首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang X  Bruice TC 《Biochemistry》2006,45(28):8562-8567
Molecular dynamics (MD) simulations of Thermus thermophilus chorismate mutase substrate complex (TtCM x S) have been carried out at 298 K, 333 K, and the temperature of optimum activity: 343 K. The enzyme exists as trimeric subunits with active sites shared between two neighboring subunits. Two features distinguish intersubunit linkages of the thermophilic and mesophilic enzyme Bacillus subtilis chorismate mutase substrate complex (BsCM x S): (i) electrostatic interactions by intersubunit ion pairs (Arg3-Glu40*/41, Arg76-Glu51* and Arg69*-Asp101, residues labeled with an asterisk are from the neighboring subunit) in the TtCM x S are not present in the structure of the BsCM x S; and (ii) replacement of polar residues with short and nonpolar residues in the interstices of the TtCM x S tighten the intersubunit hydrophobic interactions compared to BsCM x S. Concerning the active site, electrostatic interactions of the critically placed Arg6 and Arg63* with the two carboxylates of chorismate place the latter in a reactive conformation to spontaneously undergo a Claisen rearrangement. The optimum geometry at the active site has the CZ atoms of the two arginines 11 A apart. With a decrease in temperature, Arg63* moves toward Arg6 and the average conformation structure of chorismate moves further away from the reactive ground state conformation. This movement is due to the decrease in distance separating the electrostatic (in the main) and hydrophobic interacting pairs holding the two subunits together.  相似文献   

2.
The literature has reported that ferriprotoporphyrin IX (hematin) intoxicates the malarial parasite through competition with NADH for the active site of the enzyme lactate dehydrogenase (LDH). In order to avoid this, the parasite polymerizes hematin to hemozoin. The quinoline derivatives are believed to form complexes with dimeric hematin, avoiding the formation of hemozoin and still inhibiting LDH. In order to investigate this hypothesis we calculated the docking energies of NADH and some quinoline derivatives (in the free forms and in complex with dimeric hematin) in the active site of the Plasmodium falciparum LDH (PfLDH). Ours results showed better docking score values to the complexes when compared to the free compounds, pointing them as more efficient inhibitors of Pf_LDH. Further we performed Molecular Dynamics (MD) simulations studies on the best docking conformation of the complex chloroquine-dimeric hematin with PfLDH. Our in silico results corroborate experimental data suggesting a possible action route for the quinoline derivatives in the inhibition of PfLDH.  相似文献   

3.
The molecular integrity of the active site of phytases from fungi is critical for maintaining phytase function as efficient catalytic machines. In this study, the molecular dynamics (MD) of two monomers of phytase B from Aspergillus niger, the disulfide intact monomer (NAP) and a monomer with broken disulfide bonds (RAP), were simulated to explore the conformational basis of the loss of catalytic activity when disulfide bonds are broken. The simulations indicated that the overall secondary and tertiary structures of the two monomers were nearly identical but differed in some crucial secondary–structural elements in the vicinity of the disulfide bonds and catalytic site. Disulfide bonds stabilize the β-sheet that contains residue Arg66 of the active site and destabilize the α-helix that contains the catalytic residue Asp319. This stabilization and destabilization lead to changes in the shape of the active–site pocket. Functionally important hydrogen bonds and atomic fluctuations in the catalytic pocket change during the RAP simulation. None of the disulfide bonds are in or near the catalytic pocket but are most likely essential for maintaining the native conformation of the catalytic site.

