首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polyhydroxyalkanoate (PHA) synthase gene phaC2 Ps from Pseudomonas stutzeri strain 1317 was introduced into a PHA synthase gene phbC Re negative mutant, Ralstonia eutropha PHB4. It conferred on the host strain the ability to synthesize PHA, the monomer compositions of which varied widely when grown on different carbon sources. During cultivation on gluconate, the presence of phaC2 Ps in R. eutropha PHB4 led to the accumulation of polyhydroxybutyrate (PHB) homopolymer in an amount of 40.9 wt% in dry cells. With fatty acids, the recombinant successfully produced PHA copolyesters containing both short-chain-length and medium-chain-length 3-hydroxyalkanoate (3HA) of 4–12 carbon atoms in length. When cultivated on a mixture of gluconate and fatty acid, the monomer composition of accumulated PHA was greatly affected and the monomer content was easily regulated by the addition of fatty acids in the cultivation medium. After the (R)-3-hydroxydecanol-ACP:CoA transacylase gene phaG Pp from Pseudomonas putida was introduced into phaC2 Ps-containing R. eutropha PHB4, poly(3HB-co-3HA) copolyester with a very high 3-hydroxybutyrate (3HB) fraction (97.3 mol%) was produced from gluconate and the monomer compositions of PHA synthesized from fatty acids were also altered. This study clearly demonstrated that PhaC2Ps cloned from P. stutzeri 1317 has extraordinarily low substrate specificity in vivo, though it has only 54% identity in comparison to a previously described low-substrate-specificity PHA synthase PhaC1Ps from Pseudomonas sp. 61–3. This study also indicated that the monomer composition and content of the synthesized PHA can be effectively modulated by controlling the addition of carbon sources or by modifying metabolic pathways in the hosts.  相似文献   

2.
The role played by a bacterial community composed ofPseudomonas putida, strain 21;Pseudomonas stutzeri, strain 18; andPseudomonas sp., strain 5, and by physical and chemical factors in the degradation of CN and SCN was studied. It was shown that the degradation of CN is determined both by the action of bacteria and by abiotic physical and chemical factors (pH, O2, temperature, the medium agitation rate, etc.). The contribution of chemical degradation was found to increase drastically at pH below 9.0; when air was blown through the medium (irrespective of the pH value); under active agitation of the medium; and when the medium surface interfacing air was increased. Even at elevated pH values (9.0-9.2), suboptimal for bacterial growth, the microbial degradation could account for at most 20–25 mg/1 of CN, regardless of its initial concentration. When CN and SCN were concurrently present in the medium, the former compound was the first to be degraded by microorganisms. The rate of bacterial degradation of SCN under continuous cultivation in a chain of reactors was found to depend on its concentration, the medium flow rate, agitation rate, and the pattern of carbon source supply and could exceed 1 g/(l day). CN and SCN are utilized by bacteria solely as nitrogen sources. The mechanism of CN and SCN degradation by the microbial community is discussed. Deceased.  相似文献   

3.
Outdoor tank cultivation of several Porphyra (nori) species was carried out from late November 2002 through early May 2003 using 40 L (with a surface of 0.25 m2), 600 L (1 m2), and 24,000 L (30 m2) fiberglass or PVC tanks provided with continuous aeration and seawater flow. Sexual and asexual spores produced from cultured conchocelis and frozen thalli in the laboratory, respectively, were subsequently grown to produce young fronds (ca. 5-10 cm) in an average time of 8 weeks. Growth in outdoor tanks and ponds was possible for a period of up to 20 weeks (i.e. growth season), with yields above 100 g FW m−2d−1occurring during 12-14 weeks from late December through late March, when seawater temperatures were below 20 C. These yields correlated with the species and depended on the type of tanks in which the algae were cultivated, with the highest yields observed for Porphyra sp. and Porphyra yezoensis when fertilized twice a week with NH4 Cl and NaH2 PO4in 40 L tanks. Calculations of productivity for an entire growth season based on ≥ 100 g FW m−2d−1yields exceed the average productivities using seeded nets in open sea, for all Porphyra species tested (0.96-4.06 kg DW m−2 season−1vs. 0.7-1.0 kg DW m−2of net season−1). Therefore, tank cultivation of Porphyra can offer an additional source of nori biomass to international markets. Land-based tank cultivation also offers an environmentally friendly practice that allows for the manipulation of growth conditions to enrich seaweeds with specific, valuable chemicals such as protein and minerals.  相似文献   

