共查询到20条相似文献,搜索用时 15 毫秒
1.
Lines of soybean [Glycine max (L.)] tolerant of atrazine were developed by an in vitro and in vivo atrazine challenge. Cotyledonary node plus epicotyl explants from mature germinated seed of soybean introduction PI 438489B were cultured on RV-5 medium containing 48 mg active ingredient (a.i.)/l atrazine for one month. Most of the explants (66%) on medium containing atrazine, and 10% on medium without atrazine died. Explants surviving exposure to atrazine callused and organogenically regenerated shoots developed. Soil around R0 plants regenerated from atrazine tolerant shoots and nonatrazine challenged shoots (controls) were subsequently tested in vivo for atrazine tolerance. All controls died. Seeds were collected from atrazine tolerant R0 plants. Two weeks after planting, emerged R1 seedlings were tested in vivo for atrazine tolerance as the R0 plants were. This procedure was repeated on the R2 plants. All nonatrazine selected control plants died when exposed to this herbicide. Atrazine tolerant R2 plants were maintained in atrazine amended soil and appeared as healthy and vigorous as the control growing in atrazine free soil.Missouri Agricultural Experiment Station, University of Missouri, Columbia, Missouri. Journal Series Number 11.340Mention of tradenames does not constitute a guarantee or warranty of the product by the University of Missouri and does not imply their approval to the exclusion of other products. 相似文献
2.
Stability of salt tolerance at the cell level after regeneration of plants from a salt tolerant tobacco cell line 总被引:2,自引:0,他引:2
A. A. Watad D. Swartzberg R. A. Bressan S. Izhar P. M. Hasegawa 《Physiologia plantarum》1991,83(2):307-313
Plants were regenerated from both the wild type and a stable NaCI-tolerant line of tobacco cells ( Nicotiana tabacum/gossii ). The regeneration process was much more difficult in the case of the NaCI-tolerant line and was only successful in the absence of NaCI. These plants differed morphologically from those regenerated from the wild type cell line, exhibiting abnormally short internodes, small leaves and reduced growth. Cell suspension cultures derived from plants regenerated from the stable NaCI-tolerant line retained a high level of tolerance to salt. The NaCI-concentration required to reduce fresh and dry weight gain by 50% was about twice that observed in the case of the cells obtained from wild type plants.
The results presented here, together with those of Watad et al. (1985), indicate that resistance to salt is operating and stable at the cellular level before and after plant regeneration. When the regenerated plants were grown in increasing levels of salt their growth response was not clearly different from that of the plants regenerated from the wild type cell line. However, the survival of plants on high concentrations of NaCI tended to be higher in the case of plants regenerated from the NaCI-tolerant cell line. 相似文献
The results presented here, together with those of Watad et al. (1985), indicate that resistance to salt is operating and stable at the cellular level before and after plant regeneration. When the regenerated plants were grown in increasing levels of salt their growth response was not clearly different from that of the plants regenerated from the wild type cell line. However, the survival of plants on high concentrations of NaCI tended to be higher in the case of plants regenerated from the NaCI-tolerant cell line. 相似文献
3.
Ilga Winicov 《Plant cell reports》1991,10(11):561-564
Salt tolerant cell lines have been selected from Medicago sativa, by a single step selection process on tissue culture medium containing 1% NaCl. Plants regenerated from these lines show improved salt tolerance compared to parent plants. The regenerated plants are vigorous, have flowered and are self fertile. The cellular salt tolerance characteristic can be passaged through the regenerated plants, since callus cultures initiated from immature ovaries of the salt tolerant regenerated plants are salt tolerant without additional selection on 1% NaCl. Several of these second generation callus cultures have been regenerated to produce vigorous plants which maintain the salt tolerance characteristic. The tolerance phenotype appears dominant in seeds obtained from self fertilization of the tolerant plants. The regenerated salt tolerant plants are therefore a valuable source as genotypes in plant breeding for salt tolerance and isolation, identification and manipulation of genes which confer salt tolerance in alfalfa.Abbreviations SH
Schenk and Hildebrandt medium
- 2,4-D
2,4-dichlorophenoxyacetic acid 相似文献
4.
