首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic ethanol increases liver plasma membrane fluidity   总被引:2,自引:0,他引:2  
Purified plasma membrane fractions of cultured well-differentiated Reuber H35 hepatoma cells were studied after growth in the presence or absence of ethanol. Growth of cells in the presence of ethanol significantly increased plasma membrane 5'-nucleotidase activity but did not influence sodium-potassium adenosinetriphosphatase activity. Fluorescence polarization of lipophilic probes was used to study membrane lipid structure. Steady-state polarization of diphenylhexatriene (DPH), a probe of the hydrophobic core, was significantly lower in plasma membranes from cells grown in 80 mM ethanol for 3 weeks, compared to controls. Decreased polarization of DPH in plasma membranes was observed after 3-weeks growth of cells in as little as 1 mM ethanol. A 1-h exposure to 80 mM ethanol had no effect. Altered DPH polarization was due to a decrease in the order parameter of the probe. The rotational correlation time of the probe was virtually unchanged. Chronic ethanol treatment of cells did not alter the polarization of the membrane surface probe trimethylammoniodiphenylhexatriene. Plasma membranes from cells grown in 80 mM ethanol had decreased contents of both phospholipid and unesterified cholesterol, but the cholesterol to phospholipid ratio was unchanged. The percentages of sphingomyelin and phosphatidylserine in plasma membrane phospholipids were significantly decreased after ethanol treatment, while the phosphatidylcholine/sphingomyelin ratio was increased by 42%. Vesicles prepared from total plasma membrane lipids of ethanol-treated cells, as well as vesicles prepared from polar lipids alone, showed the same alterations in DPH polarization as did plasma membranes. The importance of ethanol metabolism in the observed plasma membrane changes was demonstrated in two ways.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The ability of numerous diverse compounds and ions to cross the bacterial cytoplasmic membrane by diffusion and active transport is highly dependent on cytoplasmic membrane fluidity, which can be measured using fluorescent probes to estimate membrane polarization values. However, membrane polarization data are lacking for most bacterial species. The cytoplasmic membrane polarization values for Arthrobacter sp. ATCC 21908, Bacillus cereus NRC 3045, Pseudomonas fluorescens R2F, Pseudomonas putida NRC 2986 and Escherichia coli C600 bacterial cells were spectrofluorometrically measured over a temperature range from 10 to 50 degrees C, and in the absence and presence of 1 microg/ml tetracycline, using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) to obtain new information on their membrane fluidity. At an assay temperature of 10 degrees C, E. coli cells grown in the absence of tetracycline exhibited the highest cytoplasmic membrane polarization value (least fluid membrane) of 0.446, followed by values of 0.392, 0.371, 0.344 and 0.293, respectively, for B. cereus, Arthrobacter sp., P. fluorescens and P. putida. At an assay temperature of 30 degrees C, the polarization values ranged from 0.357 to 0.288 for cells grown in the absence of tetracycline, regardless of the species. B. cereus grown in the presence of 1 microg/ml tetracycline had lower polarization values than when grown in the absence of this antibiotic at all assay temperatures. Regardless of the absence or presence of 1 microg/ml tetracycline in the growth medium, all bacterial species generally exhibited a more fluid membrane as the assay temperature increased from 10 to 50 degrees C. To our knowledge, these are some of the first cytoplasmic membrane polarization values reported for these Gram-negative and Gram-positive bacteria over a broad temperature range and also for cells grown in the presence of tetracycline.  相似文献   

