首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 892 毫秒
1.
Ambient temperature and water availability regulate seasonal timing of germination. In fire-prone landscapes, the role of fire-related cues in affecting the range of temperatures and water potentials (ψs) across which germination can occur is poorly known, especially in non-Mediterranean landscapes. We examined interactive effects of temperature (15 or 25°C), ψ (0 to −0.9 MPa), and fire-related cues (heat and smoke) on germination for seeds of three shrub species from fire-prone southeastern Australia. Incubation temperature affected germination of untreated seeds of Kunzea ambigua and Kunzea capitata (Myrtaceae) (reduction at 25°C), but germination was uniformly low in Epacris obtusifolia (Ericaceae). Decreasing ψ reduced germination across both incubation temperatures. Fire cues increased germination at both incubation temperatures and across ψs, although in Kunzea the increase was smaller and occurred over a narrower range of ψs at 25°C. Hydrotime analysis suggested that fire cues reduced the amount of water necessary for germination of Kunzea seeds. Post-fire germination of the three study species may occur during the warm season, although it is reduced and confined to wet periods for the two Kunzea species. Warm season germination of the study species is consistent with a trade-off between the increased risk of failure of a cohort of seedlings, and benefits of early establishment of a cohort that may survive in an environment with aseasonal rainfall.  相似文献   

2.
We identified a new role of phytochrome in mediating germination responses to seasonal cues and thereby identified for the first time a gene involved in maternal environmental effects on germination. We examined the germination responses of a mutant, hy2-1, which is deficient in the phytochrome chromophore. The background genotype, Landsberg erecta (Ler), lacked dormancy in most treatments, while hy2-1 required cold stratification for germination in a manner that resembled a more dormant ecotype, Columbia (Col). Unlike Col, hy2-1 was not induced into dormancy by warm stratification. Therefore, the down-regulation of phytochrome-mediated germination pathways results in sensitivity to cold, but we found no evidence that reduced phytochrome activity enables the warm-induction of dormancy. Cool temperatures during seed maturation induced dormancy. The hy2-1 mutants did not overcome this dormancy, indicating that phytochrome-mediated pathways are required to break cold-induced dormancy. Ler did not respond to post-stratification temperature, but hy2-1 did respond, suggesting phytochrome pathways are involved in germination responses to temperature. In summary, phytochromes mediate dormancy and germination responses to seasonal cues experienced both during seed maturation and after dispersal. Phytochromes therefore appear to be involved in mediating seasonal germination timing, a trait of great ecological importance and one that is under strong natural selection.  相似文献   

3.
The influence of temperature, light environment, and seed hydration on the rate of dormancy release in Lolium rigidum (annual ryegrass) seeds during hydrated storage (stratification) was investigated. In a series of experiments, seeds were subjected to a range of temperatures (nine between 5 degrees C and 37 degrees C), light (white, red, far-red, and dark), and hydration (4-70 g H(2)O 100 g(-1) FW) during stratification for up to 80 d. Samples were germinated periodically at 25/15 degrees C or constant 15, 20, or 25 degrees C with a 12 h photoperiod to determine dormancy status. Dark-stratification was an alternative, but not equivalent dormancy release mechanism to dry after-ripening in annual ryegrass seeds. Dormancy release during dark-stratification caused a gradual increase in sensitivity to light, but germination in darkness remained negligible. Germination, but not dormancy release, was greater under fluctuating diurnal temperatures than the respective mean temperatures delivered constantly. Dormancy release rate was a positive linear function of dark-stratification temperature above a base temperature for dormancy release of 6.9 degrees C. Dormancy release at temperatures up to 30 degrees C could be described in terms of thermal dark-stratification time, but the rate of dormancy release was slower at < or =15 degrees C (244 degrees Cd/probit increase in germination) than > or =20 degrees C (208 degrees Cd/probit). Stratification in red or white, but not far-red light, inhibited dormancy release, as did insufficient (<40 g H(2)O 100 g(-1) FW) seed hydration. The influence of dark-stratification on dormancy status in annual ryegrass seeds is discussed in terms of a hypothetical increase in available membrane-bound phytochrome receptors.  相似文献   