4.
The β-proteobacterium Ralstonia eutropha H16 utilizes fructose and gluconate as carbon sources for heterotrophic growth exclusively via the Entner–Doudoroff pathway with its key enzyme 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase. By deletion of the responsible gene eda, we constructed a KDPG aldolase-negative strain, which is disabled to supply pyruvate for energy metabolism from fructose or gluconate as sole carbon sources. To restore growth on fructose, an alternative pathway, similar to the fructose-6-phosphate shunt of heterofermentative bifidobacteria, was established. For this, the xfp gene from Bifidobacterium animalis, coding for a bifunctional xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (Xfp; Meile et al. in J Bacteriol 183:2929–2936, 2001), was expressed in R. eutropha H16 PHB4 Δeda. This Xfp catalyzes the phosphorolytic cleavage of fructose 6-phosphate to erythrose 4-phosphate and acetylphosphate as well as of xylulose 5-phosphate to glyceralaldehyde 3-phosphate and acetylphosphate. The recombinant strain showed phosphoketolase (PKT) activity on either substrate, and was able to use fructose as sole carbon source for growth, because PKT is the only enzyme that is missing in R. eutropha H16 to establish the artificial fructose-6-phosphate shunt. The Xfp-expressing strain R. eutropha H16 PHB4 Δeda (pBBR1MCS-3::xfp) should be applicable for a novel variant of a plasmid addiction system to stably maintain episomally encoded genetic information during fermentative production processes. Plasmid addiction systems are often used to ensure plasmid stability in many biotechnology relevant microorganisms and processes without the need to apply external selection pressure, like the addition of antibiotics. By episomal expression of xfp in a R. eutropha H16 mutant lacking KDPG aldolase activity and cultivation in mineral salt medium with fructose as sole carbon source, the growth of this bacterium was addicted to the constructed xfp harboring plasmid. This novel selection principle extends the applicability of R. eutropha H16 as production platform in biotechnological processes.  相似文献   

5.
Summary The cultivation of photosynthetic microorganisms such as the microalga Spirulina platensis can provide an alternative source of food. The water in Mangueira Lagoon (Rio Grande do Sul state, southern Brazil) has several required nutrients for the growth of Spirulina and could be added to culture medium to reduce the cost of producing S. platensis. Although little studied, repeated batch cultivation is a very useful technique because it has a better cost–benefit ratio than other cultivation methods. In a series of runs, we studied the influence of cell concentration, renewal rate and strain on the specific growth rate and biomass productivity of S. platensis during repeated batch cultivation, the runs taking place in 2-l Erlenmeyer flasks for 2160 h at 30 °C and a light intensity of 2500 lux under a 12 h photoperiod. The three factors studied had a significant (P < 0.05) effect on the results (specific growth rate and productivity). Using Zarrouk’s medium, the highest specific growth rate (μX) was 0.111 day−1 while the biomass productivity (P X) was 0.0423 g l−1 day−1, while Mangueira Lagoon water supplemented with 10% Zarrouk’s medium gave μX = 0.113 day−1 and a productivity P X = 0.0467 g l−1 day−1. These values were two to three times higher than the results obtained in batch cultivation, indicating that the repeated batch cultivation of S. platensis is attractive and convenient.  相似文献   