3.
实验显示,一种氨基酸混合液(含异亮氨酸、甲硫氨酸和苯丙氨酸,添加浓度分别为1.0、0.5和2.0g/L)能显著提高自絮凝酵母——粟酒裂殖酵母和酿酒酵母融合株SPSC的耐酒精能力。实验将菌体分别培养于添加(试验组)和未添加(对照组)该氨基酸混合液的条件下,然后收集菌体进行酒精(20%,V/V)冲击试验(30℃,9h),结果,试验组的菌体尚有一半以上的存活细胞,而对照组的菌体全部死亡。通过对试验组和对照组的菌体细胞膜蛋白质氨基酸组成分析发现,试验组的菌体耐酒精能力提高与所添加氨基酸组入菌体的细胞膜密切相关。以DPH为荧光探针的细胞膜流动性测定分析进一步揭示,氨基酸组入菌体的细胞膜后,细胞膜能有效抵抗高浓度酒精冲击诱发的膜流动性的提高,从而维持膜的稳定。因此,实验首次揭示膜蛋白氨基酸组成可通过改变膜流动性而影响酵母菌的耐酒精能力。  相似文献   

4.
EL4 cells were cultured with exogenous fatty acids under conditions that resulted in their incorporation into membrane phospholipids. The behavior of the fluorescent lipid probes diphenylhexatriene and perylene was monitored in intact EL4 cells and in isolated EL4 plasma membranes. In whole cells substituted with unsaturated fatty acids, there was always a marked decrease in the P value of both probes compared to the P value of the probes in unsubstituted cells. In whole cells substituted with saturated fatty acids, on the other hand, P values for both probes were unchanged compared to unsubstituted cells. In plasma membrane isolated from EL4 cells, no difference in P values for either probe was observed among membranes from unsubstituted, saturated fatty acid substituted or unsaturated fatty acid substituted cells, even when the degree of fatty acid substitution was quite substantial. Most of the fluorescent signal for both probes in whole cells appeared to come from cytoplasmic lipid droplets. The value of techniques such as fluorescent polarization for monitoring physical properties of membranes (such as ‘fluidity’) is discussed.  相似文献   

5.
The fluidity of the lipids in membrane preparations from a mutant of Escherichia coli resistant to the uncoupler CCCP, grown at different temperatures with and without CCCP, was examined by electron spin resonance using the spin probe 5-doxyl stearic acid. The fluidity of the membrane lipids at the growth temperature, as estimated using electron spin resonance, was less in cells grown at lower temperatures. Precise homeoviscous adaptation was not observed. Growth in the presence of CCCP resulted in a decrease in membrane lipid fluidity, particularly in the inner (cytoplasmic) membrane. There was no change in the proportion of phosphatidylethanolamine, phosphatidylglycerol and cardiolipin in the cell envelope. However, there was an increase in the proportion of unsaturated fatty acids in membranes from cells grown with uncoupler. This was reflected in the increased fluidity of the lipids extracted from these membranes. This result is contrary to that expected from measurements of the fluidity of the lipid in these membranes. The decreased fluidity of the lipid in these membranes may be a consequence of the observed increase in the ratio of protein to phospholipid.  相似文献   

6.
Membranes from erythrocytes or MAT-A 13762 tumor cells were labeled with the fatty acid spin probe I(5,10) or ANS and examined by spin resonance (ESR) or fluorescence polarization in the presence or absence of the perturbants EDTA, trypsin, glutaraldehyde, and dodecylsulfate. Extraction of cell membranes with hypotonic EDTA produced fragments in which the order parameters and fluorescence polarization values increased. Fluorescence polarization values using membranes labeled with diphenylhexatriene showed an apparent increase in membrane fluidity. A large portion of both I(5,10) and both fluorescence probes coextract with the peripheral membrane proteins in both membrane systems. Paramagnetic quenching of tryptophan fluorescence with I(5,10) and the spectral characteristics of ANS in these membranes indicated further that significant amounts of both probes bind either at or near the protein-lipid interface or directly to protein moieties. Trypsinization of cell membranes, which preferentially cleaves the large cytoskeletal proteins, fragmented the membranes and reduced the ESR order parameter. Glutaraldehyde immobilized I(5,10) in both types of membranes. These studies suggest that the association of cytoskeletal proteins with the membrane does not have any pronounced, consistent effect on biophysical properties of the bilayer.

