首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP-independent catabolite repression in bacteria   总被引:10,自引:1,他引:9  
  相似文献   

2.
3.
When an Escherichia coli mutant lacking the enzyme N-acetyl-glucosamine-6-phosphate (AcGN6P) deacetylase is grown in a succinate-mineral salts medium and exposed to an exogenous source of N-acetylglucosamine, approximately 20 to 30 pmoles of AcGN6P per mug of cell dry weight will accumulate in these cells. This accumulation occurs within 2 to 4 min after the addition of N-acetylglucosamine and is coincident with the production of a severe permanent catabolite repression of beta-galactosidase synthesis. This repression does not occur if adenosine 3',5'-cyclic phosphate (cyclic AMP) is added to the cells before AcGN6P accumulates. An immediate derepression occurs when cyclic AMP is added to cells that have already accumulated a large AcGN6P pool. These findings are consistent with the view that low-molecular-weight carbohydrate metabolites and cyclic AMP play key roles in the catabolite repression phenomenon, and that metabolites such as AcGN6P may participate in the represion mechanism by influencing either the formation or degradation of cyclic AMP in E. coli.  相似文献   

4.
5.
Regulation of the expression of the histidase coded by hutk of Klebsiella aerogenes in Salmonella typhimurium and in Escherichia coli and of the expression of the histidase coded by huts of S. typhimurium in E. coli was investigated. The hutk histidase was found to be sensitive to catabolite repression in K. aerogenes and in E. coli, but insensitive to catabolite repression in S. typhimurium; huts histidase has previously been shown to be catabolite sensitive in all three organisms. The expression of both hutk and huts histidase in E. coli was activated by nitrogen starvation. Apparently, the glutamine synthetase of E. coli may activate the formation of some glutamate- and ammonia-producing enzymes.  相似文献   

6.
Catabolite Repression and Pyruvate Metabolism in Escherichia coli   总被引:14,自引:9,他引:5       下载免费PDF全文
A study was made of the reactions involved in the cellular regulatory function known as catabolite repression. These studies employed the glucose-repressible, beta-galactosidase system of Escherichia coli and involved an investigation of glucose dissimilation under cultural conditions capable of permitting or preventing expression of catabolite repression. The results indicated that reactions associated with pyruvate decarboxylation are of particular importance in influencing repression. This conclusion was based on results obtained by measurement of differential rates of C(14)O(2) evolution from specifically labeled (14)C-glucose substrates, and by measurements of H(2) evolution during anaerobic growth. Catabolite repression measured in relation to steady-state growth rates indicated that the repression mechanism may in fact be a direct consequence of a cell's energy balance, as dictated by the production from pyruvate of "high-energy" molecules such as adenosine triphosphate or acetyl-coenzyme A. The apparent involvement of pyruvate metabolism in both the energetics and the expression of catabolite repression in E. coli is consistent with this view.  相似文献   

7.
Carbon catabolite repression in bacteria.   总被引:1,自引:0,他引:1  
Carbon catabolite repression (CCR) is a regulatory mechanism by which the expression of genes required for the utilization of secondary sources of carbon is prevented by the presence of a preferred substrate. This enables bacteria to increase their fitness by optimizing growth rates in natural environments providing complex mixtures of nutrients. In most bacteria, the enzymes involved in sugar transport and phosphorylation play an essential role in signal generation leading through different transduction mechanisms to catabolite repression. The actual mechanisms of regulation are substantially different in various bacteria. The mechanism of lactose-glucose diauxie in Escherichia coli has been reinvestigated and was found to be caused mainly by inducer exclusion. In addition, the gene encoding HPr kinase, a key component of CCR in many bacteria, was discovered recently.  相似文献   

8.
9.
10.
Cultures of Escherichia coli K-12 grown on glucose or gluconate under aerobic conditions exhibited catabolite repression of beta-galactosidase synthesis. Depression occurred when these cultures were subjected to anaerobic shock. These states of repression and depression were found to be associated with low and high differential rates of cyclic AMP synthesis, respectively. This observation is consistent with the view that cyclic AMP plays a central role in the catabolite repression phenomenon. We report here, however, that identical stages of repression and derepression occur in mutant strains possessing cya crp(Csm) genotypes and therefore unable to synthesize cyclic AMP. These results suggest that cyclic AMP is not the sole regulator involved in catabolite repression.  相似文献   

