首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
LAMP proteins are required for fusion of lysosomes with phagosomes   总被引:3,自引:0,他引:3       下载免费PDF全文
Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the maturation process. We used cells from LAMP-deficient mice to analyze the role of these proteins in phagosome maturation. Macrophages from LAMP-1- or LAMP-2-deficient mice displayed normal fusion of lysosomes with phagosomes. Because ablation of both the lamp-1 and lamp-2 genes yields an embryonic-lethal phenotype, we were unable to study macrophages from double knockouts. Instead, we reconstituted phagocytosis in murine embryonic fibroblasts (MEFs) by transfection of FcgammaIIA receptors. Phagosomes formed by FcgammaIIA-transfected MEFs obtained from LAMP-1- or LAMP-2- deficient mice acquired lysosomal markers. Remarkably, although FcgammaIIA-transfected MEFs from double-deficient mice ingested particles normally, phagosomal maturation was arrested. LAMP-1 and LAMP-2 double-deficient phagosomes acquired Rab5 and accumulated phosphatidylinositol 3-phosphate, but failed to recruit Rab7 and did not fuse with lysosomes. We attribute the deficiency to impaired organellar motility along microtubules. Time-lapse cinematography revealed that late endosomes/lysosomes as well as phagosomes lacking LAMP-1 and LAMP-2 had reduced ability to move toward the microtubule-organizing center, likely precluding their interaction with each other.  相似文献   

2.
The two structurally related, major lysosomal membrane proteins LAMP-1 and LAMP-2 were for a long time regarded as crucial for the protection of the lysosomal membrane from the hostile lumenal environment. However, recent studies on the effects of single and combined LAMP-deficiency in mice reveal alternative functions. LAMP proteins, but especially LAMP-2, are important regulators in successful maturation of both autophagosomes and phagosomes. LAMP-2 deficiency causes an accumulation of autophagosomes in many tissues leading to cardiomyopathy and myopathy in mice and patients suffering from Danon Disease. The central role of LAMP-2 is also underlined by a recent study where LAMP-2 knockout mice are shown to have an impaired phagosomal maturation in neutrophils. The impairment of this important innate immune defense process in these mice leads to periodontitis, one of the most widespread infectious diseases worldwide. The retarded clearance of bacterial pathogens was probably due to an inefficient fusion capacity between lysosomes and phagosomes. Recent studies in LAMP double-knockout fibroblasts suggests that LAMP-deficiency impairs the dynein-mediated transport of lysosomes to perinuclear regions where fusion with (auto)phagosomes occurs.  相似文献   

3.
The lysosomal membrane proteins LAMP-1 and LAMP-2 are estimated to contribute to about 50% of all proteins of the lysosome membrane. Surprisingly, mice deficient in either LAMP-1 or LAMP-2 are viable and fertile. However, mice deficient in both LAMP-1 and LAMP-2 have an embryonic lethal phenotype. These results show that these two major lysosomal membrane proteins share common functions in vivo. However, LAMP-2 seems to have more specific functions since LAMP-2 single deficiency has more severe consequences than LAMP-1 single deficiency. Mutations in LAMP-2 gene cause a lysosomal glycogen storage disease, Danon disease, in humans. LAMP-2 deficient mice replicate the symptoms found in Danon patients including accumulation of autophagic vacuoles in heart and skeletal muscle. In embryonic fibroblasts, mutual disruption of both LAMPs is associated with an increased accumulation of autophagic vacuoles and unesterified cholesterol, while protein degradation rates are not affected. These results clearly show that the LAMP proteins fulfil functions far beyond the initially suggested roles in maintaining the structural integrity of the lysosomal compartment.  相似文献   