Attempts to apply these same probes to studies of the plasma membranes of intact cells were not successful because of the diffusion of the probes into the cells. These studies also point out some difficulties in using probe-group techniques to determine the nature of changes in bilayer structural parameters and emphasize the need for a better understanding of probe-group localization and behavior in such studies.  相似文献   

7.
Freeze-fracturing of cholesterol-rich Mycoplasma gallisepticum membranes from cells grown in a medium containing horse serum revealed particle-free patches. The patches appeared in cells quenched from either 4 or 37 degrees C. Particle-free patches also occurred in membranes of cells grown in a serum-free medium supplemented with egg-phosphatidylcholine but not in membranes of cells grown with dioleoylphosphatidylcholine. The appearance of particle-free patches was attributed to the presence of disaturated phosphatidylcholine (PC) molecules in M. gallisepticum membranes, which were synthesized by the insertion of a saturated fatty acid at position 2 of lysophosphatidylcholine derived from exogenous PC present in the growth medium. Consequences of the synthesis of the disaturated PC also included a decrease in osmotic fragility and the ability of the cells to be permeated by K+. Electron paramagnetic resonance and fluorescence polarization measurements revealed that the fluidity of the lipid domain in the protein-rich M. gallisepticum membranes was almost identical to that of an aqueous dispersion of M. gallisepticum membrane lipids. Furthermore, the electron paramagnetic resonance spectra of the membranes were single-component spectra showing no indication of immobilized regions. The possibility that the osmotic resistance of M. gallisepticum cells is associated with the particle-free patches rather than with a restricted membrane fluidity caused by membrane proteins is discussed.  相似文献   

8.
A bacterial isolate, Pseudomonas putida CN-T19, could grow in a two-phase medium with toluene up to 50% (v/v). Changes in fatty acid composition and membrane fluidity of the isolate were investigated to understand how this microorganism responds toluene. The changes in the ratios of unsaturated to saturated fatty acids were insignificant between cells grown with and without toluene. The changes in the ratio of cis- to trans-fatty acids of C16:1 and C18:1 was, however, significantly lower in cells grown with toluene than cells grown without toluene, giving approximately 1.3 and 9.7, respectively. Toluene had a fluidizing effect on the membrane of cells grown without toluene, resulting in decrease in membrane polarization ratio. Less fluidizing effect of toluene on the membrane of cells grown with toluene was observed, giving 11% of polarization percentage, which was significantly lower than 53% in cells grown without toluene. These results suggest that cis/trans isomeration of C16:1 and C18:1 makes cell membranes more rigid to respond toluene, and is an adaptive strategy allowing P. putida CN-T19 to grow in the presence of organic solvent.  相似文献   

9.
Aspergillus chevalieri and Penicillium expansum were able to tolerate sucrose concentrations in the growth media up to 80% (w/v). At 50% sucrose the growth rate is approximately 1.4 and 1.2 times, respectively, higher than in the control. While at 80% sucrose it drops to 35% and 45% of the control level for both fungi. Lipids and proteins in plasma membranes increased with increasing sucrose concentrations in the growth medium. Phospholipid content in membranes of both organisms being also increased, phosphatidyl glycerol was the major detected phospholipid and represented the highest increase. The fatty acid composition of fraction enriched plasma membrane of both fungi changed when they were grown in high sucrose concentrations. Some fatty acids which had not been detected in control cultures were present and the proportions of other fatty acids changed. At 50% sucrose the unsaturation index of membranes decreased by 20-25% in both fungi, indicating that the plasma membrane is less fluid at this concentration. At 80% sucrose a similar trend was observed for P. expansum but for A. chevalieri the unsaturation index was little changed compared with the control. The fluorescence polarization values of 1,6-diphenyl 1,3,5-hexatriene (DPH) in membranes of both fungi grown at 80% sucrose increased, indicating a decrease in membrane fluidity. At 50% sucrose the increase in saturation of membrane fatty acids would tend to reduce membrane fluidity but in A. chevalieri at 80% sucrose fatty acids did not become more saturated. In this case the marked increase in sterols at this sucrose concentration may be responsible for low membrane fluidity.  相似文献   