4.
BACKGROUND AND AIMS: Germination and establishment of seeds are complex traits affected by a wide range of internal and external influences. The effects of parental temperature preconditioning and temperature during germination on germination and establishment of Arabidopsis thaliana were examined. METHODS: Seeds from parental plants grown at 14 and at 22 degrees C were screened for germination (protrusion of radicle) and establishment (greening of cotyledons) at three different temperatures (10, 18 and 26 degrees C). Seventy-three accessions from across the entire distribution range of A. thaliana were included. KEY RESULTS: Multifactorial analyses of variances revealed significant differences in the effects of genotypes, preconditioning, temperature treatment, and their interactions on duration of germination and establishment. Reaction norms showed an enormous range of plasticity among the preconditioning and different germination temperatures. Correlations of percentage total germination and establishment after 38 d with the geographical origin of accessions were only significant for 14 degrees C preconditioning but not for 22 degrees C preconditioning. Correlations with temperature and precipitation on the origin of the accessions were mainly found at the lower germination temperatures (10 and 18 degrees C) and were absent at higher germination temperatures (26 degrees C). CONCLUSIONS: Overall, the data show huge variation of germination and establishment among natural accessions of A. thaliana and might serve as a valuable source for further germination and plasticity studies.  相似文献   

5.
BACKGROUND AND AIMS: The formation of zonal communities may be attributed to differences in germination across the community and to timing of germination of seeds present in the seed bank. Our goals were two-fold: (1) to assess the annual germination pattern of Spergularia marina; and (2) to determine whether germination of S. marina differed across zonal communities. METHODS: Fresh seeds were buried in an experimental garden in polyester bags. Bags were harvested monthly for 1 year and exposed to differing 12 h/12 h temperature regimes (5/15 degrees C, 5/25 degrees C, 15/25 degrees C and 20/35 degrees C) with a 12 h dark/12 h light photoperiod. Replicate seeds were exposed to 24 h dark. Seeds were also placed in different zonal communities to assess germinability in the field. KEY RESULTS: Spergularia marina has a primary physiological dormancy. Conditional dormancy occurs from December to May and non-dormancy from June to November. Field germination initiates in the spring when temperatures are cool and salinity is low due to flooding, and ceases in the summer when temperatures exceed germination requirements. Spergularia marina has a light requirement for germination. CONCLUSIONS: If seeds become buried in the field or are light inhibited by Phragmites australis, they will remain dormant until they receive an adequate amount of light for germination. Since S. marina can germinate across all zones in a salt-marsh community, the formation of zonal communities is not determined at the germination stage, but at some later stage of development.  相似文献   

6.
Seed germination of many plant species is influenced by light. Of the various photoreceptor systems, phytochrome plays an especially important role in seed germination. The existence of at least five phytochrome genes has led to the proposal that different members of the family have different roles in the photoregulation of seed germination. Physiological analysis of seed germination ofArabidopsis thaliana (L.) Heynh. with phytochrome-deficient mutants showed for the first time that phytochrome A and phytochrome B modulate the timing of seed germination in distinct actions. Phytochrome A photo-irreversibly triggers the photoinduction of seed germination after irradiation with extremely low fluence light in a wide range of wavelengths, from UV-A, to visible, to far-red. In contrast, phytochrome B mediates the well-characterized photoreversible reaction, responding to red and far-red light of fluences four orders of magnitude higher than those to which PhyA responds. Wild plants, such asA. thaliana, survive under ground as dormant seeds for long periods, and the timing of seed germination is crucial for optimizing growth and reproduction. It therefore seems reasonable for plants to possess at least two different physiological systems for sensing the light environment over a wide spectral range with exquisite sensitivity of different phytochromes. This redundancy seems to enhance plant survival in a fluctuating environment.  相似文献   