4.
During phagosome maturation, the late endosomal marker Rab7 and the lysosomal marker LAMP1 localize to the phagosomes. We investigated the mobility of Rab7 and LAMP1 on the phagosomes in macrophages by fluorescence recovery after photobleaching (FRAP) analysis. Rab7 was mobile between the phagosomal membrane and the cytosol in macrophages that ingested latex beads during phagosome maturation. The addition of interferon-γ (IFN-γ) restricted this mobility, suggesting that Rab7 is forced to bind to the phagosomal membrane by IFN-γ-mediated activation. Immobilization of LAMP1 on the phagosomes was observed irrespective of IFN-γ-activation. We further examined the mobility of Rab7 on the phagosomes containing Mycobacterium bovis BCG by FRAP analysis. The rate of fluorescence recovery for Rab7 on mycobacterial phagosomes was lower than that on the phagosomes containing latex beads, suggesting that mycobacteria impaired the mobility of Rab7 and arrested phagosome maturation.  相似文献   

5.
6.
The obligate intracellular pathogen Coxiella burnetii replicates in a large phagolysosomal‐like vacuole. Currently, both host and bacterial factors required for creating this replicative parasitophorous C. burnetii‐containing vacuole (PV) are poorly defined. Here, we assessed the contributions of the most abundant proteins of the lysosomal membrane, LAMP‐1 and LAMP‐2, to the establishment and maintenance of the PV. Whereas these proteins were not critical for uptake of C. burnetii, they influenced the intracellular replication of C. burnetii. In LAMP‐1/2 double‐deficient fibroblasts as well as in LAMP‐1/2 knock‐down cells, C. burnetii establishes a significantly smaller, yet faster maturing vacuole, which harboured more bacteria. The accelerated maturation of PVs in LAMP double‐deficient fibroblasts, which was partially or fully reversed by ectopic expression of LAMP‐1 or LAMP‐2, respectively, was characterized by an increased fusion rate with endosomes, lysosomes and bead‐containing phagosomes, but not by different fusion kinetics with autophagy vesicles. These findings establish that LAMP proteins are critical for the maturation delay of PVs. Unexpectedly, neither the creation of the spacious vacuole nor the delay in maturation was found to be prerequisites for the intracellular replication of C. burnetii.  相似文献   

7.
EP Thi  U Lambertz  NE Reiner 《PloS one》2012,7(8):e43668
Of the various phosphatidylinositol 3- kinases (PI3Ks), only the class III enzyme Vps34 has been shown to regulate phagosome maturation. During studies of phagosome maturation in THP-1 cells deficient in class IA PI3K p110α, we discovered that this PI3K isoform is required for vacuole maturation to progress beyond acquisition of Rab7 leading to delivery of lysosomal markers. Bead phagosomes from THP-1 cells acquired p110α and contained PI3P and PI(3,4,5)P3; however, p110α and PI(3,4,5)P3 levels in phagosomes from p110α knockdown cells were decreased. Phagosomes from p110α knock down cells showed normal acquisition of both Rab5 and EEA-1, but were markedly deficient in the lysosomal markers LAMP-1 and LAMP-2, and the lysosomal hydrolase, β-galactosidase. Phagosomes from p110α deficient cells also displayed impaired fusion with Texas Red dextran-loaded lysosomes. Despite lacking lysosomal components, phagosomes from p110α deficient cells recruited normal levels of Rab7, Rab-interacting lysosomal protein (RILP) and homotypic vacuole fusion and protein sorting (HOPs) components Vps41 and Vps16. The latter observations demonstrated that phagosomal Rab7 was active and capable of recruiting effectors involved in membrane fusion. Nevertheless, active Rab7 was not sufficient to bring about the delivery of lysosomal proteins to the maturing vacuole, which is shown for the first time to be dependent on a class I PI3K.  相似文献   