10.
We investigated the effect of phosphatidylethanol (PEt) on fluidity and membrane tolerance to the fluidization induced by ethanol as well as on the activity of two membrane-bound enzymes, Na+/K+ ATPase and 5'-nucleotidase. PEt was synthesized from 1,2-dimyristoylphosphatidylcholine and phosphatidylcholine from bovine brain and studies were performed to determine the optimal experimental conditions for the insertion of PEt in natural bilayers. The effects of PEt, evaluated by differential scanning calorimetry or fluorescence polarization techniques, were studied in model membranes made of synthetic phospholipids or made of total lipids extracted from rat brain crude mitochondrial fraction (P2 fraction) and from natural membranes (P2 fraction). The presence of PEt increased the fluidity of artificial as well of natural membranes, but tolerance to the addition of ethanol, displayed by dimyristoylphosphatidylcholine vesicles and by natural membranes containing PEt, was lacking in vesicles made of dimyristoylphosphatidylethanolamine and in artificial bilayers reconstituted from total P2 lipid extracts, suggesting an involvement of PC on PEt-induced ethanol resistance. Na+/K+ ATPase activity was enhanced by the addition of small amounts of ethanol (up to 50 mM) and progressively inhibited at higher concentrations, while 5'-nucleotidase was not affected up to 400 mM ethanol. The presence of PEt in the bilayer exerted the opposite effects on the two enzymes, reducing the Na+/K+ ATPase activation induced by ethanol and enhancing 5'-nucleotidase activity. The mechanisms of the PEt-induced modifications are discussed.  相似文献   

11.
Isolated plasma membranes from the yeast Candida tropicalis grown on two different carbon sources (glucose or hexadecane), had similar contents of protein (60% of total dry weight), lipid (21-24%) and carbohydrates (16-21%). Sodium dodecyl sulphate gel electrophoresis of the membrane proteins revealed 17 and 19 protein bands, respectively, for glucose and hexadecane grown cells. There were marked differences in RF values and relative peak heights between the two gels. Sterols and free fatty acids were the major components of the plasma membrane lipids. Phospholipid content was less than 2% of total plasma membrane lipids. Membrane microviscosity, as determined by fluorescence polarization, was very high (16.6 P). Fatty acid determination of membrane lipids by gas chromatography showed a significant increase of C16 fatty acids in plasma membranes of cells grown on hexadecane. Reduced-oxidized difference spectra demonstrated the presence of a b-type cytochrome in both Saccharomyces cerevisiae and C. tropicalis plasma membranes. Its concentration in C. tropicalis plasma membranes was three-fold greater in cells grown on hexadecane than in glucose grown cells.  相似文献   

12.
The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells. To probe the fluidity of the cytoplasmic membrane, intact cells were labeled with doxyl-stearic acids and analyzed by electron spin resonance spectroscopy. Although the effect of ethanol was noticeable across the width of the membrane, we focused on fluidity changes at the lipid-water interface. Fluidity increased with increasing concentrations of ethanol. Cells responded to growth in the presence of 8% (vol/vol) ethanol by decreasing fluidity. Upon exposure to a range of ethanol concentrations, these adapted cells had reduced fluidity and cF leakage compared with cells grown in the absence of ethanol. Analysis of the membrane composition revealed an increase in the degree of fatty acid unsaturation and a decrease in the total amount of lipids in the cells grown in the presence of 8% (vol/vol) ethanol. Preexposure for 2 h to 12% (vol/vol) ethanol also reduced membrane fluidity and cF leakage. This short-term adaptation was not prevented in the presence of chloramphenicol, suggesting that de novo protein synthesis was not involved. We found a strong correlation between fluidity and cF leakage for all treatments and alcohol concentrations tested. We propose that the protective effect of growth in the presence of ethanol is, to a large extent, based on modification of the physicochemical state of the membrane, i.e., cells adjust their membrane permeability by decreasing fluidity at the lipid-water interface.  相似文献   