7.
Probert, R. J., Gajjar, K. H. and Haslam, I. K. 1987. The interactiveeffects of phytochrome, nitrate and thiourea on the germinationresponse to alternating temperatures in seeds of Ranunculussceleratus L.: A quantal approach.—J. exp. Bot. 38: 1012–1025. The interactive effects of phytochrome, potassium nitrate andthiourea on the germination response to alternating temperaturesin achenes (seeds) of Ranunculus sceleratus L. were studied.Using thermogradient bars, high levels of germination were recordedover a broad range of alternating temperatures providing seedsreceived daily irradiations. Reduced germination in temperaturecycles with a relatively long warm phase was related to thelevel of the active form of phytochrome (Pfr). Dose-responseexperiments to red light (R) and temperature shifts showed thatthe actions of Pfr and alternating temperatures were interdependent.Maximum germination was recorded when intermittent pulses ofR were combined with daily 4 h temperature shifts from 16°Cto 26°C. Whilst probit analysis showed that potassium nitrateand thiourea both increased population sensitivity to temperatureshifts, thiourea was a more potent stimulant. Although the effectof both chemicals was dependent on phytochrome photo-equilibriumthe threshold level of Pfr required for thiourea action wasclearly much lower than that required for nitrate action. Thioureapotentiated a response to daily temperature shifts even whenPfr was at a low, normally inhibitory level. These results indicatedifferent mechanisms of action for potassium nitrate and thioureain relation to phytochrome controlled seed germination. Key words: Phytochrome, nitrate, thiourea, alternating temperatures, germination  相似文献   

8.
BACKGROUND AND AIMS: Germination studies of species from fire-prone habitats are often focused on the role that fire plays in breaking dormancy. However, for some plant groups in these habitats, such as the genus Leucopogon (Ericaceae), dormancy of fresh seeds is not broken by fire cues. In the field, these same species display a flush of seedling emergence post-fire. Dormancy and germination mechanisms therefore appear complex and mostly unknown. This study aimed to identify these mechanisms by establishing dormancy class and testing the effects of a set of typical germination cues, including those directly related to fire and entirely independent of fire. METHODS: To classify dormancy, we assessed seed permeability and embryo morphology, and conducted germination experiments at seasonal temperatures in incubators. To test the effects of fire cues on germination, factorial combinations of smoke, heat and dark treatments were applied. Ageing treatments, using burial and seasonal incubation, were also tested. Germination phenology was established. KEY RESULTS: Seeds were dormant at release and had underdeveloped embryos. Primary dormancy of the study species was classified as morphophysiological. Seasonal temperature changes overcame primary dormancy and controlled timing of germination. Fire cues did not break primary dormancy, but there was a trend for smoke to enhance germination once this dormancy was overcome. CONCLUSIONS: Despite the fact that fire is a predominant disturbance and that many species display a flush of emergence post-fire, seasonal temperatures broke the primary physiological dormancy of the study species. It is important to distinguish between fire being responsible for breaking dormancy and solely having a role in enhancing levels of post-fire germination for seeds in which dormancy has been overcome by other factors. Biogeographical evidence suggests that morphological and physiological factors, and therefore seasonal temperatures, are likely to be important in controlling the dormancy and patterns of post-fire germination of many species in fire-prone regions.  相似文献   

9.
High germination of curly dock (Rumex crispus L.) seeds is evident after suitable imbibition and temperature shift treatment, but germination at constant temperatures fails without an input of far red-absorbing form of phytochrome. Preliminary imbibitions at high temperatures (30 C) sharply reduce germination induced by temperature shifts. High germination may be restored by low energies of red radiation, or by brief far red adequate for the photosteady state. Prolonged far red during imbibition also nullifies temperature shift-induced germination. After prolonged far red, high germination may be restored by red radiation of an energy dependent upon the duration of the far red treatment. The evidence supports the conclusion that dark germination induced by temperature shifts arises from the interaction of pre-existent far red-absorbing form of phytochrome in the mature seeds with the temperature shift.  相似文献   