Abbreviations

PhyB - 2.5 pH acid phophatese from Aspergillus niger, NAP - disulphide intact monomer of Phytase B, RAP - disulphide reduced monomer of Phytase B, Rg - radius of gyration, RMSD - root mean square deviation, MD - molecular dynamics.  相似文献   

4.
The switch 1 region of myosin forms a lid over the nucleotide phosphates as part of a structure known as the phosphate-tube. The homologous region in kinesin-family motors is more open, not interacting with the nucleotide. We used molecular dynamics (MD) simulations to examine a possible displacement of switch 1 of the microtubule motor, ncd, from the open conformation to the closed conformation seen in myosin. MD simulations were done of both the open and the closed conformations, with either MgADP or MgATP at the active site. All MD structures were stable at 300 K for 500 ps, implying that the open and closed conformers all represented local minima on a global free energy surface. Free energy calculations indicated that the open structure was energetically favored with MgADP at the active site, suggesting why only the open structure has been captured in crystallographic work. With MgATP, the closed and open structures had roughly equal energies. Simulated annealing MD showed the transformation from the closed phosphate-tube ncd structure to an open configuration. The MD simulations also showed that the coordination of switch 1 to the nucleotide dramatically affected the position of both the bound nucleotide and switch 2 and that a closed phosphate-tube may be necessary for catalysis.  相似文献   

5.
In protein tyrosine phosphatase 1B (PTP1B), the flexible WPD loop adopts a closed conformation (WPDclosed) in the active state of PTP1B, bringing the catalytic Asp181 close to the active site pocket, while WPD loop is in an open conformation (WPDopen) in the inactive state. Previous studies showed that Asp181 may be protonated at physiological pH, and ordered water molecules exist in the active site. In the current study, molecular dynamics simulations are employed at different Asp181 protonation states and initial positions of active site water molecules, and compared with the existing crystallographic data of PTP1B. In WPDclosed conformation, the active site is found to maintain its conformation only in the protonated state of Asp181 in both free and liganded states, while Asp181 is likely to be deprotonated in WPDopen conformation. When the active site water molecule network that is a part of the free WPDclosed crystal structure is disrupted, intermediate WPD loop conformations, similar to that in the PTPRR crystal structure, are sampled in the MD simulations. In liganded PTP1B, one active site water molecule is found to be important for facilitating the orientation of Cys215 and the phosphate ion, thus may play a role in the reaction. In conclusion, conformational stability of WPD loop, and possibly catalytic activity of PTP1B, is significantly affected by the protonation state of Asp181 and position of active site water molecules, showing that these aspects should be taken into consideration both in MD simulations and inhibitor design. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
A crystallographic study to 2.4-A resolution of the ternary complex between horse liver alcohol dehydrogenase (LADH), NADH, and the effector molecule imidazole (Im) (LADH-NADH-Im) is presented. The ligand binding and the changes in the protein structure due to ligand interactions were interpreted from difference electron density maps calculated with phase angles derived from the refined native enzyme model. The complex crystallizes in the orthorhombic space group C2221, and the enzyme structure remains in the apo conformation in which the active-site cleft is not entirely shielded from the solvent. NADH binds in an extended conformation, and the protein-coenzyme interactions are weaker compared to other complexes. The B-stereospecific side of the nicotinamide ring faces the catalytic center (LADH is known to be an A-side-specific enzyme). However, the reactive carbon atom C4 of the ring has a similar position in relation to active-center groups in this structure compared to LADH complexes where the A side of the ring faces the substrate site. The carboxamide group is situated within hydrogen-bonding distance to the sulfur of Cys-46, which is one of the three protein ligands to the active-site zinc atom. The imidazole molecule is directly ligated to the metal ion, which has a roughly tetrahedral geometry in the complex.  相似文献   