13.
Dictyostelium discoideum grown axenically in media containing polyunsaturated fatty acids exhibited normal growth rates but impaired differentiation (Weeks, G. (1976) Biochim. Biophys. Acta 450, 21--32). Since cell-cell contact is vital for differentiation but unnecessary for growth we have examined the isolated plasma membranes of these cells. The lipids of the plasma membranes of cells grown in the presence of polyunsaturated fatty acids contain considerable quantities of these acids, but the total phospholipid and sterol contents of the plasma membrane are close to normal. Electron spin resonance studies using 5-doxyl-stearic acid as the spin probe reveal two things. Firstly, there are no detectable characteristic transition temperatures in the plasma membranes of D. discoideum. Secondly, the plasma membranes of cell grown in the presence of polyunsaturated fatty acids have essentially the same fluidity as that of the control cells. The possible significance of this result to impaired cell-cell interaction is discussed.  相似文献   

14.
The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells. To probe the fluidity of the cytoplasmic membrane, intact cells were labeled with doxyl-stearic acids and analyzed by electron spin resonance spectroscopy. Although the effect of ethanol was noticeable across the width of the membrane, we focused on fluidity changes at the lipid-water interface. Fluidity increased with increasing concentrations of ethanol. Cells responded to growth in the presence of 8% (vol/vol) ethanol by decreasing fluidity. Upon exposure to a range of ethanol concentrations, these adapted cells had reduced fluidity and cF leakage compared with cells grown in the absence of ethanol. Analysis of the membrane composition revealed an increase in the degree of fatty acid unsaturation and a decrease in the total amount of lipids in the cells grown in the presence of 8% (vol/vol) ethanol. Preexposure for 2 h to 12% (vol/vol) ethanol also reduced membrane fluidity and cF leakage. This short-term adaptation was not prevented in the presence of chloramphenicol, suggesting that de novo protein synthesis was not involved. We found a strong correlation between fluidity and cF leakage for all treatments and alcohol concentrations tested. We propose that the protective effect of growth in the presence of ethanol is, to a large extent, based on modification of the physicochemical state of the membrane, i.e., cells adjust their membrane permeability by decreasing fluidity at the lipid-water interface.  相似文献   

15.
The lymphocyte surface membranes from normal and leukaemic or lymphomatous cells from man and mouse were isolated, characterized, and analyzed both biochemically and by diphenyl hexatriene fluorescence polarization. The cholesterol/phospholipid molar ratio for all the pure lymphocyte plasma membranes was 0.45--0.50, and the fluorescence polarization results showed that values much higher than this were not credible. The lipid composition of all the plasma membranes was remarkably similar, except for the concentration of free fatty acids and glycerides. The latter two were particularily high in the mouse lymphoma membrane and these, rather than a low cholesterol concentration, were responsible for the increased fluidity of the cells. The most prominent protein in most of the plasma membrane preparations was actin. This is found only by some authors, and its presence probably depends on the method of lymphocyte disruption.  相似文献   

16.
The lymphocyte surface membranes from normal and leukaemic or lymphomatous cells from man and mouse were isolated, characterized, and analyzed both biochemically and by diphenyl hexatriene fluorescence polarization. The cholesterol/phospholipid molar ratio for all the pure lymphocyte plasma membranes was 0.45–0.50, and the fluorescence polarization results showed that values much higher than this were not credible. The lipid composition of all the plasma membranes was remarkably similar, except for the concentration of free fatty acids and glycerides.The latter two were particularly high in the mouse lymphoma membrane and these, rather than a low cholesterol concentration, were responsible for the increased fluidity of the cells.The most prominent protein in most of the plasma membrane preparations was actin. This is found only by some authors, and its presence probably depends on the method of lymphocyte disruption.  相似文献   

