首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous fermentation experiments in a well-stirred fermentor with Saccharomyces cerevisiae cells immobilized in Ca-alginate beads of small diameter (approx. 1 mm) have been performed in order to discover their intrinsic fermentation kinetics, and compare them to the fermentation kinetics for free cells, by fitting both sets of results to the same model. The results show similar kinetic parameters for free and immobilized cells. The changes in cell concentration inside the beads and microscopical observations of transverse sections throughout the experiments, allowed discernment of two different scenarios of cell growth inside the beads: low cell density and fully developed growth. Correspondence to: F. Gòdia  相似文献   

2.
Stoichiometric modeling of the early stages of the citric acid fermentation process by Aspergillus niger revealed that ammonium ions combine with a carbon-containing metabolite inside the cell, in a ratio 1:1, to form a nitrogen compound which is then excreted by the mycelium. High-performance liquid chromatography analysis identified glucosamine as the product of the relationship between glucose and ammonium during the early stages of the citric acid fermentation process. Slightly acidic internal pHs, extremely low ammonium ion concentrations inside the cell, and glucosamine synthesis come into direct contradiction with the earlier theory of the ammonium pool inside the cell, regarded as responsible for inhibition of the enzyme phosphofructokinase. At later fermentation stages, when the mycelium is involved in a process of fragmentation and regrowth, the addition of ammonium sulfate leads to a series of events: the formation and secretion of glucosamine in elevated amounts, the short inhibition of citrate synthesis, growth enhancement, the utilization of glucosamine, and finally, the enhancement of citric acid production rates. Obviously, the enzymatic processes underlining the phenomena need to be reexamined. As a by-product of the citric acid fermentation, glucosamine is reported for the first time here. Suitable process manipulations of the system described in this work could lead to successful glucosamine recovery at the point of its highest yield before degradation by the fungus occurs.  相似文献   

3.
Stoichiometric modeling of the early stages of the citric acid fermentation process by Aspergillus niger revealed that ammonium ions combine with a carbon-containing metabolite inside the cell, in a ratio 1:1, to form a nitrogen compound which is then excreted by the mycelium. High-performance liquid chromatography analysis identified glucosamine as the product of the relationship between glucose and ammonium during the early stages of the citric acid fermentation process. Slightly acidic internal pHs, extremely low ammonium ion concentrations inside the cell, and glucosamine synthesis come into direct contradiction with the earlier theory of the ammonium pool inside the cell, regarded as responsible for inhibition of the enzyme phosphofructokinase. At later fermentation stages, when the mycelium is involved in a process of fragmentation and regrowth, the addition of ammonium sulfate leads to a series of events: the formation and secretion of glucosamine in elevated amounts, the short inhibition of citrate synthesis, growth enhancement, the utilization of glucosamine, and finally, the enhancement of citric acid production rates. Obviously, the enzymatic processes underlining the phenomena need to be reexamined. As a by-product of the citric acid fermentation, glucosamine is reported for the first time here. Suitable process manipulations of the system described in this work could lead to successful glucosamine recovery at the point of its highest yield before degradation by the fungus occurs.  相似文献   

4.
A novel fermentation device, the rotorfermentor, is described and some experimental results are presented on power requirements and oxygen mass transfer characteristics of the rotorfermentor. This fermentation device is designed to achieve high cell concentrations in batch and continuous cultures. Basically, the rotorfermentor consists of a rotating microporous membrane which is enclosed within a stationary fermentor vessel. The metabolic products in the broth are continuously removed by filtration through the rotating microporous membrane while the growing cells can be retained inside the fermentor. This dual function of cell growth and concentration with the simultaneous removal of metabolic products is the essential characteristic of the rotorfermentor.  相似文献   