10.
Dependence of phytochrome action in seeds on membrane organization   总被引:6,自引:4,他引:2       下载免费PDF全文
Germination of Amaranthus retroflexus L. seeds imbibed at 40 C is enhanced by establishing the active form of phytochrome before a reduction in temperature to <32 C. The half-time for effectiveness of the lower temperature is about 8 min at 15 C. Isolated membrane fragments of A. retroflexus seeds associated with the fluorescent probe 1,8-anilino-naphthalene sulfonate (ANS) increase in structural order as the temperature is lowered through the 32 C region. The germination response is decreased by the membrane-disruptive substances tris, octonoate, and ethanol. The results show that phytochrome activity is associated with an organized membrane. By using ANS with membrane fragments from Setaria faberi Herrm. seeds, leakage of amino acid was found to be enhanced at temperatures >32 C by a transition in the plasmalemma.  相似文献   

11.
Seed responses to temperature are often essential to the study of germination ecology, but the ecological role of temperature in orchid seed germination remains uncertain. The response of orchid seeds to cold stratification have been studied, but the exact physiological role remains unclear. No studies exist that compare the effects of either cold stratification or temperature on germination among distant populations of the same species. In two separate experiments, the role of temperature (25, 22/11, 27/15, 29/19, 33/24°C) and chilling at 10°C on in vitro seed germination were investigated using distant populations of Calopogon tuberosus var. tuberosus. Cooler temperatures promoted germination of Michigan seeds; warmer temperatures promoted germination of South Carolina and north central Florida seeds. South Florida seed germination was highest under both warm and cool temperatures. More advanced seedling development generally occurred at higher temperatures with the exception of south Florida seedlings, in which the warmest temperature suppressed development. Fluctuating diurnal temperatures were more beneficial for germination compared to constant temperatures. Cold stratification had a positive effect on germination among all populations, but South Carolina seeds required the longest chilling treatments to obtain maximum germination. Results from the cold stratification experiment indicate that a physiological dormancy is present, but the degree of dormancy varies across the species range. The variable responses among populations may indicate ecotypic differentiation.  相似文献   

12.
13.
A study was conducted to investigate the physiological responses of greenhouse-produced Oxalis corniculata seeds to light, temperature, moist heat treatment, aging, and season of production. Fresh seeds exhibited over 90% germination and required low levels of light (5 μmol m-2 s-1, 400–700 nm) to germinate. Seeds germinated over a broad, yet seasonally-dependent range of incubation temperatures. Seeds produced in winter had the narrowest temperature range of germination (15 to 25 C) and the lowest germination percent (44% at 2 wk) at optimum temperature (17 C); seeds produced in summer had the widest temperature range of germination (10 to 30 C) and the highest germination percent (93% at 2 wk) at optimum temperature (17 C). Incubation at non-optimum temperatures between 5 and 40 C suppressed or slowed the rate of germination until seeds were placed at optimum temperature, where full germination subsequently occurred. Moist heat treatment at temperatures over 40 C resulted in varying degrees of inhibition of subsequent germination. When seeds were stored dry in laboratory conditions, three of four seed lots examined retained over 80% germination capacity until ca. 8 months; 50% capacity remained after ca. 15 months. These results indicate that the seasonal temperature and daylength effects on maternal plants in the greenhouse environment are major determinants of seed germination characteristics of O. corniculata.  相似文献   