Thehypothesis that chemically induced stress tolerance in plants can betransferredto a larger clonal population regenerated by somatic embryogenesis wasevaluatedusing the triazole compound paclobutrazol as a chemical inducer of stresstolerance in Geranium (Pelargonium horturum Bailey). Seedswere imbibed in 3.4, 10.2 or 17.0 M (1, 3, 5 mgL–1) paclobutrazol for 24 h and germinatedfor 7 days. Hypocotyl explants were cultured in vitro toinduce somatic embryogenesis. Plants regenerated from somatic embryos wereexposed to heat stress at 56°C. Explants treated with3.4 M paclobutrazol yielded a substantially higher number ofsomatic embryos compared with untreated explants. In contrast, 17.0M paclobutrazol treatment inhibited embryogenesis producing asignificantly lower number of somatic embryos. There was no difference in theembryo number between control and 10.2 M treatment. Somaticembryos derived from 3.4 and 10.2 M paclobutrazol treatedexplants developed into plants at a faster rate than the control and 17.0M treatments. Plants derived from paclobutrazol-treatedexplants displayed a greater tolerance to heat stress compared with thecontrols. Observations in this study provide a technique for regeneratingplantsin tissue/cell culture with additional desirable traits such as stresstolerancewith minimal chemical contamination of the environment. 相似文献
5.
An anti-chlorpropham single-chain variable-fragment (scFv) gene was introduced into Arabidopsis in a manner to express the antibody fragment in each of four different subcellular compartments. The accumulation of scFv in transgenic plants was detected by targeting the fragment in the endoplasmic reticulum or apoplastic space, or by expressing the fragment as a glycosylphosphatidylinositol-anchored protein, while no accumulation could be detected by targeting the fragment in the cytosol. Transgenic plants accumulating the scFv gene at a high level in the endoplasmic reticulum had enhanced tolerance to chlorpropham in comparison with the non-transformants. 相似文献
6.
Light- and benzyladenine-induced reversal of the changes in chlorophyll content and catalase activity were studied in the attached first leaf of Oryza sativa L. cv. Bala, kept in darkness for different periods before maturation. Dark treatment caused a decrease in chlorophyll content and catalase activity at all times. Light treatment of dark-incubated seedlings at different periods before maturation reversed the dark-induced effect on chlorophyll content, catalase activity and dry weight and also caused a further rise in chlorophyll content compared to initial values. In darkness, the application of benzyladenine replaced the light effect in maintaining catalase activity. Chlorophyll content was also maintained by initially applied benzyladenine. Benzyladenine did not promote the photoinduced maintenance and increase in chlorophyll content and catalase activity at any time. Treatment with hydrogen peroxide, glycolate and amizol resulted in an accelerated chlorophyll breakdown and had varied effects on catalase levels. Chlorophyll decrease due to peroxide accumulation was to some extent reversible by benzyladenine, but the hormone had no effect on the peroxide-induced decrease in catalase activity. Development of catalase is light dependent. Benzyladenine stabilises the enzyme but has no effect on its synthesis. 相似文献
7.
The effect of three different concentrations of amitrole (AM), a bleaching herbicide affecting carotenogenesis, on chloroplast ultrastructure, photosynthetic pigment contents, and photochemical activity was studied in two maize genotypes differing in photosynthetic characteristics. The content of photosynthetic pigments in leaves of plants treated with low (20 M) AM concentration was similar to control plants and no damaging effect of the herbicide on the ultrastructure of either mesophyll (MC) or bundle-sheath (BSC) cell chloroplasts was observed. Higher (60 and 120 M) concentrations of AM caused a significant decrease in the content of carotenoids (especially xanthophylls), which was followed by photooxidative destruction of chlorophylls and some alterations of chloroplast ultrastructure. MC chloroplasts appeared more sensitive to the damaging effect of AM compared to BSC chloroplasts. A significant decrease in the amount of both granal and intergranal thylakoids in MC chloroplasts was observed with the increasing concentration of AM. As regards BSC chloroplasts, rapid decrease in the volume density of starch inclusions was found in plants treated with higher concentrations of AM. When 120 M AM was used, both MC and BSC chloroplasts contained just a few thylakoid membranes that were strongly altered. The changes in the ultrastructure of MC chloroplasts were accompanied by the changes in their photochemical activity. The formation of chloroplast protrusions after treatment of plants with AM as well as in control plants was also observed. 相似文献
8.
