首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report elemental mappings on the sub-cellular level of myelinated sciatic neurons isolated from wild type mice, with high spatial resolution. The distribution of P, S, Cl, Na, K, Fe, Mn, Cu was imaged in freeze-dried as well as cryo-preserved specimen, using the recently developed cryogenic sample environment at beamline ID21 at the European Synchrotron Radiation Facility (ESRF). In addition, synchrotron radiation based Fourier transform infrared (FTIR) spectromicroscopy was used as a chemically sensitive imaging method. Finally single fiber diffraction in highly focused hard X-ray beams, and soft X-ray microscopy and tomography in absorption contrast are demonstrated as novel techniques for the study of single nerve fibers.  相似文献   

2.
While K-edge subtraction (KES) imaging is a commonly applied technique at synchrotron sources, the application of this imaging method in clinical imaging is limited although results have shown its superiority to conventional clinical subtraction imaging. Over the past decades, compact synchrotron X-ray sources, based on inverse Compton scattering, have been developed to fill the gap between conventional X-ray tubes and synchrotron facilities. These so called inverse Compton sources (ICSs) provide a tunable, quasi-monochromatic X-ray beam in a laboratory setting with reduced spatial and financial requirements. This allows for the transfer of imaging techniques that have been limited to synchrotrons until now, like KES imaging, into a laboratory environment. This review article presents the first studies that have successfully performed KES at ICSs. These have shown that KES provides improved image quality in comparison to conventional X-ray imaging. The results indicate that medical imaging could benefit from monochromatic imaging and KES techniques. Currently, the clinical application of KES is limited by the low K-edge energy of available iodine contrast agents. However, several ICSs are under development or already in commissioning which will provide monochromatic X-ray beams with higher X-ray energies and will enable KES using high-Z elements as contrast media. With these developments, KES at an ICS has the ability to become an important tool in pre-clinical research and potentially advancing existing clinical imaging techniques.  相似文献   

3.
The exceptional improvement of high power lasers and optical cavity finesses in the last fifteen years allows today the development of X-ray sources based on inverse Compton scattering. These compact sources will provide high intensity beams, with a tunable energy in the range 20–100 keV, that can be used in several application including material sciences, structural biology, cultural heritage research and preservation and medical or biomedical preclinical and clinical research. The access to these devices will be easier. Methods currently used only in synchrotron facilities will be available in dedicated work environment such as hospitals, laboratories or museums. Several machines are in design or construction phase, and aim at producing 1012–1014 ph/s. The ThomX machine is the most advanced project and has the potential to be used as the radiation source for biomedical searches, clinical imaging techniques or radiotherapy programs.  相似文献   

4.
In vivo K-edge imaging with synchrotron radiation.   总被引:2,自引:0,他引:2  
We present in this paper two imaging techniques using contrast agents assessed with in vivo experiments. Both methods are based on the same physical principle, and were implemented at the European Synchrotron Radiation Facility medical beamline. The first one is intravenous coronary angiography using synchrotron radiation X-rays. This imaging technique has been planned for human studies in the near future. We describe the first experiments that were carried out with pigs at the ESRF. The second imaging mode is computed tomography using synchrotron radiation on rats bearing brain tumors. Owing to synchrotron radiation physical properties, these new imaging methods provide additional information compared to conventional techniques. After infusion of the contrast agent, it is possible to derive from the images the concentration of the contrast agent in the tumor area for the computed tomography and in any visible vessel for the angiography method.  相似文献   

5.
In the latest years, radiation therapy with ion beams has been rapidly spreading worldwide. This is mainly due to the favourable interaction properties of ion beams with matter, offering the possibility of more conformal dose deposition with superior sparing of healthy tissue in comparison to conventional photon radiation. Moreover, heavier ions like carbon offer a selective increase of biological effectiveness which can be advantageous for the treatment of tumours being resistant to sparsely ionizing radiation. However, full clinical exploitation of the advantages offered by ion beams is still challenged by the lack of exact knowledge of the beam range within the patient. Therefore, increasing research efforts are being devoted to the goal of reducing range uncertainties in ion beam therapy. In this context, ion transmission imaging is being recognized as a promising modality capable of providing valuable pre- (or even “in-between”) treatment information on the patient-specific stopping properties for indirect in-vivo range verification and low dose image guidance at the treatment site. The more recent availability of energetic ion beam sources at therapeutic treatment facilities, in combination with the advances in detector technologies and computational power, have considerably renewed the interest in this imaging technique. Nowadays, many research efforts are being devoted to the development of novel detector prototypes for heavy ion radiography and tomography, as will be reviewed in this contribution.  相似文献   