8.
This study investigated the potential relationship between the expression levels of lysosome-associated membrane proteins (LAMP) 1 and 2 and responses to enzyme replacement therapy (ERT) in the members of a single family with Fabry disease (FD). LAMP levels were assessed by flow cytometry in leukocytes from 17 FD patients who received an eight-month course of ERT course and 101 healthy individuals. We found that phagocytic cells from the FD patients had higher expression levels of both LAMP-1 and LAMP-2, relative to the levels in phagocytes from the healthy controls (p = 0.001). Furthermore, the LAMP-1 and LAMP-2 levels in phagocytes from the FD carriers continuously decreased with ERT administration to reach levels similar to those in healthy controls. We suggest that LAMP-1 and LAMP-2 could be used as additional markers with which to assess ERT effectiveness in FD.  相似文献   

9.
BACKGROUND: Mast cells are resident tissue cells that induce anaphylactic reactions by rapidly releasing mediators after antigen-mediated cross-linking of immunoglobulin E receptors. In the similarly active peripheral blood basophilic leukocyte, lysosome-associated membrane protein 3 (LAMP-3; CD63) has been described as an activation marker, but LAMPs have not been investigated in normal tissue mast cells. METHODS: Intra- and extracellular expressions of LAMP-1 (CD107a), LAMP-2 (CD107b), and LAMP-3 (CD63) were analysed by flow cytometry, immunocytochemistry, and functional assays in unstimulated and stimulated leukemic human mast cell line 1 (HMC-1) and skin mast cells. RESULTS: On flow cytometry, all mast cells expressed LAMP-3 at their cell membranes, whereas LAMP-1 and LAMP-2 were barely detectable (HMC-1 cells) or expressed at low levels (<10% of skin mast cells). After fixation and permeabilisation, high intracellular levels of all three LAMPs were noted in both cell types. After stimulation, a rapid translocation of intracellular LAMPs to the cell membrane, with an associated release of histamine, leukotriene C(4) and prostaglandin D(2), was ascertained in skin mast cells only. CONCLUSION: These results show that LAMP-1 and LAMP-2 are activation markers for normal mast cells. The lack of LAMP translocation after activation of leukemic mast cells may be related to maturation or malignancy-associated defects of these cells.  相似文献   

10.
Lysosomal membranes contain two highly glycosylated proteins, designated LAMP-1 and LAMP-2, as major components. LAMP-1 and LAMP-2 are structurally related. To investigate the physiological role of LAMP-1, we have generated mice deficient for this protein. LAMP-1-deficient mice are viable and fertile. In LAMP-1-deficient brain, a mild regional astrogliosis and altered immunoreactivity against cathepsin-D was observed. Histological and ultrastructural analyses of all other tissues did not reveal abnormalities. Lysosomal properties, such as enzyme activities, lysosomal pH, osmotic stability, density, shape, and subcellular distribution were not changed in comparison with controls. Western blot analyses of LAMP-1-deficient and heterozygote tissues revealed an up-regulation of the LAMP-2 protein pointing to a compensatory effect of LAMP-2 in response to the LAMP-1 deficiency. The increase of LAMP-2 was neither correlated with an increase in the level of lamp-2 mRNAs nor with increased half-life time of LAMP-2. This findings suggest a translational regulation of LAMP-2 expression.  相似文献   

11.
Nascent phagosomes must undergo a series of fusion and fission reactions to acquire the microbicidal properties required for the innate immune response. Here we demonstrate that this maturation process involves the GTPase Rab7. Rab7 recruitment to phagosomes was found to precede and to be essential for their fusion with late endosomes and/or lysosomes. Active Rab7 on the phagosomal membrane associates with the effector protein RILP (Rab7-interacting lysosomal protein), which in turn bridges phagosomes with dynein-dynactin, a microtubule-associated motor complex. The motors not only displace phagosomes in the centripetal direction but, strikingly, promote the extension of phagosomal tubules toward late endocytic compartments. Fusion of tubules with these organelles was documented by fluorescence and electron microscopy. Tubule extension and fusion with late endosomes and/or lysosomes were prevented by expression of a truncated form of RILP lacking the dynein-dynactin-recruiting domain. We conclude that full maturation of phagosomes requires the retrograde emission of tubular extensions, which are generated by activation of Rab7, recruitment of RILP, and consequent association of phagosomes with microtubule-associated motors.  相似文献   