5.
In cells of Leuconostoc oenos, the fermentation of L-malic acid generates both a transmembrane pH gradient, inside alkaline, and an electrical potential gradient, inside negative. In resting cells, the proton motive force ranged from -170 mV to -88 mV between pH 3.1 and 5.6 in the presence Of L-malate. Membrane potentials were calculated by using a model for probe binding that accounted for the different binding constants at the different pH values at the two faces of the membrane. The delta psi generated by the transport of monovalent malate, H-malate-, controlled the rate of fermentation. The fermentation rate significantly increased under conditions of decreased delta psi, i.e., upon addition of the ionophore valinomycin in the presence of KCl, whereas in a buffer depleted of potassium, the addition of valinomycin resulted in a hyperpolarization of the cell membrane and a reduction of the rate of fermentation. At the steady state, the chemical gradient for H-malate- was of the same magnitude as delta psi. Synthesis of ATP was observed in cells performing malolactic fermentation.  相似文献   

6.
Lactic acid bacteria are able to generate a protonmotive force across the cytoplasmic membrane by various metabolic conversions without involvement of substrate level phosphorylation or proton pump activity. Weak acids like malate and citrate are taken up in an electrogenic process in which net negative charge is translocated into the cell thereby generating a membrane potential. The uptake is either an exchange process with a metabolic end-product (precursor/ product exchange) or a uniporter mechanism. Subsequent metabolism of the internalized substrate drives uptake and results in the generation of a pH gradient due to the consumption of scalar protons. The generation of the membrane potential and the pH gradient involve separate steps in the pathway. Here it is shown that they are nevertheless coupled. Analysis of the pH gradient that is formed during malolactic fermentation and citrate fermentation shows that a pH gradient, inside alkaline, is formed only when the uptake system forms a membrane potential, inside negative. These secondary metabolic energy generating systems form a pmf that consists of both a membrane potential and a pH gradient, just like primary proton pumps do. It is concluded that the generation of a pH gradient, inside alkaline, upon the addition of a weak acid to cells is diagnostic for an electrogenic uptake mechanism translocating negative charge with the weak acid.  相似文献   

7.
The in-situ microscope is a system developed to acquire images of mammalian cells directly inside a bioreactor (in-situ) duringa fermentation process. It requires only minimal operator intervention and it is well suited for either batch or long-termperfusion fermentation runs. The system fits into a 25 mm standard port and has a retractable housing, similar to the industry standard InTrac. Therefore, it can be cleaned and serviced without interruption of the process or risking contamination. A sampling zone inside the bioreactor encloses adefined volume of culture and an image sequence is taken. The height of the sampling zone is set by the control program and canbe adjusted during the cultivation to accommodate a wide range of change in cell density. The system has an infinity correctedoptical train and uses a progressive scan CCD camera to acquirehigh quality images. Process relevant information like cell density is extracted fromthe images by digital image processing software, currently in development for mammalian cells (CHO, BHK). The first version ofthe software will be able to estimate the cell density, cellsize distribution and to give information of the degree of aggregation (single and double cells, cell clusters).  相似文献   

8.
A novel technique is proposed to achieve higher cell yield in extremophile fermentation. Because the accumulation of toxic compounds is thought to be responsible for low biomass yields, a bioreactor has been designed based on a microfiltration hollow-fiber module located inside the traditional fermentation vessel. Using the cul-tivation of the thermoacidophilic archeon Sulfolobus solfataricus Gı as a model, a biomass of 35 g l−1 dry weight was obtained which proved greater than that of 2 g l−1 obtained in batch fermentation. The bioreactor was characterized by running several fermentation experiments to check the high stability of the membrane module to sterilization cycles, high temperatures, and acidic pHs, even for prolonged periods of time. It was shown that the exhaust medium is unable to sustain growth for the presence of toxic compounds, and ultrafiltration and ion-exchange techniques were used in all the attempts to regenerate it. The results demonstrated the ability of the method to lower inhibitor concentrations and prolong the growth phase, thus achieving high cell density. Furthermore, they indicated that the toxic compounds are ionic species of less than 1kDa. Received: December 23, 1998 / Accepted: March 18, 1999  相似文献   