7.
We have carried out 1 nanosecond (ns) Molecular Dynamics (MD) simulations of the drug Y3 (4-acetylamino-5-hydroxynaphthalene- 2, 7-disulfonic acid) complexed with catalytic domain of Avian sarcoma virus Integrase (ASV-IN), both in vacuum and in the presence of explicit solvent. Starting models were obtained on the basis of PDB co- ordinates (1A5X) of ASV-IN-Y3 complex. Mn(2+) cation was present in the active site. To neutralize the positive charge in the presence of explicit solvent, eight Cl(-)anions were added. Energy Minimization (EM) and MD simulations, for both the systems, were carried out using Sander's module of AMBER5.0 with all atom force field. We also carried out 1 ns MD simulation on two flexible loops--L1 (Gly54-Gln62) and L2 (Trp138-Met155) playing crucial role in interaction of IN with the drug, under differing environmental conditions (vacuum, aqueous and organic solvent methanol). Comparison of the conformational changes in the loops, monomer and dimer is presented in the paper. Our results showed that the conformation of the loop region was closest to crystallographic data in case of monomer and constrained loops in aqueous environment. However, the dimer in vacuum was more stable than monomer. The beta sheet structure of the monomer in aqueous environment was unstable. Latter also took long time for equilibration. The box formed by loops L1 and L2 from two sub units (IINA and INB) of the dimer satisfies prerequisites for ligand recognition site and seems to be the functional biological unit.  相似文献   

8.
The active site of glucosamine-6-phosphate deaminase from Escherichia coli (GlcN6P deaminase, EC 3.5.99.6) has a complex lid formed by two antiparallel beta-strands connected by a helix-loop segment (158-187). This motif contains Arg172, which is a residue involved in binding the substrate in the active-site, and three residues that are part of the allosteric site, Arg158, Lys160 and Thr161. This dual binding role of the motif forming the lid suggests that it plays a key role in the functional coupling between active and allosteric sites. Previous crystallographic work showed that the temperature coefficients of the active-site lid are very large when the enzyme is in its T allosteric state. These coefficients decrease in the R state, thus suggesting that this motif changes its conformational flexibility as a consequence of the allosteric transition. In order to explore the possible connection between the conformational flexibility of the lid and the function of the deaminase, we constructed the site-directed mutant Phe174-Ala. Phe174 is located at the C-end of the lid helix and its side-chain establishes hydrophobic interactions with the remainder of the enzyme. The crystallographic structure of the T state of Phe174-Ala deaminase, determined at 2.02 A resolution, shows no density for the segment 162-181, which is part of the active-site lid (PDB 1JT9). This mutant form of the enzyme is essentially inactive in the absence of the allosteric activator, N-acetylglucosamine-6-P although it recovers its activity up to the wild-type level in the presence of this ligand. Spectrometric and binding studies show that inactivity is due to the inability of the active-site to bind ligands when the allosteric site is empty. These data indicate that the conformational flexibility of the active-site lid critically alters the binding properties of the active site, and that the occupation of the allosteric site restores the lid conformational flexibility to a functional state.  相似文献   

9.
Nanosecond dynamics simulations for DNA polymerase beta (pol beta)/DNA complexes with three mismatched base-pairs, namely GG, CA, or CC (primer/template) at the DNA polymerase active site, are performed to investigate the mechanism of polymerase opening and how the mispairs may affect the DNA extension step; these trajectories are compared to the behavior of a pol beta/DNA complex with the correct GC base-pair, and assessed with the aid of targeted molecular dynamics (TMD) simulations of all systems from the closed to the open enzyme state. DNA polymerase conformational changes (subdomain closing and opening) have been suggested to play a critical role in DNA synthesis fidelity, since these changes are associated with the formation of the substrate-binding pocket for the nascent base-pair. Here we observe different large C-terminal subdomain (thumb) opening motions in the simulations of pol beta with GC versus GG base-pairs. Whereas the conformation of pol beta in the former approaches the observed open state in the crystal structures, the enzyme in the latter does not. Analyses of the motions of active-site protein/DNA residues help explain these differences. Interestingly, rotation of Arg258 toward Asp192, which coordinates both active-site metal ions in the closed "active" complex, occurs rapidly in the GG simulation. We have previously suggested that this rotation is a key slow step in the closed to open transition. TMD simulations also point to a unique pathway for Arg258 rotation in the GG mispair complex. Simulations of the mismatched systems also reveal distorted geometries in the active site of all the mispair complexes examined. The hierarchy of the distortions (GG>CC>CA) parallels the experimentally deduced inability of pol beta to extend these mispairs. Such local distortions would be expected to cause inefficient DNA extension and polymerase dissociation and thereby might lead to proofreading by an extrinsic exonuclease. Thus, our studies on the dynamics of pol beta opening in mismatch systems provide structural and dynamic insights to explain experimental results regarding inefficient DNA extension following misincorporation; these details shed light on how proofreading may be invoked by the abnormal active-site geometry.  相似文献   