12.
Numerous intracellular bacterial pathogens modulate the nature of the membrane-bound compartment in which they reside, although little is known about the molecular basis for this control. Legionella pneumophila is a bacterial pathogen able to grow within human alveolar macrophages and residing in a phagosome that does not fuse with lysosomes. This study demonstrates that the dotA product is required to regulate trafficking of the L. pneumophila phagosome. Phagosomes containing L. pneumophila dotA + bacteria exhibited differential trafficking profiles when compared with isogenic dotA mutants. Phagosomes containing dotA mutants showed rapid accumulation of the lysosomal glycoprotein LAMP-1 as early as 5 min after uptake, whereas the majority of wild-type L. pneumophila phagosomes did not acquire LAMP-1. The association of LAMP-1 with phagosomes containing dotA mutant bacteria was concomitant with the appearance of the small GTP-binding protein Rab7 on the vacuolar membrane. These data demonstrate that phagosomes containing replication-competent L. pneumophila evade early endocytic fusion events. In contrast, the kinetics of LAMP-1 and Rab7 association indicate that the dotA mutants are routed along a well-characterized endocytic pathway leading to fusion with lysosomes. Genetic studies show that L. pneumophila requires DotA expression before macrophage uptake in order to establish an intracellular site for replication. However, the bacteria do not appear to require continuous expression of the DotA protein to maintain a replicative phagosome. These data indicate that DotA is one factor that plays a fundamental role in regulating initial phagosome trafficking decisions either upon or immediately after macrophage uptake.  相似文献   

13.
The extensively glycosylated lysosome-associated membrane proteins (LAMP)-2a, b, and c are derived from a single gene by alternative splicing that produces proteins with differences in the transmembrane and cytosolic domains. The lysosomal targeting signals reside in the cytosolic domain of these proteins. LAMPs are not restricted to lysosomes but can also be found in endosomes and at the cell surface. We investigated the subcellular distribution of chimeras comprised of the lumenal domain of avian LAMP-1 and the alternatively spliced domains of avian LAMP-2. Chimeras with the LAMP-2c cytosolic domain showed predominantly lysosomal distribution, while higher levels of chimeras with the LAMP-2a or b cytosolic domain were present at the cell surface. The increase in cell surface expression was due to differences in the recognition of the targeting signals and not saturation of intracellular trafficking machinery. Site-directed mutagenesis defined the COOH-terminal residue of the cytosolic tail as critical in governing the distributions of LAMP-2a, b, and c between intracellular compartments and the cell surface.  相似文献   

14.
The uniformity of phagosome maturation in macrophages   总被引:6,自引:0,他引:6  
Many studies of endocytosis and phagocytosis presume that organelles containing a single kind of internalized particle exhibit invariant patterns of protein and phospholipid association as they mature inside cells. To test this presumption, fluorescent protein chimeras were expressed in RAW 264.7 macrophages, and time-lapse ratiometric fluorescence microscopy was used to measure the maturation dynamics of individual phagosomes containing IgG-opsonized erythrocytes. Quantitative analysis revealed consistent patterns of association for YFP chimeras of beta-actin, Rab5a, Rab7, and LAMP-1, and no association of YFP chimeras marking endoplasmic reticulum or Golgi. YFP-2xFYVE, recognizing phosphatidylinositol 3-phosphate (PI(3)P), showed two patterns of phagosome labeling. Some phagosomes increased labeling quickly after phagosome closure and then lost the label within 20 min, whereas others labeled more slowly and retained the label for several hours. The two patterns of PI(3)P on otherwise identical phagosomes indicated that organelle maturation does not necessarily follow a single path and that some features of phagosome maturation are integrated over the entire organelle.  相似文献   