6.
Exposure to space radiation has long been acknowledged as a potential showstopper for long-duration manned interplanetary missions. In an effort to gain more information on space radiation risk and to develop countermeasures, NASA initiated several years ago a Space Radiation Health Program, which is currently supporting biological experiments performed at the Brookhaven National Laboratory. Accelerator-based radiobiology research in the field of space radiation research is also under way in Russia and Japan. The European Space Agency (ESA) supports research in the field in three main directions: spaceflight experiments on the International Space Station; modeling and simulations of the space radiation environment and transport; and, recently, ground-based radiobiology experiments exploiting the high-energy SIS18 synchrotron at GSI in Germany (IBER program). Several experiments are currently under way within IBER, and so far, beams of C and Fe-ions at energies between 11 and 1,000 MeV/n have been used in cell and tissue targets.  相似文献   

7.
The use of synchrotron X-ray sources provides innovative approaches in radiation therapy. The unique possibility to generate quasi-parallel beams promoted the development of microbeam radiation therapy (MRT), an innovative approach able to reduce damages to normal tissues while delivering considerable doses in the lesion. Accurate dosimetry in broad-beam configuration (prior to the spatial fractionation of the incident X-ray fan) is very challenging at ultra-high dose rate synchrotron sources.The available reference dosimetry protocol based on the use of a PTW PinPoint ionization chamber was compared with alanine dosimetry at the European Synchrotron Radiation Facility (ESRF) ID17 Biomedical beamline, an orthovoltage X-ray source with an average dose rate of 11.6 kGy/s. Reference dose measurements of the alanine pellets were performed at the National Centre for Radiation Research and Technology (NCRRT) 60Co facility in Egypt. All alanine dosimeters were analysed by an electron paramagnetic resonance spectrometer.We determined a relative response rESRF = 0.932 ± 0.027 (1σ) of the alanine pellets irradiated at the ESRF compared to the 60Co facility. Considering the appropriate corrections for the ESRF polychromatic spectrum and the different field size used, our result is in agreement with the previous work of Waldeland et al. for which the utilised alanine contained the same amount of binder, and it is consistent with the works of Anton et al. and Butler et al. for which the utilised alanine contained a higher amount of binder.We confirm that alanine is an appropriate dosimeter for ultra-high dose rate calibration of orthovoltage X-ray sources.  相似文献   

8.
Extremely brilliant infrared (IR) beams provided by synchrotron radiation sources are now routinely used in many facilities with available commercial spectrometers coupled to IR microscopes. Using these intense non-thermal sources, a brilliance two or three order of magnitude higher than a conventional source is achievable through small pinholes (< 10 μm) with a high signal to-noise ratio. IR spectroscopy is a powerful technique to investigate biological systems and offers many new imaging opportunities. The field of infrared biological imaging covers a wide range of fundamental issues and applied researches such as cell imaging or tissue imaging. Molecular maps with a spatial resolution down to the diffraction limit may be now obtained with a synchrotron radiation IR source also on thick samples. Moreover, changes of the protein structure are detectable in an IR spectrum and cellular molecular markers can be identified and used to recognize a pathological status of a tissue. Molecular structure and functions are strongly correlated and this aspect is particularly relevant for imaging. We will show that the brilliance of synchrotron radiation IR sources may enhance the sensitivity of a molecular signal obtained from small biosamples, e.g., a single cell, containing extremely small amounts of organic matter. We will also show that SR IR sources allow to study chemical composition and to identify the distribution of organic molecules in cells at submicron resolution is possible with a high signal-to-noise ratio. Moreover, the recent availability of two-dimensional IR detectors promises to push forward imaging capabilities in the time domain. Indeed, with a high current synchrotron radiation facility and a Focal Plane Array the chemical imaging of individual cells can be obtained in a few minutes. Within this framework important results are expected in the next years using synchrotron radiation and Free Electron Laser (FEL) sources for spectro-microscopy and spectral-imaging, alone or in combination with Scanning Near-field Optical Microscopy methods to study the molecular composition and dynamic changes in samples of biomedical interest at micrometric and submicrometric scales, respectively.  相似文献   