6.
Spent sulfidic caustic was applied to sulfur utilizing autotrophic denitrification as the simultaneous source of electron donor and alkalinity. The two experiment set-up of upflow anoxic hybrid growth reactor (UAHGR) and upflow anoxic suspended growth reactor (UASGR) was adopted and nitrate removals were similar in both reactors. Approximately 90% of the initial nitrate was denitrified at nitrate loading rate of 0.15∼0.40 kgNO3 /m3·d. The experimental stoichiometric ratio of sulfate production to nitrate removal was ranged from 1.5 to 2.1 mgSO4 2−/mgNO3 . During the operation period, denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified 16S rDNA fragments for the sludge sample of both reactors showed the change of microbial communities. Thiobacillus denitrificans-like microorganism occupied 28.5% (18 clones) of the 63 clones by cloning the PCR products from the sludge sample of UAHGR. Acidovorax avenae, which can reduce nitrate to nitrogen gas while oxidizing phenol (heterotrophic denitrifier), was also found in 7 clones (11.1%). Although an organic carbon source was not added to the medium, a microorganism (Kaistella koreensis) capable of oxidizing organic compounds was found in 7 clones (11.1%). Therefore, the microbial community of spent sulfidic caustic applied autotrophic denitrification process well corresponds to the substrate components of spent sulfidic caustic. Through the batch cultivation of microorganisms in UAHGR, the microbial kinetic coefficients of spent sulfidic caustic applied autotrophic denitrification were estimated to be μ max = 0.097 h−1, k d = 0.0021 h−1, K s = 200 mgNO3 /L, and Y = 0.31 mgMLVSS/mgNO3 .  相似文献   

7.
Batch cultivation of Ralstonia eutropha NRRL B14690 attained 21 g biomass l−1 and 9.4 g poly(β-hydroxybutyrate) l−1 (0.45 g PHB g−1 dry wt−1) in 60 h. Repeated batch operation (empty-and-fill protocol) to remove 20% (v/v) of the culture broth and to supplement an equal volume of fresh media resulted in 49 g biomass l−1 and 25 g PHB l−1 (0.51 g PHB g−1 dry wt−1) with an overall productivity of 0.42 g PHB l−1 h−1 in 67 h. In the two cycles of repeated batch fermentation there was a 3-fold increase in productivity as compared to batch.  相似文献   

8.
Photosynthetic parameters, growth, and pigment contents were determined during expansion of the fourth leaf of in vitro photoautotrophically cultured Nicotiana tabacum L. plants at three irradiances [photosynthetically active radiation (400–700 nm): low, LI 60 μmol m−2 s−1; middle, MI 180 μmol m−2 s−1; and high, HI 270 μmol m−2 s−1]. During leaf expansion, several symptoms usually accompanying leaf senescence appeared very early in HI and then in MI plants. Symptoms of senescence in developing leaves were: decreasing chlorophyll (Chl) a+b content and Chl a/b ratio, decreasing both maximum (FV/FM) and actual (ΦPS2) photochemical efficiency of photosystem 2, and increasing non-photochemical quenching. Nevertheless, net photosynthetic oxygen evolution rate (P N) did not decrease consistently with decrease in Chl content, but exhibited a typical ontogenetic course with gradual increase. P N reached its maximum before full leaf expansion and then tended to decline. Thus excess irradiance during in vitro cultivation did not cause early start of leaf senescence, but impaired photosynthetic performance and Chl content in leaves and changed their typical ontogenetic course.  相似文献   

9.
Lee S  Kim J  Shin SG  Hwang S 《Biotechnology letters》2008,30(6):1011-1016
The biokinetics of glucose metabolism were evaluated in Aeromonas hydrophila during growth in an anaerobic biosystem. After approx 34 h growth, A. hydrophila metabolized 5,000 mg glucose l−1 into the end-products ethanol, acetate, succinate and formate. The maximum growth rate, μ m, half saturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, and substrate inhibition coefficient, K si were 0.25 ± 0.03 h−1, 118 ± 31 mg glucose l−1, 0.12 μg DNA mg glucose−1, 0.01 h−1, and 3,108 ± 1,152 mg glucose l−1, respectively. These data were used to predict the performance of a continuous growth system with an influent glucose concentration of 5,000 mg l−1. Results of the analysis suggest that A. hydrophila will metabolize glucose at greater than 95% efficiency when hydraulic retention times (HRTs) exceed 7 h, whereas the culture is at risk of washing out at an HRT of 6.7 h.  相似文献   