15.
The late endosomal marker Rab7 has been long believed to be absent from the phagosome containing Mycobacterium tuberculosis (M.tb) in macrophage, but the detail kinetics remains elusive. Here, we found that Rab7 is transiently recruited to and subsequently released from M.tb phagosomes. For further understanding of the effect of Rab7 dissociation from the phagosome, we examined the localization of lysosomal markers on the phagosome in the macrophage expressing a dominant-negative Rab7. The localization of lysosomal associated membrane protein-2 (LAMP-2) on the phagosome was Rab7-independent, while that of cathepsin D was Rab7-dependent. These results agree with the localization of each lysosomal marker on M.tb phagosome at 6 h postinfection-i.e., LAMP-2, but not cathepsin D localized on the majority of M.tb phagosomes. These results suggest that the dissociation of Rab7 from M.tb phagosome is the important process in inhibition of phagolysosome biogenesis.  相似文献   

16.
Salmonella typhimurium invades mammalian cells and replicates within a vacuole that protects it from the host's microbicidal weapons. The Salmonella-containing vacuole (SCV) undergoes a remodelling akin to that of the host cell's endocytic pathway, but SCV progression is arrested prior to fusion with lysosomes. We studied the role of phosphatidylinositol 3-kinase (PI3-K) in SCV maturation within HeLa cells. Phosphatidylinositol 3-phosphate (PI3P), monitored in situ using fluorescent conjugates of FYVE or PX domains, was found to accumulate transiently on the SCV. Wortmannin prevented PI3P accumulation and the recruitment of EEA1 but did not affect the association of Rab5 with the SCV. Importantly, inhibition of PI3-K also impaired fusion of the SCV with vesicles containing LAMP-1. Rab7, which is thought to be required for association of LAMP-1 with the SCV, still associated with SCV in wortmannin-treated cells. We have therefore concluded that a 3-phosphoinositide-dependent step exists following recruitment of Rab7 to the SCV. The data also imply that 3-phosphoinositide-dependent effectors of Rab5 are not an absolute requirement for recruitment of Rab7. Despite failure to acquire LAMP-1, the SCV persists and allows effective replication of Salmonella within wortmannin-treated host cells. These findings imply that PI3-K is involved in the development of the SCV but is not essential for intracellular survival and proliferation of Salmonella.  相似文献   

17.
Phagosomes offer kinetically and morphologically tractable organelles to dissect the control of phagolysosome biogenesis by Rab GTPases. Model phagosomes harboring latex beads undergo a coordinated Rab5-Rab7 exchange, which is akin to the process of endosomal Rab conversion, the control mechanisms of which are unknown. In the process of blocking phagosomal maturation, the intracellular pathogen Mycobacterium tuberculosis prevents Rab7 acquisition, thus, providing a naturally occurring tool to study Rab conversion. We show that M. tuberculosis inhibition of Rab7 acquisition and arrest of phagosomal maturation depends on Rab22a. Four-dimensional microscopy revealed that phagosomes harboring live mycobacteria recruited and retained increasing amounts of Rab22a. Rab22a knockdown in macrophages via siRNA enhanced the maturation of phagosomes with live mycobacteria. Conversely, overexpression of the GTP-locked mutant Rab22aQ64L prevented maturation of phagosomes containing heat-killed mycobacteria, which normally progress into phagolysosomes. Moreover, Rab22a knockdown led to Rab7 acquisition by phagosomes harboring live mycobacteria. Our findings show that Rab22a defines the critical checkpoint for Rab7 conversion on phagosomes, allowing or disallowing organellar transition into a late endosomal compartment. M. tuberculosis parasitizes this process by actively recruiting and maintaining Rab22a on its phagosome, thus, preventing Rab7 acquisition and blocking phagolysosomal biogenesis.  相似文献   