9.
Microbeam radiation therapy (MRT) is an irradiation modality for therapeutic purposes which uses arrays of collimated quasi parallel microbeams, each up to 100 μm wide, to deliver high radiation doses. Several studies have reported the extraordinary tolerance of normal tissues to MRT irradiation; conversely, MRT has been shown to be highly efficient on tumor growth control. The original and most widely developed application of MRT, yet in the preclinical phase, consists in using spatially fractionated X-ray beams issued from a synchrotron radiation source in the treatment of brain tumors. More recently, MRT has been tested in successful pioneering assays to reduce or interrupt seizures in preclinical models of epilepsy. The MRT concept has also been extended to proton therapy. The development of MRT towards its clinical implementation is presently driven by an EU-supported consortium of laboratories from 16 countries within the COST Action TD1205 (SYRA3). The results of the first SYRA3 workshop on “Radiation Therapy with Synchrotron Radiation: Achievements and Challenges” held in Krakow (Poland) during March 25–26 2014 are summarized in this issue with an overview presented in this paper. The papers reflect the multidisciplinary international activities of SYRA3. The topics covered in this focus issue include medical physics aspects, pre-clinical studies, clinical applications, and an industrial perspective; finally an outlook towards future prospects of compact sources and proton microbeams.  相似文献   

10.
In this paper we describe the results of experiments using synchrotron radiation to trigger the Auger effect in living human cancer cells treated with a widely used chemotherapy drug: cis-diamminedichloroplatinum (II) (cisplatin). The experiments were carried out at the ID17 beamline of the European Synchrotron Radiation Facility, which produces a high-fluence monochromatic beam that is adjustable from 20 to 80 keV. Cisplatin was chosen as the carrier of platinum atoms in the cells because of its alkylating-like activity and the irradiation was done with monochromatic beams above and below the platinum K-shell edge (78.39 keV). Cell survival curves were comparable with those obtained for the same cells under conventional irradiation conditions. At a low dose of cisplatin (0.1 microM, 48 h), no difference was seen in survival when the cells were irradiated above and below the K-shell edge of platinum. Higher cisplatin concentrations were investigated to enhance the cellular platinum content. The results with 1 microM cisplatin for 12 h showed no difference when the cells were irradiated with beams above or below the platinum K-shell edge with the exception of the higher cell death resulting from drug toxicity. The intracellular content of platinum was significant, as measured macroscopically by inductively coupled plasma mass spectrometry. Its subcellular localization and particularly its presence in the cell nucleus were verified by microscopic synchrotron X-ray fluorescence. This was the first known attempt at K-shell edge photon activation of stable platinum in living cells with a platinum complex used for chemotherapy. Its evident toxicity in these cells leads us to put forth the hypothesis that cisplatin toxicity can mask the enhancement of cell death induced by the irradiation above the K-shell edge. However, K-shell edge photon activation of stable elements provides a powerful technique for the understanding of the biological effects of Auger processes. Further avenues of development are discussed.  相似文献   

11.
The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26–29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program’s Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described. Work performed under the auspices of the auspices of the US National Aeronautics and Space Administration and the US Department of Energy.  相似文献   

12.
Protein microdiffraction using monochromatic beams is becoming a routine tool at third-generation synchrotron radiation sources. Beam sizes have reached the scale of about 5 microm, with illuminated crystal volumes of approximately 500 microm3, as shown for the case of bovine rhodopsin, which was refined to a resolution of 2.6 A. Progress in X-ray optical systems and instrumentation will enable the method to be extended to smaller beams and smaller crystal volumes.  相似文献   

13.
Due to its high spatial resolution, synchrotron radiation x-ray nano-scale computed tomography (nano-CT) is sensitive to misalignments in scanning geometry, which occurs quite frequently because of mechanical errors in manufacturing and assembly or from thermal expansion during the time-consuming scanning. Misalignments degrade the imaging results by imposing artifacts on the nano-CT slices. In this paper, the geometric misalignment of the synchrotron radiation nano-CT has been analyzed by partial derivatives on the CT reconstruction algorithm and a correction method, based on cross correlation and least-square sinusoidal fitting, has been reported. This work comprises a numerical study of the method and its experimental verification using a dataset measured with the full-field transmission x-ray microscope nano-CT at the beamline 4W1A of the Beijing Synchrotron Radiation Facility. The numerical and experimental results have demonstrated the validity of the proposed approach. It can be applied for dynamic geometric misalignment and needs neither phantom nor additional correction scanning. We expect that this method will simplify the experimental operation of synchrotron radiation nano-CT.  相似文献   

14.
Minibeam radiation therapy (MBRT) is an innovative radiotherapy approach based on the well-established tissue sparing effect of arrays of quasi-parallel micrometre-sized beams. In order to guide the preclinical trials in progress at the European Synchrotron Radiation Facility (ESRF), a Monte Carlo-based dose calculation engine has been developed and successfully benchmarked with experimental data in anthropomorphic phantoms. Additionally, a realistic example of treatment plan is presented. Despite the micron scale of the voxels used to tally dose distributions in MBRT, the combination of several efficiency optimisation methods allowed to achieve acceptable computation times for clinical settings (approximately 2 h). The calculation engine can be easily adapted with little or no programming effort to other synchrotron sources or for dose calculations in presence of contrast agents.  相似文献   