14.
Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range.  相似文献   

15.
The aim of the present work was to investigate the effects of osmoconditioning on chilling injury in soybean (Glycine max (L.) Merr.) seeds during imbibition. Soybean seeds germinated readily over a large range of temperatures (10-35 degrees C), the thermal optimum being 25-30 degrees C. Low temperatures reduced the germination rate and no seed germinated at 1 degrees C. Pre-treatment of seeds at 1 degrees C reduced further germination at the optimal temperature (25 degrees C). This deleterious effect of chilling increased with duration of the treatment, and was maximal after 4 days. Osmoconditioning of seeds at 20 degrees C with a polyethylene glycol-8000 solution at -1.5 MPa for at least 24 h followed by drying back the seeds to their initial moisture content reduced their chilling sensitivity and even allowed germination at 1 degrees C. Chilling of control seeds resulted in a sharp decline in in vivo ACC-dependent ethylene production and in an increase in electrolyte leakage in the medium, which indicated deterioration of membrane properties. Osmoconditioned seeds placed at 1 degrees C did not show any reduction in their ability to convert ACC to ethylene nor any strong increase in electrolyte leakage. Imbibition of both control and osmoconditioned seeds at 1 degrees C resulted in a marked increase in ATP level (more than 50% of the total nucleotides) and energy charge; however, the latter cannot be considered as an indicator of chilling since it remained high (0.74-0.88) throughout the cold treatment. Chilling treatment longer than 6 days induced accumulation of malondialdehyde in the embryonic axis, which was more marked in control seeds than in osmoconditioned seeds, suggesting that chilling sensitivity was associated with lipid peroxidation. Imbibition of seeds at 1 degrees C resulted in an increase in superoxide dismutase, catalase and glutathione reductase activity, which was generally higher in osmoconditioned seeds than in control ones. This stimulation of the antioxidant defence systems occurred during the 4 first days of chilling and decreased then in control seeds while it remained high in osmoconditioned ones. Re-warming seeds at 25 degrees C resulted in an increase in all enzyme activity involved in antioxidant defence. However this effect of re-warming decreased in control seeds after 4 days of chilling, whereas it was maintained in osmoconditioned seeds.  相似文献   

16.
Seed germination, growth and flowering of the arctic-alpine annual Koenigia islandica were studied in controlled environment. Intact (unabraded) seeds germinated poorely at temperatures up to 18°C, with an optimum at 24°C (89% in 10 d). Scarified seeds germinated rapidly, and reached 100% germination in 3 d at 21°C, but no >40% germination occurred at 9 and 12°C, The seeds had no light requirement for germination, nor did fluctuating temperatures improve germination
Dry matter production was optimal at 12°C in both short day (SD) and long day (LD) conditions, but was markedly higher in LD than in SD at identical fluences at all temperatures except 21°C where the plants showed symptoms of severe heat stress. The temperature compensation point for net productivity was estimated to 24°C, and negative carbon balance at higher temperatures might be an important physiological mechanism limiting the distribution of K. islandica in Scandinavia.
Flowering was extremely rapid and independent of daylength, even in a high-arctic population from 79°N, In full summer daylight anthesis was reached 24 d after germination and seeds ripened after 36 d at 15°C, Days to anthesis varied little across the temperature range from 6 to 21°C, giving a linear decrease in the heat-sum requirement for the attainment of flowering with decreasing temperature.
It is concluded that conservative seed germination strategy, tininess and rapid development, low temperature optima for growth and reproduction, and daylength indifference of flowering are important adaptations for success of an annual plant in high-arctic and high-alpine environments, Daylength neutrality has facilitated the wide-latitudinal distribution of K. islandica. including the penetration of the species to the southern hemisphere.  相似文献   

17.
Germination of Potentilla norvegica L. (rough cinquefoil) seeds stimulated by fluorescent irradiations of nearly 24 hours was inhibited by ethylene at <1 microliter per liter. Sensitivity to ethylene inhibition was highest during and immediately after the irradiation. By delaying ethylene treatment until about a day after the light potentiation, seeds escaped the inhibition. Ethylene inhibition may be readily reversed upon release of the gas and reirradiation of the seeds. Imbibition of seeds at 10 or 15°C, or at high temperatures of 35 and 40°C, partially prevented subsequent inhibition by ethylene. Alternating temperatures during germination nearly overcame the inhibition from 1 microliter per liter ethylene, but not higher doses. With brief red-irradiation and alternating temperatures, 0.1 microliter per liter ethylene promoted germination about 2-fold. These data suggest that ethylene may loosely associate on a site required for phytochrome action. The effect of temperature that opposed the inhibition may be to deny the association of ethylene with the site. Loose association is supported by the reversal of inhibition by gas release and increased temperature during germination. A blocking effect was shown by the failure of phytochrome to act when ethylene was present.  相似文献   