17.
The effect of environmental ethanol concentration on the fatty acid composition of strains of Lactobacillus hilgardii, differing in their tolerance to ethanol, was determined. A marked increase in the proportion of lactobacillic acid (a cyclopropane fatty acid) and a decrease in oleic and vaccenic acids with increasing ethanol concentration was observed. The amount of lactobacillic acid determined at standard conditions (25°C, 0% ethanol) was found to be proportional to the ethanol tolerance of the strains studied. The effect of this alcohol on plasma membrane fluidity was studied by differential scanning calorimetry. The adaptive response to growth in the presence of high concentrations of ethanol produced membranes which, within the limits of ethanol tolerance, maintained the fluidity and integrity in an environment which tends to increase membrane rigidity. When pre-adapted cells are analysed in the absence of environmental ethanol there is a measurabie increase in fluidity. It is proposed that this phenomenon may be correlated with the increase in the proportion of lactobacillic acid. The existence of a relationship between membrane fluidity and ethanol tolerance is discussed.  相似文献   

18.
Considerable metabolic energy is expended in ensuring that membranes possess a characteristic fatty acid composition. The nature of the specific requirement of the retina for high levels of docosahexaenoic acid (DHA) is as yet undefined. Previous work has speculated that DHA is required to maintain the fluid nature and permeability necessary for optimal retinal function. Cultured Y-79 retinoblastoma cells were grown in serum-containing media with and without supplemental DHA. Resultant changes in membrane fluidity were assessed using fluorescent probes. No differences were observed in rotational probe mobility as assessed by fluorescence polarization despite a fourfold increase in cellular DHA content. Lateral probe mobility as assessed by pyrene eximer formation was significantly enhanced in DHA-supplemented cells. Both the DHA content and total fatty acid unsaturation index in retinoblastoma cells were directly correlated with membrane fluidity as reported by eximer formation (Pearson's rho = 0.96 and 0.92, respectively). DHA supplementation also resulted in a significant increase in cellular choline uptake. We speculate that the effect of DHA content on retinal function may be mediated by changes in membrane fluidity and associated enzyme and transport activities.  相似文献   

19.
The fluorescence polarization technique with 1,6-diphenyl 1,3,5-hexatriene as a probe was used to determine the lipid microviscosity, η, of isolated plasma membranes of mouse thymus-derived ascitic leukemia (GRSL) cells and of extracellular membraneous vesicles exfoliated from these cells and occurring in the ascites fluid. For comparison, η was also determined in isolated plasma cell supernatants.For isolated plasma membranes of thymocytes and GRSL cells η values at 25° C amounted to 4.67 and 3.28 P, respectively, which were higher than the microviscosities of the corresponding intact cells, 3.24 and 1.73 P, respectively.Microviscosities inextracellular membranes of thymocytes and GRSL cells were 5.96 and 5.83 P, respectively. The fluidity difference between these membranes and plasma membranes was most pronounced for the leukemic cells and was thereby correlated with a large difference in cholesterol/phospholipid molar ratio (1.19 for extracellular membranes and 0.37 for plasma membranes). It is proposed that extracellular membraneous vesicles are shed from the surface of GRSL cells similar to the budding process of viruses, that is by selection of the most rigid parts of the host cell membrane.Liposomes of total lipid extracts of plasma membranes and extracellular membranes of both cell types exhibited about the same microviscosity as the corresponding intact membranes, indicating virtually no contribution of (glyco)-protein to the lipid fluidity as measured by the fluorescence polarization technique. For both cell types η (25° C) values of liposomes consisting of membrane phospholipids varied between 1.5 and 1.9 P, much lower than the values for total lipids, indicating a significant rigidizing effect of cholesterol in each type of membrane.  相似文献   

20.
The partitioning of fluorescence probes into intracellular organelles poses a major problem when fluorescence methods are applied to evaluate the fluidity properties of cell plasma membranes with intact cells. This work describes a method for resolution of fluidity parameters of the plasma membrane in intact cells labelled with the fluorescence polarization probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The method is based on selective quenching, by nonradiative energy transfer, of the fluorescence emitted from the plasma membrane after tagging the cell with a suitable membrane impermeable electron acceptor. Such selective quenching is obtained by chemical binding of 2,4,6-trinitrobenzene sulfonate (TNBS), or by incorporation of N-bixinoyl glucosamine (BGA) to DPH-labelled cells. The procedures for determination of lipid fluidity in plasma membranes of intact cells by this method are simple and straightforward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号