10.
The ammonia oxidizers Nitrosomonas europaea and Nitrosomonas eutropha are able to grow chemoorganotrophically under anoxic conditions with pyruvate, lactate, acetate, serine, succinate, α-ketoglutarate, or fructose as substrate and nitrite as terminal electron acceptor. The growth yield of both bacteria is about 3.5 mg protein (mmol pyruvate)−1 and the maximum growth rates of N. europaea and N. eutropha are 0.094 d−1 and 0.175 d−1, respectively. In the presence of pyruvate and CO2 about 80% of the incorporated carbon derives from pyruvate and about 20% from CO2. Pyruvate is used as energy and only carbon source in the absence of CO2 (chemoorganoheterotrophic growth). CO2 stimulates the chemoorganotrophic growth of both ammonia oxidizers and the expression of ribulose bisphosphate carboxylase/oxygenase is down-regulated at increasing CO2 concentration. Ammonium, although required as nitrogen source, is inhibitory for the chemoorganotrophic metabolism of N. europaea and N. eutropha. In the presence of ammonium pyruvate consumption and the expression of the genes aceE, ppc, gltA, odhA, and ppsA (energy conservation) as well as nirK, norB, and nsc (denitrification) are reduced.  相似文献   

11.
In this work, we investigated the production of transglutaminase (TGase) by an Amazonian isolated strain of Bacillus circulans by solid-state cultivation (SSC). Several agro-industrial residues, such as untreated corn grits, milled brewers rice, industrial fibrous soy residue, soy hull, and malt bagasse, were used as substrates for microbial growth and enzyme production. Growth on industrial fibrous soy residue, which is rich in protein and hemicellulose, produced the highest TGase activity (0.74 U g−1 of dried substrate after 48 h of incubation). A 23 central composite design was applied to determine the optimal conditions of aeration, cultivation temperature and inoculum cell concentration to TGase production. The best culture conditions were determined as being 0.6 L air min−1, 33 °C and 10 log 10 CFU g−1 of dried substrate, respectively. Under the proposed optimized conditions, the model predicted an enzyme production of 1.16 U g−1 of dried substrate, closely matching the experimental activity of 1.25 U g−1. Results presented in this work point to the use of this newly isolated B. circulans strain as a potential alternative of microbial source for TGase production by SSC, using inexpensive culture media.  相似文献   

12.
The behavior of Streptomyces peucetius var. caesius N47 was studied in a glucose limited chemostat with a complex cultivation medium. The steady-state study yielded the characteristic constants μ max over 0.10 h−1, Y XS 0.536 g g−1, and mS 0.54 mg g−1 h−1. The product of secondary metabolism, ɛ-rhodomycinone, was produced with characteristics Y PX 12.99 mg g−1 and m P 1.20 mg g−1 h−1. Significant correlations were found for phosphate and glucose consumption with biomass and ɛ-rhodomycinone production. Metabolic flux analysis was conducted to estimate intracellular fluxes at different dilution rates. TCA, PPP, and shikimate pathway fluxes exhibited bigger values with production than with growth. Environmental perturbation experiments with temperature, airflow, and pH changes on a steady-state chemostat implied that an elevation of pH could be the most effective way to shift the cells from growing to producing, as the pH change induced the biggest transient increase to the calculated ɛ-rhodomycinone flux.  相似文献   

13.
The relationship between the extracellular polymeric substances (EPS) and surface characteristics of Rhodopseudomonas acidophila in its different growth phases was established. The equilibrium constant of partition (K par) and the Gibbs energies of partition (△G par) between hexadecane and aqueous phases were also calculated according to the microbial adhesion to hexadecane (MATH) testing. The EPS content decreased with cultivation time at the logarithmic phase, but kept almost unchanged around 22.9 mg g−1 dry cell at the stationary phase. The EPS production of R. acidophila had a significant effect on its surface characteristics. The relative hydrophobicity and the K par values of R. acidophila before EPS extraction were both lower than those after extraction. Both EPS content and ratio of proteins to carbohydrates had a negative effect on the water contact angle of the bacterium, but had a positive influence on the bacterial surface free energy and its polar component. On the other hand, the EPS were not related with MATH% or the Gibbs energy of partition between hexadecane and aqueous phase.  相似文献   