15.
Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to 'spared' tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30-40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies.  相似文献   

16.
Metalloproteomics requires analytical techniques able to assess and quantify the inorganic species in metalloproteins. The most widely used methods are hyphenated techniques, based on the coupling of a high resolution chromatographic method with a high sensitivity method for metal analysis in solution. An alternative approach is the use of methods for solid sample analysis, combining metalloprotein separation by gel electrophoresis and direct analysis of the gels. Direct methods are based on beam analysis, such as lasers, ion beams or synchrotron radiation beams. The aim of this review article is to present the main features of synchrotron radiation based methods and their applications for metalloprotein analysis directly on electrophoresis gels. Synchrotron radiation X-ray fluorescence has been successfully employed for sensitive metal identification, and X-ray absorption spectroscopy for metal local structure speciation in proteins. Synchrotron based methods will be compared to ion beam and mass spectrometry for direct analysis of metalloproteins in electrophoresis gels.  相似文献   

17.
Soft X-ray contact microscopy with synchrotron radiation offers the biologist, and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM, or SEM methods (i.e., hydrated samples, samples easily damaged by an electron beam, electron-dense samples, thick specimens, unstained, low-contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash X-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of X-ray wavelengths or specific individual wavelengths that optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of X-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples.  相似文献   

18.
Modern micro-computed tomography techniques allow the accurate visualization of internal dental structures, and are becoming widely used within (paleo-) anthropological dental studies. There exist several types and name brands of microtomographic systems, however, which have been demonstrated to produce images that vary in resolution and signal-to-noise ratio. As a growing body of dental research using disparate microtomographic techniques is likely to continue accumulating, it is imperative that different systems are compared to ensure that results are comparable and not machine-dependent. In the present study, we compare volume, surface area, and linear measurements recorded on a sample of modern and fossil teeth using four microtomographic systems (three laboratory scanners, and the ID19 beamline of the European Synchrotron Radiation Facility). Results indicate that measurements are comparable between systems (within 3%), but that synchrotron radiation is superior to the other systems because its monochromatic X-rays prevent beam hardening and its parallel beam prevents geometric artifacts in the resultant images, making it easier to record measurements and see fine details at the enamel cervix or dentine horn tips. Although the synchrotron produces higher resolution images with less artifacts, results indicate that for gross morphological measurements (e.g., enamel cap volume, intercuspal distances), each of the scanners produces approximately the same measurements. Combining measurements of teeth from multiple microCT systems presupposes that measurements from each system are comparable; the research presented here indicates that this is the case when teeth are not severely diagenetically remineralized.  相似文献   

19.
Microtomography using synchrotron sources is a useful tool in biological imaging research since the phase coherence of synchrotron beams can be exploited to obtain images with high contrast resolution. This work is part of a series of works using phase contrast synchrotron microtomography in the study of Rhodnius prolixus head, the insect vector of Chagas’ disease, responsible for about 12,000 deaths per year. The control of insect vector is the most efficient method to prevent this disease and studies have shown that the use of triflumuron, a chitin synthesis inhibitor, disrupted chitin synthesis during larval development and it’s an alternative method against insect pests.The aim of this work was to investigate the biological effects of treatments with triflumuron in the ecdysis period (the moulting of the R. prolixus cuticle) using the new imaging beamline IMX at LNLS (Brazilian Synchrotron Light Laboratory). Nymphs of R. prolixus were taken from the Laboratory of Biochemistry and Physiology of Insects, Oswaldo Cruz Foundation, Brazil. Doses of 0.05 mg of triflumuron were applied directly to the abdomen on half of the insects immediately after feeding. The insects were sacrificed 25 days after feeding (intermoulting period) and fixed with glutaraldehyde.The results obtained using phase contrast synchrotron microtomography in R. prolixus showed amazing images of the effects of triflumuron on insects in the ecdysis period, and the formation of the new cuticle on those which were not treated with triflumuron. Both formation and malformation of this insect’s cuticle have never been seen before with this technique.  相似文献   

20.
同步辐射方法在生命科学研究中有着十分重要的应用。上海光源是我国建造的第一个第三代同步辐射装置,本文结合上海光源首批建造的光束线站,介绍了几类同步辐射实验方法在生命科学中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号