10.
11.
CstII, a bifunctional (α2,3/8) sialyltransferase from Campylobacter jejuni, is a homotetramer. It has been reported that mutation of the interface residues Phe121 (F121D) or Tyr125 (Y125Q) leads to monomerization and partial loss of enzyme activity, without any change in the secondary or tertiary structures. MD simulations of both tetramer and monomer, with and without bound donor substrate, were performed for the two mutants and WT to understand the reasons for partial loss of activity due to monomerization since the active site is located within each monomer. RMSF values were found to correlate with the crystallographic B-factor values indicating that the simulations are able to capture the flexibility of the molecule effectively. There were no gross changes in either the secondary or tertiary structure of the proteins during MD simulations. However, interface is destabilized by the mutations, and more importantly the flexibility of the lid region (Gly152-Lys190) is affected. The lid region accesses three major conformations named as open, intermediate, and closed conformations. In both Y121Q and F121D mutants, the closed conformation is accessed predominantly. In this conformation, the catalytic base His188 is also displaced. Normal mode analysis also revealed differences in the lid movement in tetramer and monomer. This provides a possible explanation for the partial loss of enzyme activity in both interface mutants. The lid region controls the traffic of substrates and products in and out of the active site, and the dynamics of this region is regulated by tetramerization. Thus, this study provides valuable insights into the role of loop dynamics in enzyme activity of CstII.  相似文献   