9.
Summary Corynebacterium glutamicum was used in fed-batch fermentation for glutamate production. Both intracellular and extracellular concentrations were determined which allowed us to study the repartition of the amino acid according to the culture conditions and in the presence or absence of surfactants. A decrease in cell volume was observed after addition of surfactants during the exponential phase of growth; glutamate accumulates in the cell, whereas in standard industrial conditions the glutamate concentration in the medium during the production phase can be 30-fold higher than that found inside the cell. The level of excretion is compatible with industrial production.  相似文献   

10.
The non-destructive removal of hybridoma cells from fermentation broth with an improved disc stack centrifuge (CSA1, Westfalia Separator AG, Oelde, Germany) was investigated. The centrifuge was equipped with a hydrohermetic feed system, which allowed a gentle, shearless acceleration of the cells inside the bowl. No significant cell damage was observed during the separation of hybridoma cells from repeated batch fermentation in 100 liter scale. In the clarified liquid phase there was no increase in Lactate-Dehydrogenase (LDH) activity. Consequently, there was no increased exposure of the product to intracellular components.Due to continuous operation with a periodic and automatic discharge of sediment, a high throughput was achieved without any considerable loss of product. The clarification for mammalian cells was in the range of 99% to 99.9%, depending on the operating conditions. The content of cell debris and other small particles decreased about 30 to 50%, depending on the particle load in the feed stream. The centrifuge was fully contained; cleaning and sterilizing in place possible. Therefore, the decice could be integrated easily into the fermentation process.  相似文献   

11.
The effect of interrupting aeration on itaconic acid fermentation by A. terreus NRRL 1960 has been studied. Under the conditions used, stopping aeration for 5 min led to a complete cessation of itaconic acid production, which was only slowly restored after 24 h when aeration was resumed. After a 5-min break in aeration and in the presence of 0.1 mM cycloheximide no itaconic acid was formed even after 3 days. It seems that, upon oxygen shortage, a rapid destruction of the itaconic-acid-producing mechanism takes place, which is restored only aerobically in a slow process involving protein synthesis. Itaconic acid fermentation is also effectively stopped by metabolic inhibitors of ATP formation, pointing to the need for biochemical energy in maintaining the fermentation. ATP is possibly needed to maintain a proper physiological (i.e. near neutral) pH inside the cells, counteracting the acid produced in the fermentation process and the low external pH (below 2.0). Inhibitors of plasma membrane ATPase have no effect on itaconic acid fermentation. This indicates that the plasma membrane might be impermeable to H+ and that ATP might rather be involved in the transport of itaconic acid out of the cell. It is suggested that insufficient aeration may leads to insufficient production of ATP which, in turn, leads to damage of the metabolic machinery by acid produced in the fermentation process.  相似文献   

12.
Xylitol is a well-known sugar substitute with low-calorie and anti-cariogenic characteristics. An effort of biological production of xylitol from xylose was made in repeated fed-batch and cell-recycle fermentations of recombinant Saccharomyces cerevisiae BJ3505/δXR harboring the xylose reductase gene from Pichia stipitis. Batch fermentation with 20 g/l xylose and 18 g/l glucose resulted in 9.52 g/l dry cell mass, 20.1 g/l xylitol concentration and approximately 100% conversion yield. Repeated fed-batch operation to remove 10% of culture broth and to supplement an equal volume of 200 g/l xylose was designed to improve xylitol production. In spite of a sudden drop of cell concentration, an increase in dry cell mass led to high accumulation of xylitol at 48.7 g/l. To overcome loss of xylitol-producing biocatalysts in repeated fed-batch fermentation, cell-recycle equipment of hollow fiber membrane was implemented into a xylitol production system. Cell-recycle operation maintained concentration of the recombinant cells high inside a bioreactor. Final dry cell mass of 22.0 g/l, 116 g/l xylitol concentration, 2.34 g/l h overall xylitol productivity were obtained in cell-recycle fermentation supplemented with xylose and yeast extract solution, which were equivalent to 2.3-, 5.8- and 3.8-fold increases compared with the corresponding values of batch-type xylitol production parameters.  相似文献   