11.
Acetohydroxy acid synthetase, which is sensitive to catabolite repression in wild-type Escherichia coli B, was relatively resistant to this control in a streptomycin-dependent mutant. The streptomycin-dependent mutant was found to be inducible for beta-galactosidase in the presence of glucose, although repression of beta-galactosidase by glucose occurred under experimental conditions where growth of the streptomycin-dependent mutant was limited. Additional glucose-sensitive enzymes of wild-type E. coli B (citrate synthase, fumarase, aconitase and isocitrate dehydrogenase) were found to be insensitive to the carbon source in streptomycin-dependent mutants: these enzymes were formed by streptomycin-dependent E. coli B in equivalent quantities when either glucose or glycerol was the carbon source. Two enzymes, glucokinase and glucose 6-phosphate dehydrogenase, that are glucose-insensitive in wild-type E. coli B were formed in equivalent quantity on glucose or glycerol in both streptomycin-sensitive and streptomycin-dependent E. coli B. The results indicate a general decrease or relaxation of catabolite repression in the streptomycin-dependent mutant. The yield of streptomycin-dependent cells from glucose was one-third less than that of the streptomycin-sensitive strain. We conclude that the decreased efficiency of glucose utilization in streptomycin-dependent E. coli B is responsible for the relaxation of catabolite repression in this mutant.  相似文献   

12.
Catabolite repression of the lac operon. Repression of translation   总被引:3,自引:2,他引:1  
  相似文献   

13.
The enzyme adenylate cyclase plays a key role in mediating the phenomenon of catabolite repression in Escherichia coli. The mechanism by which one sugar prevents the expression of the gene for another catabolite depends on the capacity of the cell to take up the sugar. Sugars that are most effective in the repression mechanism are those that are transported by the phosphoenolpyruvate-energized phosphotransferase system. The hypothesis presented here is that one or more of the proteins associated with this sugar transport system interact with adenylate cyclase and, when they are in their phosphorylated form, activate the enzyme, provided other factors that permit this activation are present. Another essential activator of adenylate cyclase is inorganic orthophosphate. When E. coli are starved for sugars, the pool of total phosphate is accounted for primarily as inorganic orthophosphate, ATP, phosphoenolpyruvate, and transport proteins in their phospho-forms, a condition that promotes activation of adenylate cyclase. When cells are exposed to sugars, the phosphate pool becomes drastically redistributed, such that the level of inorganic orthophosphate and transport phosphoproteins decreases markedly while the pool of sugar phosphate increases. This translation of the extracellular availability of carbon sources into an intracellular phosphate redistribution is the immediate event that is responsible for catabolite repression.  相似文献   

14.
15.
Temporal control of colicin E1 induction.   总被引:12,自引:7,他引:5       下载免费PDF全文
The expression of the gene encoding colicin E1, cea, was studied in Escherichia coli by using cea-lacZ gene fusions. Expression of the fusions showed the same characteristics as those of the wild-type cea gene: induction by treatments that damage DNA and regulation by the SOS response, sensitivity to catabolite repression, and a low basal level of expression, despite the presence of the fusion in a multicopy plasmid. Induction of expression by DNA-damaging treatments was found to differ from other genes involved in the SOS response (exemplified by recA), in that higher levels of DNA damage were required and expression occurred only after a pronounced delay. The delay in expression following an inducing treatment was more pronounced under conditions of catabolite repression, indicating that the cyclic AMP-cyclic AMP receptor protein complex may play a role in induction. These observations also suggest a biological rationale for the control of cea expression by the SOS response and the cyclic AMP-cyclic AMP receptor protein catabolite repression system.  相似文献   