18.
The ratio of red to far-red light (R : FR) experienced by seeds during maturation affects germination, but the genetic regulation of this effect is poorly understood. In Arabidopsis thaliana , responses to R : FR are governed by five phytochrome photoreceptors, PHYA–PHYE . PHYA , PHYB and PHYE mediate germination, but their roles in germination response to the seed maturation environment are largely unknown. Seeds of A. thaliana phytochrome mutants and natural accessions were matured in a factorial combination of cold (16 °C) and warm (24 °C) temperatures and high (R : FR = 1) and low (R : FR = 0.6) R : FR environments, resembling sunlight and foliar shade, respectively. Germination was observed in resulting seeds. All five phytochromes mediated germination responses to seed maturation temperature and/or R : FR environment. PHYA suppressed germination in seeds matured under cold temperature, and PHYB promoted germination under the same conditions. PHYD and PHYE promoted germination of seeds matured under warm temperature, but this effect diminished when seeds matured under reduced R : FR. The A. thaliana natural accessions exhibited interesting variation in germination responses to the experimental conditions. Our results suggest that the role of individual PHY loci in regulating plant responses to R : FR varies depending on temperature and provide novel insights into the genetic basis of maternal effects.  相似文献   

19.
The promoting effect of light and alternating temperatures on the germination of seeds of three contrasting populations of Dactylis glomerata L. was studied. Irradiation treatments using broad band low irradiance light sources resulted in red/far-red reversible effects, demonstrating the involvement of phytochrome in germination control. Reduction of germination by far-red below the level of a dark control indicated the presence of high pre-existing levels of the active form of phytochrome (Pfr) in some individuals. The capacity for dark germination at 21/11°C (12 h/12 h) was shown to be dependent on Pfr. Although some individuals were capable of germination at constant temperatures following red irradiation, in most seeds germination was dependent on the presence of Pfr and alternating temperatures. Some individuals responded to a single red irradiation, although a large proportion of seeds required high levels of Pfr to be maintained for long periods. Previously published dose response curves for alternating temperatures and a measured dark reversion time of 48 h for Pfr established by a single 60 min red irradiation, provided firm evidence of a direct correlation between the requirements for repeated irradiation and number of alternating temperature cycles.  相似文献   

20.
Abstract There is limited understanding of how fire‐related cues such as heat shock and smoke can combine to affect the germination response of seeds from fire‐prone vegetation because combinations of multiple levels of both cues have rarely been investigated. Germination response surfaces were determined for the combination of heat shock and smoke by applying factorial combinations of temperature (up to 100°C) and aerosol smoke (0–20 min) to 16 species that form soil seed banks in the Sydney region of south‐eastern Australia. Duplicate populations of three species were also examined to assess the constancy of a species response surface. Of the 19 populations examined, 16 showed a germination response to both the fire cues, which combined interactively in 14 populations, and independently in two. No population responded only to a single cue; however, seeds of 11 populations responded to heat in the absence of smoke, and nine responded to smoke in the absence of heat. Heat applied in the absence of smoke negatively affected germination in seven populations, either progressively as temperature increased, or above a set temperature. Negative germination responses over part of the temperature range were fully reversed at higher temperatures for unsmoked seeds of four populations (curvilinear heat response). Smoke effects were most frequently positive over all or part of the range of durations used, and when combined with heat frequently fully or partially reversed negative heat effects. Three populations required the obligatory combination of smoke and heat. A novel response to the cues was observed for three species, with smoke reversing negative heat effects at 75°C, being supplanted by a positive heat response of unsmoked seed at 100°C. The response surface for duplicate populations of two of the three species examined was variable. Heat shock and smoke frequently combined to affect germination, in both positive and negative ways. Consequently, to gain an accurate assessment of the response of seeds to fires, an experimental design that samples within the potential response zones of germination cues is essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号