13.
In general, high broth viscosity is a key factor to be considered in a submerged fermentation of filamentous fungi. High broth viscosity was also observed in a batch fermentation of Monascus sp. J101 at 30 degrees C. In a batch culture at 30 degrees C, most cell growth was accomplished within 48 h, which induced highly entangled clumps. The resultant high viscosity induced heterogeneity inside the fermentor, poor oxygen transfer, and low pigment yield. However, these problems could be overcome by reducing fungal growth rate through culture at low temperature (25 degrees C). Cell growth was moderate and continued for 120 h, and low viscosity was maintained. The DO levels remained at 50% or higher with good mixing. As a result, the pigment yield at 25 degrees C was 10 times greater than at 30 degrees C.  相似文献   

14.
An oleaginous fungus, Mortierella isabellina, able to transform efficiently sugar to storage lipid, was used as a model microorganism which develops a biofilm structure during the semi-solid fermentation process for the production of biodiesel from sweet sorghum. A mathematical model was developed to describe the fungal oil production in M. isabellina biofilm. The model describes diffusion and consumption of sugars and nitrogen of sweet sorghum and single cell oil production in a biofilm, which grows according to the kinetics of double-substrate limitation (sugars and nitrogen) with sugar inhibition. Experimental data from a previous experimental study were used to determine the kinetic parameters of the model. Maximum biofilm thickness and the percentage of lipid inside the biofilm were estimated using the model at 1892 μm and 15%, respectively. The proposed mathematical model could prove a useful tool for designing semi-solid fermentation processes.  相似文献   

15.
The mechanism of metabolic energy production by malolactic fermentation in Lactococcus lactis has been investigated. In the presence of L-malate, a proton motive force composed of a membrane potential and pH gradient is generated which has about the same magnitude as the proton motive force generated by the metabolism of a glycolytic substrate. Malolactic fermentation results in the synthesis of ATP which is inhibited by the ionophore nigericin and the F0F1-ATPase inhibitor N,N-dicyclohexylcarbodiimide. Since substrate-level phosphorylation does not occur during malolactic fermentation, the generation of metabolic energy must originate from the uptake of L-malate and/or excretion of L-lactate. The initiation of malolactic fermentation is stimulated by the presence of L-lactate intracellularly, suggesting that L-malate is exchanged for L-lactate. Direct evidence for heterologous L-malate/L-lactate (and homologous L-malate/L-malate) antiport has been obtained with membrane vesicles of an L. lactis mutant deficient in malolactic enzyme. In membrane vesicles fused with liposomes, L-malate efflux and L-malate/L-lactate antiport are stimulated by a membrane potential (inside negative), indicating that net negative charge is moved to the outside in the efflux and antiport reaction. In membrane vesicles fused with liposomes in which cytochrome c oxidase was incorporated as a proton motive force-generating mechanism, transport of L-malate can be driven by a pH gradient alone, i.e., in the absence of L-lactate as countersubstrate. A membrane potential (inside negative) inhibits uptake of L-malate, indicating that L-malate is transported an an electronegative monoanionic species (or dianionic species together with a proton). The experiments described suggest that the generation of metabolic energy during malolactic fermentation arises from electrogenic malate/lactate antiport and electrogenic malate uptake (in combination with outward diffusion of lactic acid), together with proton consumption as result of decarboxylation of L-malate. The net energy gain would be equivalent to one proton translocated form the inside to the outside per L-malate metabolized.  相似文献   

16.
A microbial fermentation process could be used to produce thymidine biologically but many of the enzymes related to nucleotide biosynthesis are highly regulated. To overcome the complex regulation steps, an analogue mutant of Brevibacterium helvolum resistant to fluorouracil, hydroxyurea, and trimethoprim was constructed. This mutant accumulated 380 mg thymidine 1(-1) in 16 h in shake-flask culture. However, the accumulation of thymidine monophosphate (TMP) inside the cells suggested a low activity of nucleotidase which degrades TMP to thymidine. This limitation was overcome by cloning the TMP phosphohydrolase (TMPase) gene of the unusual bacteriophage, PBS2. As a result, TMP in recombinant cells decreased from 230 micromol g(-1) cell to 20 micromol g(-1) cell with accumulation of 500 mg thymidine l(-1) in the medium.  相似文献   

