首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Propriospinal neurones located in the cervical enlargement and projecting bilaterally to sacral segments of the spinal cord were investigated electrophysiologically in eleven deeply anaesthetized cats. Excitatory or inhibitory postsynaptic potentials from forelimb afferents were recorded following stimulation of deep radial (DR), superficial radial (SR), median (Med) and ulnar (Uln) nerves. 26 cells were recorded from C7, 22 from C8 and 3 from Th1 segments. The majority of the cells were located in the Rexed's laminae VIII and the medial part of the lamina VII. In 10 cases no afferent input from the forelimb afferents was found. In the remaining neurones effects were evoked mostly from DR (88%) and Med (63%), less often from SR (46%) and Uln (46%). Inhibitory actions were more frequent than excitatory. The highest number of IPSPs was evoked from high threshold flexor reflex afferents (FRA)--all connections were polysynaptic. However, inhibitory actions were often evoked from group I or II muscle afferents (polysynaptic or disynaptic) and, less frequently, from cutaneous afferents (mostly polysynaptic). Di- or polysynaptic IPSPs often accompanied monosynaptic EPSPs from group I or II muscle afferents. Disynaptic or polysynaptic EPSPs from muscle and cutaneous afferents were also recorded in many neurones, while polysynaptic EPSPs from FRA were observed only exceptionally. Various patterns of convergence in individual neuronal subpopulations indicate that they integrate different types of the afferent input from various muscle and cutaneous receptors of the distal forelimb. They transmit this information to motor centers controlling hind limb muscles, forming a part of the system contributing to the process of coordination of movements of fore--and hind--limbs.  相似文献   

2.
GABA and Prolonged Spinal Inhibition   总被引:2,自引:0,他引:2  
TWO explanations have been provided for the relatively long latency and prolonged (often exceeding 100 ms) inhibition of firing of spinal motoneurones which is caused by repetitive impulses produced by electrical or natural stimulation1–4 in muscle and cutaneous afferent fibres. This prolonged inhibitory process is exemplified by the reduction in the amplitude of monosynaptic excitatory synaptic potentials (EPSPs) and reflexes of extensor motoneurones by tetanic stimulation of group I afferents of flexor motoneurones2. In contrast with “direct” inhibition, the prolonged inhibition is not reduced by strychnine but is diminished by Picrotoxin4,6.  相似文献   

3.
Experiments on cats anesthetized with chloralose showed that repetitive stimulation of the locus coeruleus is accompanied by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons. The effect appeared 600 msec after the beginning of stimulation and reached its maximum after 1500–2000 msec. Repetitive stimulation of the locus coeruleus did not change the membrane potential and did not affect EPSPs or IPSPs evoked by stimulation of low-threshold muscle afferents; EPSPs due to activation of high-threshold cutaneous and muscle afferents likewise remained unchanged. Repetitive stimulation of more central regions of the brain stem was accompanied not only by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons, but also by a decrease in amplitude of EPSPs arising in response to stimulation of these same afferents in flexor motoneurons. These effects were not connected with activation of monoaminergic structures, for unlike effects arising during stimulation of the locus coeruleus, they were also found in previously reserpinized animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 51–59, January–February, 1982.  相似文献   

4.
Summary Tactile stimulation of a leg of the locustSchistocerca gregaria can lead to specific reflex movements of that leg. At the same time nonspiking interneurones that are presynaptic to the participating motor neurones are excited or inhibited, suggesting that they are directly involved in these reflexes. The afferent pathways mediating these effects have been examined by recording from individual afferents and nonspiking interneurones.Afferent spikes fromtrichoid orcampaniform sensilla on specific regions of a leg evoke chemically-mediated EPSPs with a constant central latency of about 1.5 ms in certain nonspiking interneurones. The branches of an interneurone and the afferents from which it receives inputs overlap in the neuropil of the ganglion.No afferents have been found to evoke IPSPs directly in the nonspiking interneurones. Instead the inhibition is caused by a population of spiking local interneurones that are themselves excited directly by the afferents, and whose spikes evoke IPSPs in certain nonspiking interneurones.The tactile reflexes can involve movements about one or more joints of the leg, and these coordinated responses are explained by the participation of specific nonspiking interneurones that distribute the sensory inputs to the appropriate sets of motor neurones. For example, when hairs on the dorsal surface of a tarsus are touched, the tarsus is levated. This reflex involves nonspiking local interneurones which are excited directly by these hair afferents and which make direct excitatory connections with the single levator tarsi motor neurone.  相似文献   