A protocol was developed for preservation of calli of Oryza rufipogon Griff. in liquid nitrogen (−196°C). Optimal conditions for cryoprotection, pre-freezing and post-thaw recovery of calli were
identified. Cryoprotectant treatment at low temperature, pre-freezing in isopropanol bath for 1 h at −70°C, rapid thawing
and proper removal of cryoprotectant were critical for post-thaw survival. Genetic fidelity of the R1 plants obtained from
cryopreserved, cryoprotectant-treated and untreated calli was assessed by phenotypic and molecular characterization. Comparison
of phenotypic characters with seed-derived control plants showed no significant variation in the agronomic characters, but
seed physical characters showed significant reduction in all the in vitro generated plants. Molecular data generated using
26 rice simple sequence repeat markers showed 4.78–7.25% change from control. Results suggested that both callus induction
and cryopreservation induced heritable variations in O. rufipogon. In addition, a combination of phenotypic and molecular characterization using an appropriate marker provided better insight
into genetic fidelity of recovered plants. 相似文献
9.
Summary Calli were induced from leaf expiants of aDactylis glomerata L. (orchardgrass) genotype which has a high capacity for somatic embryogenesis. After 7 months culture on SH medium containing NaCl, a line was selected which was tolerant to 200 mM NaCl. When both selected and nonselected calli were maintained for 56 days on media containing 0 to 300 mM NaCl, the selected line showed significantly higher regeneration capacity than nonselected calli when placed on media containing more than 50 mM NaCl. Ultrastructural features of control somatic embryos not exposed to the salt were compared to those from nonselected and selected embryos cultured on 200 mM NaCl medium. In the presence of NaCl there were changes in the appearance of cell walls and mitochondria, accumulation of lipids and a higher degree of vacuolation in cells of nonselected embryos compared to control and selected embryos. 相似文献
10.
11.
A tobacco matrix attachment region reduces the loss of transgene expression in the progeny of transgenic tobacco plants 总被引:20,自引:0,他引:20
Bekir Ülker George C. Allen William F. Thompson Steven Spiker Arthur K. Weissinger 《The Plant journal : for cell and molecular biology》1999,18(3):253-263
The RB7 matrix attachment region (MAR), when flanking a uidA (GUS) reporter gene, has been previously shown to increase uidA gene expression by 60-fold in stably transformed tobacco suspension cell lines. We have now used the same co-transformation procedure to determine the effect of flanking MARs on uidA gene expression in tobacco plants. The neomycin phosphotransferase selection gene and uidA reporter gene on separate plasmids were co-transformed into seedlings by microprojectile bombardment. In primary transgenic plants, the average uidA expression in plants with MARs was twofold greater than in control plants without MARs, but there was no effect on variation of expression. GUS activity was not proportional to the number of integrated uidA transgenes over the entire range of copy numbers. However, in the lower part of the copy number range, MAR lines show a tendency for expression to increase with copy number. Transgene expression in backcross progenies of the MAR-containing lines averaged threefold higher than in control progenies. MARs also reduced the loss of transgene expression in the BC1 generation. Sixty-three per cent of the 21 MAR-containing primary transformants, but only 20% of the 14 control primary transformants, produced backcross progenies in which no loss of transgene expression was observed. These observations are discussed in the context of homology-dependent gene silencing. 相似文献
12.
The effect of cold and abscisic acid (ABA) treatment on soluble carbohydrate content was compared in callus cultures of wheat genotypes differing in frost tolerance. The effect of 5A chromosome substituted from the frost tolerant to the sensitive on cold-induced carbohydrate accumulation was also determined. Following cold hardening, the increase in sucrose and fructan level in calli of tolerant varieties was significantly higher than those of the sensitive ones. In 5A substitution line higher sucrose and fructan content was detected than in recipient . Tendentiously, cold stress caused higher degree of changes in carbohydrate content than the exogenously applied ABA did. Comparing the accumulation pattern of the components of WSC measured in vitro to the previously published in vivo results it can be concluded that in the case of sucrose and fructans it was similar, while for the reducing sugars it was different. The regulatory role of chromosome 5A either in the development of freezing tolerance or carbohydrate accumulation was confirmed in dedifferentiated calli, as well. 相似文献
13.
Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable
tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development
of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation
and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L−1 2,4-dichlorophenoxyacetic acid, and 0.05 mg L−1 benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of
100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular
aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance
and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 μmoles zinc
g−1 FW, and cell suspension cultures 30.9 μmoles zinc g−1 DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant. 相似文献
14.
M. J. M. Smulders W. Rus-Kortekaas B. Vosman 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,91(8):1257-1264
The propagation of plants through tissue culture can induce a variety of genetic and epigenetic changes. Variation in DNA methylation has been proposed as a mechanism that may explain at least a part of these changes. In the present study, the methylation of tomato callus DNA was compared with that of leaf DNA, from control or regenerated plants, at MspI/HpaII sites around five middle-repetitive sequences. Although the methylation of the internal cytosine in the recognition sequence CCGG varied from zero to nearly full methylation, depending on the probe used, no differences were found between callus and leaf DNA. For the external cytosine, small differences were revealed between leaf and callus DNA with two probes, but no polymorphisms were detected among DNA samples of calli or DNA samples of leaves of regenerated plants. When callus DNA cut with HindIII was studied with one of the probes, H9D9, most of the signal was found in high-molecular-weight DNA, as opposed to control leaf DNA where almost all the signal was in a fragment of 530 bp. Also, an extra fragment of 630 bp was found in the callus DNA that was not present in control leaf DNA. Among leaves of plants regenerated from tissue culture, the 630-bp fragment was found in 10 of 68 regenerated plants. This 630-bp fragment was present among progeny of only 4 of these 10 plants after selfing, i.e. it was partly inherited. In these cases, the fragment was not found in all progeny plants, indicating heterozygosity of the regenerated plants. The data are interpreted as indicating that a HindIII site becomes methylated in callus tissue, and that some of this methylation persists in regenerated plants and is partly transmitted to their progeny. 相似文献
15.
《Microbiological research》2014,169(12):907-914
The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool. 相似文献
16.
C. T. Harms A. L. Montoya L. S. Privalle R. W. Briggs 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1990,80(3):353-358
Summary Inbred lines of corn (Zea mays L.) have been characterized, which exhibit differential sensitivity to the sulfonylurea herbicide primisulfuron (2-[3-(4,6-bis(di-fluoromethoxy) pyrimidin-2-yl)-ureidosulfonyl]-benzoic acid methylester). When treated postemergence with 160 g a.i. per hectare, inbred 4CO exhibited complete tolerance while inbred 4N5 was killed. The F1 hybrid 4C0 x 4N5 was uniformly tolerant indicating dominance of the tolerance trait. The field observations correlated with laboratory tests in which seedling root growth was measured. Based on IC50, inbred 4CO was more than ten times more tolerant than inbred 4N5. In the F2 and F3 generations, a 31 segregation of tolerant and sensitive individuals was observed, consistent with tolerance being inherited as a single dominant trait. Backcrosses of heterozygous F1 plants with the sensitive parent (4N5) yielded progeny that segreated at the expected 11 ratio. Backcrosses with 4C0 yielded tolerant offspring only. Inhibition characteristics of acetohydroxyacid synthase (AHAS; E.C. 4.1.3.18) were determined. The enzymes from both inbreds and their F1 hybrid were equally sensitive and strongly inhibited by primisulfuron (IC50: 7 nM). The fate of 14C-labeled primisulfuron in seedling tissues of inbred 4C0 and the hybrid, 4C0 x 4N5, indicated rapid metabolism with a half-life (t
1/2) of approximately 3 h. On the other hand, the herbicide-sensitive inbred 4N5 was considerably slower to metabolize primisulfuron (t
1/2 >24 h). These data indicate that differential metabolism is the mechanism of tolerance to the sulfonylurea herbicide primisulfuron in tolerant corn.Deceased 相似文献
17.