16.
The study of chemotaxis describes the cellular processes that control the movement of organisms toward favorable environments. In bacteria and archaea, motility is controlled by a two-component system involving a histidine kinase that senses the environment and a response regulator, a very common type of signal transduction in prokaryotes. Most insights into the processes involved have come from studies of Escherichia coli over the last three decades. However, in the last 10 years, with the sequencing of many prokaryotic genomes, it has become clear that E. coli represents a streamlined example of bacterial chemotaxis. While general features of excitation remain conserved among bacteria and archaea, specific features, such as adaptational processes and hydrolysis of the intracellular signal CheY-P, are quite diverse. The Bacillus subtilis chemotaxis system is considerably more complex and appears to be similar to the one that existed when the bacteria and archaea separated during evolution, so that understanding this mechanism should provide insight into the variety of mechanisms used today by the broad sweep of chemotactic bacteria and archaea. However, processes even beyond those used in E. coli and B. subtilis have been discovered in other organisms. This review emphasizes those used by B. subtilis and these other organisms but also gives an account of the mechanism in E. coli.  相似文献   

17.
18.
Two classes of D-serine deaminase (Dsdase)-specific secondary mutants of Escherichia coli K-12 were isolated from a Dsdase low constitutive nonhyperinducible mutant as types which could grow in the presence of both D-serine and glucose. These strains contain cis dominant, nonsuppressible mutations in the dsdO (operator-initiator) region. In the first class of mutants (e.g., FB4010), Dsdase synthesis is completely insensitive to catabolite repression, and synthesis occurs at a high constitutive rate in the absence of cyclic adenosine 5'-monophosphate. In the second class (e.g., FB4005), Dsdase synthesis is partially insensitive to catabolite repression, and catabolite repression is reversed by the addition of cyclic adenosine 5'-monophosphate. Dsdase synthesis in strain FB4005 is partially independent of the cyclic adenosine 5'-monophosphate binding protein, as constitutive synthesis is reduced only 65% (relative to the cap+ strain) in strains unable to synthesize the cyclic adenosine 5'-monophosphate binding protein. Surprisingly, the constitutive rate of Dsdase synthesis is fourfold higher in all mutants of both classes than in the parent, indicating a close interrelationship between the sites of response to induction and catabolite repression.  相似文献   

19.
The physiological state of Escherichia coli with respect to (permanent) catabolite repression was assessed by measuring the steady-state level of beta-galactosidase in induced or in constitutive cells under a variety of growth conditions. Four results were obtained. (i) Catabolite repression had a major effect on fully induced or constitutive expression of the lac gene, and the magnitude of this effect was found to be dependent on the promoter structure; cells with a wild-type lac promoter showed an 18-fold variation in lac expression, and cells with the lacP37 (formerly lac-L37) promoter exhibited several hundred-fold variation. (ii) Exogenous adenosine cyclic 3',5'-monophosphoric acid (cAMP) could not abolish catabolite repression, even though several controls demonstrated that cAMP was entering the cells in significant amounts. (Rapid intracellular degradation of cAMP could not be ruled out.) (iii) Neither the growth rate nor the presence of biosynthetic products altered the degree of catabolite repression; all variation could be related to the catabolites present in the growth medium. (iv) Slowing by imposing an amino acid restriction decreased the differential rate of beta-galactosidase synthesis from the wild-type lac promoter when bacteria were cultured in either the absence or presence of cAMP; this decreased lac expression also occurred when the bacteria harbored the catabolite-insensitive lacP5 (formerly lacUV5) promoter mutation. These findings support the idea that (permanent) catabolite repression is set by the catabolites in the growth medium and may not be related to an imbalance between catabolism and anabolism.  相似文献   

20.
Growth of streptomycin-dependent mutants of Escherichia coli K-12 was insensitive to valine when dihydrostreptomycin was present in a nonlimiting concentration in glucose-salts medium. Acetohydroxy acid synthase was derepressed under these conditions, owing to relaxation of catabolite repression. Valine sensitivity and catabolite repression were restored when streptomycin-dependent E. coli K-12 mutants were grown with limiting dihydrostreptomycin. End product repression of acetohydroxy acid synthase under conditions of relaxed catabolite repression was effected by any two (or more) end products except the combination valine plus isoleucine, which caused derepression. Single end products had no detectable effect on acetohydroxy acid synthase formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号