12.
Current methods for reengineering enzyme substrate specificities rely heavily on the use of static x-ray crystallographic models. In this article we detail the use of a molecular mechanics approach for suggesting regions of Bacillus stearothermophilus L-lactate dehydrogenase (EC 1.1.1.27) involved in substrate specificity, and hence areas of interest for protein engineers. The approach combines molecular dynamics with energy minimization (MD/EM) to search the conformational space available to a 15-Å sphere of the ternary complex centered on the catalytic histidine. The search is carried out by calculating a 30-ps dynamics trajectory at 300 K and minimizing structures at 1-ps intervals. The protocol has been performed on 14 systems containing different combinations of substrate and mutant /wt LDH. In order to discover which interactions are important in defining substrate specificity, eight conformational parameters representing substrate–active site interactions were measured in each of the 420 minimized structures. These parameters were then compared to the measured catalytic activity of the protein–substrate combinations. These comparisons show that arginine 109 orientation is a major determining factor in LDH specificity. Using this methodolgy it is possible to estimate the catalytic activity of proteins of varied sequence by computer simulation before synthesis. Proteins 29:228–239, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
M A Luyten  M Gold  J D Friesen  J B Jones 《Biochemistry》1989,28(16):6605-6610
For L-lactate dehydrogenases (LDH's), the interaction of the guanidinium group of their Arg 171 residue with the carboxylate group of an alpha-keto acid is of primary importance in orienting the substrate productively at the active site. LDH's such as that of Bacillus stearothermophilus (BSLDH) are of practical importance for the preparation of chiral 2-hydroxy acids used as synthons in asymmetric synthesis but would even be more valuable in this regard if their specificities were broader. With a view to tailoring the specificity of BSLDH toward carbonyl substrates that lack an alpha-carboxyl group such as ketones, site-directed mutagenesis has been applied to replace Arg 171 by the approximately isosteric, but hydrophobic, amino acids Tyr and Trp. The mutant enzymes exhibit remarkably good catalytic activities toward representative alpha-keto acids RCOCOOH, where R = Me, Et, n-Pr, n-Bu, and CH2OH, although for the mutant enzymes the kcat/KM's are lower by approximately 10(3)-10(4)-fold than those for native BSLDH. Surprisingly, the 171----Tyr/Trp enzymes are significantly more active than 171----Lys (Hart et al., 1987a), for which an interaction of a positively charged side chain with substrate COO- is retained. Preparative-scale 171----Trp catalyzed reduction of pyruvate gave optically pure L-lactate, showing that L stereospecificity of such LDH enzymes was unaffected by the loss of Arg 171. The retention of L stereospecificity is attributed to secondary polar or hydrogen-bonding associations of Arg 109 and Thr246, respectively, with the substrate COO-function that are of sufficient magnitude to maintain "normal" substrate orientation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Pang YP 《Proteins》2001,45(3):183-189
I report herein two 2.0 ns (1.0 fs time step) MD simulations of two zinc complexes bridged by a hydroxide in phosphotriesterase (PTE) employing the nonbonded method and the cationic dummy atom method that uses virtual atoms to impose orientational requirement for zinc ligands. The cationic dummy atom method was able to simulate the four-ligand coordination of the two zinc complexes in PTE. The distance (3.39 +/- 0.07A) between two nearby zinc ions in the time-average structure of PTE derived from the MD simulation using the cationic dummy atoms matched that in the X-ray structure (3.31 +/- 0.001A). Unequivocally, the time-average structure of PTE was able to fit into the experimentally determined difference electron density map of the corresponding X-ray structure. The results demonstrate the practicality of the cationic dummy atom method for MD simulations of zinc proteins bound with multiple zinc ions. In contrast, a 2.0 ns (1.0 fs time step) MD simulation using the nonbonded method revealed a striking difference in the active site between the X-ray structure and the time-average structure that was unable to fit into the density map of PTE. The results suggest that caution should be used in the MD simulations using the nonbonded method.  相似文献   

15.
Hritz J  Zoldák G  Sedlák E 《Proteins》2006,64(2):465-476
NADH oxidase (NOX) from Thermus thermophilus is a member of a structurally homologous flavoprotein family of nitroreductases and flavin reductases. The importance of local conformational dynamics in the active site of NOX has been recently demonstrated. The enzyme activity was increased by 250% in the presence of 1 M urea with no apparent perturbation of the native structure of the protein. The present in silico results correlate with the in vitro data and suggest the possible explanation about the effect of urea on NOX activity at the molecular level. Both, X-ray structure and molecular dynamics (MD) simulations, show open conformation of the active site represented by approximately 0.9 nm distance between the indole ring of Trp47 and the isoalloxazine ring of FMN412. In this conformation, the substrate molecule can bind in the active site without sterical restraints. MD simulations also indicate more stable conformation of the active site called "closed" conformation. In this conformation, Trp47 and the isoalloxazine ring of FMN412 are so close to each other (approximately 0.5 nm) that the substrate molecule is unable to bind between them without perturbing this conformation. The open/close transition of the active site between Trp47 and the flavin ring is accompanied by release of the "tightly" bound water molecule from the active site--cofactor assisted gating mechanism. The presence of urea in aqueous solutions of NOX prohibits closing of the active site and even unlocks the closed active site because of the concomitant binding of a urea molecule in the active site cavity. The binding of urea in the active site is stabilized by formation of one/two persistent hydrogen bonds involving the carbonyl group of the urea molecule. Our report represents the first MD study of an enzyme from the novel flavoprotein family of nitroreductases and flavin reductases. The common occurrence of aromatic residues covering the active sites in homologous enzymes suggests the possibility of a general gating mechanism and the importance of local dynamics within this flavoprotein family.  相似文献   