17.
Inversion of sucrose by bakers'' yeast follows the same course as inversion catalyzed by yeast invertase. Rate of inversion increases exponentially with temperature; the temperature characteristic in the Arrhenius equation is 10,700 below 13–17°C., and 8,300 above that temperature. Temperature inactivation occurs above 40°C. The effects of temperature upon rate of inversion were the same using Fleischmann''s yeast cake, the same yeast killed with toluene, and a pure strain (G. M. No. 21062) of bakers'' yeast. The last differed from the other two only in the fact that its critical temperature was 13°C. as compared with 17°C. for the others. The catalytic inversion is associated with enzyme activity inside the cell, not in the medium, and is independent of any vital processes inside the cell such as respiration and fermentation. Since invertase activity is the same inside the cell as it is after extraction, it appears possible to relate the temperature characteristics for physiological processes to the catalytic chemical systems which determine their rate. At least two enzymes are capable of inverting sucrose in the yeast cell. The familiar yeast invertase (µ = 10,700) is active below 13–17°C. while a second enzyme (M = 8,300) plays the dominant role above that temperature.  相似文献   

18.
在光滑球拟酵母(Torulopsis glabrata620)生产丙酮酸的过程中,温度对丙酮酸生物合成有着重要的影响。考察了不同发酵温度下基质消耗、细胞生长、丙酮酸合成及能荷水平和氧化-还原度等方面的差异。在恒温发酵中,维持较高的发酵温度可以增强糖耗,促进菌体生长,加速丙酮酸积累,但前期胞内能荷水平较高,菌体消耗较多葡萄糖合成菌体,后续产酸能力不足,导致丙酮酸得率降低;维持较低的发酵温度可以在发酵后期提供稳定的产酸能力,但菌体代谢缓慢,后期胞内NADH/NAD 水平较高,丙酮酸生产强度降低。因此仅仅采取单一的温度控制策略很难达到丙酮酸高产量、高产率和高生产强度的统一。  相似文献   

19.
Summary Most sisomicin produced during fermentation by Micromonospora inyoensis remained bound inside the cells. When cells were suspended in buffer solutions containing sodium chloride, the bound antibiotic was increasingly liberated by increasing salt concentration. These results were applied to fermentation cultures and, as a result, up to 46% increase in final product titre was achieved.  相似文献   

20.
In the continuous systems, such as continuous beer fermentation, immobilized cells are kept inside the bioreactor for long periods of time. Thus an important factor in the design and performance of the immobilized yeast reactor is immobilized cell viability and physiology. Both the decreasing specific glucose consumption rate (q(im)) and intracellular redox potential of the cells immobilized to spent grains during continuous cultivation in bubble-column reactor implied alterations in cell physiology. It was hypothesized that the changes of the physiological state of the immobilized brewing yeast were due to the aging process to which the immobilized yeast are exposed in the continuous reactor. The amount of an actively growing fraction (X(im)act) of the total immobilized biomass (X(im)) was subsequently estimated at approximately X(im)act = 0.12 g(IB) g(C)(-1) (IB = dry immobilized biomass, C = dry carrier). A mathematical model of the immobilized yeast biofilm growth on the surface of spent grain particles based on cell deposition (cell-to-carrier adhesion and cell-to-cell attachment), immobilized cell growth, and immobilized biomass detachment (cell outgrowth, biofilm abrasion) was formulated. The concept of the active fraction of immobilized biomass (X(im)act) and the maximum attainable biomass load (X(im)max) was included into the model. Since the average biofilm thickness was estimated at ca. 10 microm, the limitation of the diffusion of substrates inside the yeast biofilm could be neglected. The model successfully predicted the dynamics of the immobilized cell growth, maximum biomass load, free cell growth, and glucose consumption under constant hydrodynamic conditions in a bubble-column reactor. Good agreement between model simulations and experimental data was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号