14.
Quasi steady state growth of Lactococcus lactis IL 1403 was studied in glucose-limited A-stat cultivation experiments with acceleration rates (a) from 0.003 to 0.06 h−2 after initial stabilization of the cultures in chemostat at D = 0.2–0.3 h−1. It was shown that the high limit of quasi steady state growth rate depended on the acceleration rate used—at an acceleration rate 0.003 h−2 the quasi steady state growth was observed until μ crit = 0.59 h−1, which is also the μ max value for the culture. Lower values of μ crit were observed at higher acceleration rates. The steady state growth of bacteria stabilized at dilution rate 0.2 h−1 was immediately disrupted after initiating acceleration at the highest acceleration rate studied—0.06 h−2. Observation was made that differences [Δ(μ − D)] of the specific growth rates from pre-programmed dilution rates were the lowest using an acceleration rate of 0.003 h−2 (< 4% of preset changing growth rate). The adaptability of cells to follow preprogrammed growth rate was found to decrease with increasing dilution rate—it was shown that lower acceleration rates should be applied at higher growth rates to maintain the culture in the quasi steady state. The critical specific growth rate and the biomass yields based on glucose consumption were higher if the medium contained S 0 = 5 g L−1 glucose instead of S 0 = 10 g L−1. It was assumed that this was due to the inhibitory effect of lactate accumulating at higher concentrations in the latter cultures. Parallel A-stat experiments at the same acceleration and dilution rates showed good reproducibility—Δ(μ − D) was less than 5%, standard deviations of biomass yields per ATP produced (Y ATP), and biomass yields per glucose consumed (Y XS) were less than 15%.  相似文献   

15.
The gene (vgb) encoding the hemoglobin (VHb) ofVitreoscilla sp. was cloned intoBurkholderia sp. and the effect of VHb on the growth characteristics of genetically engineeredBurkholderia (YV1) were compared with wild typeBurkholderia (R34) using continuous flow reactors (chemostat) at various dilution rates under aerobic conditions. Batch oxygen uptake rate showed that YV1 has much higher oxygen uptake rate than R34 (i.e. 0.63 mg O2/g biomass/min vs. 1.43 mg O2/g biomass/min for R34 and YV1 respectively at a dilution rate of 1.2 day−1). Monod parameters, maximum growth rate (μmax) and half saturation coefficient (Ks) were found to be 7.03 day−1 and 691 mg/L for R34 respectively, compared to 5.49 day−1 and 404 mg/L for YV1 respectively. At low dilution rates (<2.5 day−1), when the substrate is present in low concentrations, the growth yield was much higher in YV1 (0.52) than in R34 (0.37). Although substrate utilization rates were similar between R34 and YV1, the latter showed much higher oxygen uptake rate than did R34 at all dilution rates. When the stability of VHb was tested on agar plates containing 40 μg/L of kanamycin and 100 μg/L of ampicillin,vgb gene containing VHb plasmid in YV1 was stable over 82 days. When survivability under oxygen limited conditions was tested, R34 survived only for 11 days whereas YV1 survived over 25 days in liquid media; in agar plate experiments, R34 did not survive more than 40 days whereas more than 75% of YV1 survived over 110 days.  相似文献   

16.
Summary Effects of nutritional factors on exopolysaccharide production by submerged cultivation of the medicinal mushroom Oudemansiella radicata were investigated in shake flasks. Sucrose and peptone were optimal carbon and nitrogen sources for cell growth and exopolysaccharide production. The exopolysaccharide production was increased with an increase in initial sucrose concentration within the range of 10–40 g l−1 and initial peptone concentration within the range of 1–3 g l−1. To enhance further exopolysaccharide production, the effect of carbon/nitrogen ratios was studied using central composite design (CCD) and response surface analysis. The maximum exopolysaccharide production of 2.67 ± 0.15 g l−1 was achieved in medium with optimized carbon and nitrogen sources, i.e. 39.3 g sucrose l−1 and 3.16 g peptone l−1 in the same cultivation conditions. The information obtained is helpful for the hyperproduction of exopolysaccharide by submerged cultivation of O. radicata on a large scale.  相似文献   