18.
Elimination of fungal pathogens by phagocytes requires phagosome maturation, a process that involves the recruitment and fusion of intracellular proteins. The role of Dectin-1, a β-1,3-glucan receptor, critical for fungal recognition and triggering of Th17 responses, to phagosomal maturation has not been defined. We show that GFP-Dectin-1 translocates to the fungal phagosome, but its signal decays after 2 h. Inhibition of acidification results in retention of GFP-Dectin-1 to phagosome membranes highlighting the requirement for an acidic pH. Following β-1,3-glucan recognition, GFP-Dectin-1 undergoes tyrosine phosphorylation by Src kinases with subsequent Syk activation. Our results demonstrate that Syk is activated independently of intraphagosomal pH. Inhibition of Src or Syk results in prolonged retention of GFP-Dectin-1 to the phagosome signifying a link between Syk and intraphagosomal pH. β-1,3-glucan phagosomes expressing a signaling incompetent Dectin-1 failed to mature as demonstrated by prolonged Dectin-1 retention, presence of Rab5B, failure to acquire LAMP-1 and inability to acidify. Phagosomes containing Candida albicans also require Dectin-1-dependent Syk activation for phagosomal maturation. Taken together, these results support a model where Dectin-1 not only controls internalization of β-1,3-glucan containing cargo and triggers proinflammatory cytokines, but also acts as a master regulator for subsequent phagolysosomal maturation through Syk activation.  相似文献   

19.
At the phagosome level, Mycobacterium spp. alters activation and recruitment of several "Ras gene from rat brain" proteins, commonly known as Rab. Mycobacterial phagosomes have a greater and sustained expression of Rab5, Rab11, Rab14 and Rab22a, and lowered or no expression of Rab7, Rab9 and Rab6. This correlates with increased fusion of the phagosomes with early and recycling endosomes acquiring some features of early phagosomes, allowing the bacteria to gain access to nutrients and preventing the activation of anti-mycobacterial mechanisms. The expression of constitutively active mutants of Rab from the early stage endosomes prevents the maturation of phagosomes containing latex beads or heat-inactivated mycobacteria. Silencing of these mutants by interference RNA or dominant negative forms induces the maturation of mycobacterial phagosomes. The mechanisms have not been established by which mycobacteria alter the expression of these GTPases and thereby shift the phagolysosomal maturation. The problem can be explained by alterations in the recruitment of proteins that interact with Rab, such as phosphoinositide 3-kinases and early endosomal antigen 1. Identifying the mechanisms used by Mycobacterium spp. to disrupt the cycle of Rab activation will be essential to understand the pathophysiology of mycobacterial infections and usefully to potential drug targets.  相似文献   

20.
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen that can replicate within infected macrophages. The ability of M. tb to arrest phagosome maturation is believed to facilitate its intracellular multiplication. Rab GTPases regulate membrane trafficking, but details of how Rab GTPases regulate phagosome maturation and how M. tb modulates their localization during inhibiting phagolysosome biogenesis remain elusive. We compared the localization of 42 distinct Rab GTPases to phagosomes containing either Staphylococcus aureus or M. tb. The phagosomes containing S. aureus were associated with 22 Rab GTPases, but only 5 of these showed similar localization kinetics as the phagosomes containing M. tb. The Rab GTPases responsible for phagosome maturation, phagosomal acidification and recruitment of cathepsin D were examined in macrophages expressing the dominant-negative form of each Rab GTPase. LysoTracker staining and immunofluorescence microscopy revealed that Rab7, Rab20 and Rab39 regulated phagosomal acidification and Rab7, Rab20, Rab22b, Rab32, Rab34, Rab38 and Rab43 controlled the recruitment of cathepsin D to the phagosome. These results suggest that phagosome maturation is achieved by a series of interactions between Rab GTPases and phagosomes and that differential recruitment of these Rab GTPases, except for Rab22b and Rab43, to M. tb-containing phagosomes is involved in arresting phagosome maturation and inhibiting phagolysosome biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号