The inhibitor of catalase 3-amino-1,2,4-triazole (AMT) was used to study the physiological role of catalase in the yeast Saccharomyces cerevisiae under starvation. It was shown that AMT at the concentration of 10 mM did not affect the growth of the yeast. In vivo and in vitro the degree of catalase inhibition by AMT was concentration- and time-dependent. Peroxisomal catalase in bakers' yeast was more sensitive to AMT than the cytosolic one. In vivo inhibition of catalase by AMT in S. cerevisiae caused a simultaneous decrease in glucose-6-phosphate dehydrogenase activity and an increase in glutathione reductase activity. At the same time, the level of protein carbonyls, a marker of oxidative modification, was not affected. Possible mechanisms compensating the negative effects caused by AMT inhibition of catalase are discussed. 相似文献
18.
Sung-Soo Jun Jin Young Yang Hye Jin Choi Na-Ryung Kim Min Chul Park Young-Nam Hong 《Journal of Plant Biology》2005,48(4):456-466
Transgenic tobaccoNicotiana tabacum L. var. SR1) plants that over-express theEscherichia coli trehalose-6-phosphate synthase (TPS) gene(otsA) synthesized small amounts of trehalose (<400 μg g-1 leaf) while non-transformants produced no detectable trehalose. Some transgenic plants expressing a high level ofotsA exhibited stunted growth and morphologically altered leaves. We tested F22 homozygous plants devoid of phenotypic changes to determine their physiological responses to dehydration and salinity stresses.
All transgenic plants maintained better leaf turgidity under a limited water supply or after treatment with polyethylene glycol
(PEG). Furthermore, fresh weight was maintained at higher levels after either treatment. The initial leaf water potential
was higher in transgenic plants than non-transformants, but, in both plant types, was decreased to a comparable degree following
dehydration. When grown with 250 mM NaCl, transgenic plants exhibited a significant delay in leaf withering and chlorosis,
as well as more efficient seed germination. Our results suggest that either trehalose or trehalose-6-phosphate can act as
an osmoprotective molecule without maintaining water potential, in contrast to other osmolytes. Furthermore, both appear to
protect young embryos under unfavorable water status to ensure subsequent germination. 相似文献
19.
Organogenic calli induced from internodal segments were subcultured three times. Regenerated plants obtained from each subculture were analysed by molecular methods. No major genetic rearrangements were detected in the callus-derived plants since none of the amplified fragment-length polymorphism (AFLP) loci were found to be polymorphic. However, epigenetic changes due to a demethylation process were detected by methylation-sensitive amplified polymorphism (MSAP) technique. The results allowed inference of the possible relationship among the plants derived from different calli subcultures and the in vitro control. The plants recovered from the first and second callus subcultures clustered with the in vitro control pools in the phenogram while the regenerants from the third callus subculture showed the highest genetic distance with the controls. This is the first study reporting data about the genetic stability of callus-derived Humulus lupulus L. plants. 相似文献
20.
E. K. Calleberg 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,92(8):1038-1044
The main purpose of this study was to investigate whether the degree of tolerance to low non-freezing temperatures of immature microspores in anther culture was correlated to the degree of low-temperature tolerance, measured by chlorophyll fluorescene, in the anther donor clone. Anther cultures of six tetraploids and eight dihaploids, derived from anther cultures of clone 199.13, were incubated at 10, 15, 20, 25 or 30 °C respectively. The embryo and callus production were determined and subsequently two quotients/clone, designated temperature-related embryo and callus production, were established. The quotients were defined as embryo and callus production at 10 or 15 °C divided by the embryo and callus production, for the individuals clone, at the optimal temperature (20 or 25 °C) for the same production. These quotients were thereafter correlated to the low-temperature tolerances of the anther donors. The tetraploid and dihaploid group were treated separately and significant positive correlations were found in both cases. This indicates that tolerance to low temperatures is expressed in the anther donor plant as well as in the microspores grown in anther culture. It is suggested that in vitro selection through anther culture may be a useful tool for breeding for increased tolerance to low temperatures in potato. 相似文献