16.
Mutagenesis experiments suggest that Asp79 in cellulase Cel6A (E2) from Thermobifida fusca has a catalytic role, in spite of the fact that this residue is more than 13 A from the scissile bond in models of the enzyme-substrate complex built upon the crystal structure of the protein. This suggests that there is a substantial conformational shift in the protein upon substrate binding. Molecular mechanics simulations were used to investigate possible alternate conformations of the protein bound to a tetrasaccharide substrate, primarily involving shifts of the loop containing Asp79, and to model the role of water in the active site complex for both the native conformation and alternative low-energy conformations. Several alternative conformations of reasonable energy have been identified, including one in which the overall energy of the enzyme-substrate complex in solution is lower than that of the conformation in the crystal structure. This conformation was found to be stable in molecular dynamics simulations with a cellotetraose substrate and water. In simulations of the substrate complexed with the native protein conformation, the sugar ring in the -1 binding site was observed to make a spontaneous transition from the (4)C(1) conformation to a twist-boat conformer, consistent with generally accepted glycosidase mechanisms. Also, from these simulations Tyr73 and Arg78 were found to have important roles in the active site. Based on the results of these various MD simulations, a new catalytic mechanism is proposed. Using this mechanism, predictions about the effects of changes in Arg78 were made which were confirmed by site-directed mutagenesis.  相似文献   

17.
Guvench O  Price DJ  Brooks CL 《Proteins》2005,58(2):407-417
The trypsin-like serine proteases comprise a structurally similar family of proteins with a wide diversity of biological functions. Members of this family play roles in digestion, hemostasis, immune responses, and cancer metastasis. Bovine trypsin is an archetypical member of this family that has been extensively characterized both functionally and structurally, and that preferentially hydrolyzes Arg/Lys-Xaa peptide bonds. We have used molecular dynamics (MD) simulations to study bovine trypsin complexed with the two noncovalent small-molecule ligands, benzamidine and tranylcypromine, that have the same hydrogen-bond donating moieties as Arg and Lys side-chains, respectively. Multiple (10) simulations ranging from 1 ns to 2.2 ns, with explicit water molecules and periodic boundary conditions, were performed. The simulations reveal that the trypsin binding pocket residues are relatively rigid regardless of whether there is no ligand, a high-affinity ligand (benzamidine), or a low-affinity ligand (tranylcypromine). The thermal average of the conformations sampled by benzamidine bound to trypsin is planar and consistent with the planar internal geometry of the benzamidine crystallographic model coordinates. However, the most probable bound benzamidine conformations are +/-25 degrees out of plane, implying that the observed X-ray electron density represents an average of densities from two mirror symmetric, nonplanar conformations. Solvated benzamidine has free energy minima at +/-45 degrees , and the induction of a more planar geometry upon binding is associated with approximately 1 kcal/mol of intramolecular strain. Tranylcypromine's hydrogen-bonding pattern in the MD differs substantially from that inferred from the X-ray electron density. Early in simulations of this system, tranylcypromine adopts an alternative binding conformation, changing from the crystallographic conformation, with a direct hydrogen bond between its amino moiety and the backbone oxygen of Gly219, to one having a bridging water molecule. This result is consistently seen with the CHARMM22, Amber, or OPLS-AA force fields. The trypsin-tranylcypromine hydrogen-bonding pattern observed in the simulations also occurs as the crystallographic binding mode of the Lys15 side-chain of bovine pancreatic trypsin inhibitor bound to trypsin. In this latter cocrystal, a bridging crystallographic water does reside between the side-chain's amino group and the trypsin Gly219 backbone oxygen. Furthermore, the trypsin-tranylcypromine simulations sample two different stable noncrystallographic binding poses. These data suggest that some of the electron density ascribed to tranylcypromine in the X-ray model is rather due to a bound water molecule, and that multiple tranylcypromine binding conformations (crystallographic disorder) may be the cause of ambiguous electron density. The combined trypsin-benzamidine and trypsin- tranylcypromine results highlight the ability of simulations to augment protein-ligand complex structural data by deconvoluting the effects of thermal and structural averaging, and by finding energetically optimal ligand and bound water positions for weakly bound ligands.  相似文献   

