flagellatropic phages utilize different infection mechanisms. Here, we present evidence that iEPS5 injects its DNA into the flagellar filament for infection by assessing DNA transfer from SYBR gold-labeled iEPS5 to the host bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号