17.
Ruta graveolens in vitro cultures are a potential source of secondary metabolites (furanocoumarins) of significant medical interest. Experiments led in our laboratory showed that micropropagated shoots were richer in furanocoumarins than any other plant material. In order to optimize the molecule production by such cultivation systems, several factors related to the culture medium were studied. Effects of medium composition on biomass growth and furanocoumarin content were analysed and optimal conditions were determined for phosphate (300 mg l−1 of NaH2PO4), nitrate (2527 mg l−1 of KNO3), carbon source (10 g l−1 of sucrose) and phytohormones (2,4-dichlorophenoxyacetic acid (2,4-D) 50 μM and benzylaminopurine (BAP) 50 μM). Ruta shoot growth and furanocoumarin production were compared for optimized and standard culture conditions. Specific medium gave better results in terms of growth (tD equal to 6.9 days against 8.6 for standard conditions) but no significant differences appeared concerning metabolite concentrations. However, the present study opens the way to scale-up studies with bioreactor cultivation systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
This study was conducted to investigate the influence of salicylic acid (SA) on the growth and changes of nucleic acids, protein, photosynthetic pigments, sugar content and photosynthesis levels in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). The most significant changes in the content of nucleic acids and proteins was observed at the concentration 10−4 M SA between 8 and 12 day of cultivation. This concentration of SA increased the number of cells (about 40 %) and content of proteins (about 60 %) and its secretion to the medium. The slight stimulation of protein secretion occurred on the 12th day of cultivation at concentration 10−4 M, while in the range of 10−5 M to 10−6 M the protein secretion was inhibited. SA also stimulated the content of nucleic acids, especially RNA by 20–60 %, compared with the control. The most stimulating influence upon the contents of chlorophylls a and b (50–70 %), total carotenoids (25–57 %), sugar (27–41 %) and intensity of net photosynthesis (18–33 %) was found at 10−4 M of SA. At the concentration of 10−6 M SA the slight inhibition of growth and biochemical activity of the algae was recorded at the first days of cultivation.  相似文献   

19.
The ability of Tetraselmis marina, a green coastal microalga, to remove chlorophenols under photoautotrophic conditions was investigated. T.marina was able to grow in the presence of 20 mg L−1 of the phenolic compounds tested. The EC50 (growth rate) value of p-chlorophenol (p-CP) to T.marina was found to be 25.5 mg L−1. The microalga was able to remove chlorophenols, showing higher efficiency for p-CP. The effect of photoregime and NaHCO3 concentration on p-CP removal was investigated. Under continuous illumination with 1 g L−1 NaHCO3 initial concentration T.marina removed 65% of 20 mg L−1 in a 10-day cultivation period.  相似文献   

20.
Light irradiation had remarkable effects on callus growth of Oldenlandia affinis with an optimum intensity of 35 μmol m−2 s−1. Biosynthesis of kalata B1, the main cyclic peptide in O. affinis, was induced and triggered with rising irradiation intensities. The highest concentration of kalata B1, 0.49 mg g−1 DW characterised by the maximum productivity of 3.88 μg per litre and day was analysed at 120 μmol m−2 s−1, although callus growth was repressed. The light saturation point was established to be 35 μmol m−2 s−1, where kalata B1 productivity was in a similar order (3.41 μg per day) due to the higher growth index. O. affinis suspension cultures were shown to accumulate comparable specific kalata B1 concentrations in a delayed growth associated production pattern. These were dependent on irradiation intensity (0.16 mg g−1 at 2 μmol m−2 s−1; 0.28 mg g−1 at 35 μmol m−2 s−1). The batch cultivation process resulted in a maximum productivity of 27.30 μg per litre and day with culture doubling times of 1.16 d−1. Submers operation represented a 8-fold product enhancement compared to callus cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号