18.
We have studied the binding of the enzymatically active NAD+ analogue, 3-iodopyridine-adenine dinucleotide, and the inactive analogue, pyridine-adenine dinucleotide to the enzyme horse liver alcohol dehydrogenase using X-ray crystallographic methods. These studies were made under such conditions that crystals of the complexes were isomorphous to apoenzyme crystals. Both analogues bind in the same conformation. The binding of the adenosine moiety is very similar to that of ADP-ribose or NADH bound to the enzyme. The conformation and mode of binding of the remaining portions of the analogue molecules is, however, quite different. The pyridine ring is not situated in the active-site pocket as the nicotinamide group in the isomorphous enzyme-NADH-imidazole complex but lies at the surface of the crevice between the two domains of the subunit, approximately 1.5 nm away from the catalytically active zinc atom. Lys-228 which has been shown to be important for NADH dissociation is in this region of the molecule.  相似文献   

19.
Abstract

We have carried out 1 nanosecond (ns) Molecular Dynamics (MD) simulations of the drug Y3 (4-acetylamino-5-hydroxynaphthalene-2, 7-disulfonic acid) complexed with catalytic domain of Avian sarcoma virus Integrase (ASV-IN), both in vacuum and in the presence of explicit solvent. Starting models were obtained on the basis of PDB co-ordinates (1A5X) of ASV-IN-Y3 complex, by Lubkowski et al [1]. Mn2+ cation was present in the active site. To neutralize the positive charge in the presence of explicit solvent, eight Cl? anions were added. Energy Minimization (EM) and MD simulations, for both the systems, were carried out using Sander's module of AMBER5.0 [2] with all atom force field. Analysis of ligand- protein interaction in both environments is discussed in the paper. We also carried out 1 ns MD simulation on two flexible loops—L1 (Gly54-Gln62) and L2 (Trp138-Met155) playing crucial role in interaction of IN with the drug [3], under differing environmental conditions (vacuum, aqueous and organic solvent methanol). Comparison of the conformational changes in the loops, monomer and dimer is presented in the paper. Our results showed that the conformation of the loop region was closest to crystallographic data in case of monomer and constrained loops in aqueous environment. However, the dimer in vacuum was more stable than monomer. The β sheet structure of the monomer in aqueous environment was unstable. Latter also took long time for equilibration. The box formed by loops L1 and L2 from two sub units IINA and INB) of the dimer satisfies prerequisites for ligand recognition site and seems to be the functional biological unit.  相似文献   

20.
Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure alpha-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged reaction times, to increase productivity and to extend their applicability to poor substrates. Here, two examples are reported of significant thermostabilizations, induced by site-directed mutagenesis, of an already thermostable protein, the L-lactate dehydrogenase (EC 1.1.1.27, 35 kDa per monomer subunit) from Bacillus stearothermophilus. Thermal inactivation of this enzyme is accompanied by irreversible unfolding of the native protein structure. The replacement of Arg171 by Tyr stabilizes the enzyme against thermal inactivation and unfolding. This stabilizing effect appears to be based on improved interactions between the subunits in the core of the active dimeric or tetrameric forms of the enzyme. The thermal stability of L-lactate dehydrogenase variants with an active site Arg residue, either in the 171 (wild-type) or in the 102 position, is further increased by sulfate ions. The two stabilizing effects are additive, as found for the Arg171Tyr/Gln102Arg double mutant, for which the stability of the protein in 100 mM sulfate solution reaches that of L-lactate dehydrogenases from extreme thermophiles. All mutant proteins retain significant catalytic activity, both in the presence and absence of stabilizing salts, and are viable catalysts in preparative scale reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号