5.
1. The central projections of the A1 afferent were confirmed via intracellular recording and staining with Lucifer Yellow in the pterothoracic ganglion of the noctuid moths, Agrotis infusa and Apamea amputatrix (Fig. 1). Simultaneous recordings of the A1 afferent in the tympanal nerve (extracellularly) and in the pterothoracic ganglion (intracellularly) confirm the identity of the stained receptor as being the A1 cell. 2. The major postsynaptic arborizations of interneurone 501 in the pterothoracic ganglion were also demonstrated via intracellular recording and staining (Fig. 2). Simultaneous recordings of the A1 afferent (extracellularly) and neurone 501 (intracellularly) revealed that each A1 spike evokes a constant short latency EPSP in the interneurone (Fig. 2Bi). Neurone 501 receives only monaural input from the A1 afferent on its soma side as demonstrated by electrical stimulation of each afferent nerve (Fig. 2Bii). EPSPs evoked in neurone 501 by high frequency (100 Hz) electrical stimulation of the afferent nerve did not decrement (Fig. 2Biii). These data are consistent with a monosynaptic input to neurone 501 from the A1 afferent. 3. The response of neurone 501 to a sound stimulus presented at an intensity near the upper limit of its linear response range (30 ms, 16 kHz, 80 dB SPL) was a plateau-like depolarization, with tonic spiking activity which continued beyond the end of the tone. The instantaneous spike frequency of the response was as high as 800 Hz, and was maintained at above 600 Hz for the duration of the tone (Fig. 3). 4. The relationship between the instantaneous spike frequency in the A1 afferent and that recorded simultaneously in neurone 501 is linear over the entire range of A1 spike frequencies evoked by white noise sound stimuli (Fig. 4). Similarly, the relationship between instantaneous spike frequency in the A1 afferent and the mean depolarization evoked in neurone 501 is also linear for all A1 spike frequencies tested (Fig. 5). No summation of EPSPs occurred for A1 spike frequencies below 100 Hz.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Parameters of the electrical activity of the isolated vestibulocerebellar complex of the frog were studied under in vitro conditions. In the region of the vestibular nucleus (nc. VIII), in the presence of stimulation of the stato-acoustic nerve (n. VIII), responses from efferent vestibular neurones and from unidentified (probably vestibulospinal) neurones were recorded. The latent periods of their excitatory postsynaptic potentials (EPSPs, 1.4-2.2 ms) were indicative of mono- and disynaptic connection. Inhibitory postsynaptic potentials (IPSPs) were also observed. Stimulation of the auricular lobe of the cerebellum evoked monosynaptic IPSPs, an EPSP-IPSP complex or pure EPSPs in nc. VIII, the latter probably by way of collaterals to the cerebellum. The inhibitory character of the effect of efferents from the cerebellum to the neurones of nc. VIII was demonstrated in the focal synaptic potential and in spontaneous and evoked unit activity. If n. VIII was stimulated, both focal and unit extra- and intracellular responses characteristic of activation of the Purkinje cells by mossy (MF) or climbing (CF) afferent fibres were recorded in the cerebellar cortex. The electrophysiological picture indicates that both synaptic transmission and the functional manifestations of the individual neurones are preserved in the tested preparation.  相似文献   

7.
Activation of forelimb flexor reflex afferents (FRA) exerted a facilitating effect upon the reciprocal 1a IPSP recorded in extensor motoneurones of lumbosacral segments. The latency of this spatial facilitation was 18-20 ms, duration up to 60 ms, the amplitude of the test disynaptic 1a IPSP being several times greater than in the control. Facilitation of the 1a IPSP occurs against the background of the IPSP evoked by descending interlimb impulses. Therefore the facilitation of synaptic transmission in the 1a inhibitory pathway to extensor motoneurones induced by the descending interlimb volleys, favours more pronounced reciprocal interrelations between flexor and extensor spinal motor centres.  相似文献   

8.
Postsynaptic potentials of motoneurons of the masseter and digastric muscles evoked by stimulation of the infraorbital nerve with a strength of between 1 and 10 thresholds were investigated in cats anesthetized with a mixture of chloralose and pentobarbital. Depending on their ability to be activated by low-threshold afferents of this nerve, motoneurons of the masseter were divided into two groups. Stimuli with a strength of 1.2–2.5 times above threshold for the most excitable fibers of the infraorbital nerve evoked short-latency EPSPs in the motoneurons of the first group; a further increase in stimulus strength (3–9 thresholds) led to the appearance of IPSPs with latent periods of 2.8–3.5 msec. Motoneurons of the second group responded to stimulation of the infraorbital nerve with a strength of 3–9 thresholds by IPSPs whose latent periods varied from 6 to 8 msec. Stimuli below 3 thresholds in strength evoked no responses in these motoneurons. Stimulation of the infraorbital nerve with pulses of between 1 and 2 thresholds in strength evoked EPSPs in digastric motoneurons, but an increase in the strength of stimulation led to action potential generation. The presence of many excitatory and inhibitory inputs formed by afferent fibers of different types evidently provides a basis for functional diversity of jaw-opening and jaw-closing reflexes.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 6, pp. 596–603, November–December, 1980.  相似文献   

9.
Postsynaptic potentials of motoneurons in the facial nerve nucleus, evoked by stimulation of the cranial nerves (trigeminal, hypoglossal, facial) and of the sensomotor cortex were investigated in cats anesthetized with chloralose and pentobarbital. Two functionally opposite groups of motoneurons were found to exist in the facial nucleus. Stimulation of the afferent nerves and cortex evoked the appearance of EPSPs in the first of these groups and IPSPs in the second. The latency and duration of the PSPs indicate that afferent and corticofugal impulses reach the facial motoneurons along polysynaptic pathways. Interneurons on which wide convergence of influences travelling along afferent fibers and of the cortex, were found in the region of the facial nucleus. The possible neuronal pathways concerned with the transmission of afferent and corticofugal impulses to the facial motoneurons are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol.4, No.4, pp. 391–400, July–August, 1972.  相似文献   

10.
1. Intracellular recordings were obtained from the somata of identified abdominal postural motor neurons in lobster to examine their subthreshold and suprathreshold responses to tactile stimulation of the swimmeret. 2. Pressure stimulation of the swimmeret surface evoked abdominal extension by producing tonic spiking in the extensor excitors and the synergistic flexor inhibitor (f5) and hyperpolarizing responses in the extensor inhibitor and antagonistic flexor excitors. These responses often continued for several seconds following the termination of the stimulus. The receptive fields of these motor responses extended over most of the swimmeret surface. 3. More localized tactile stimulation of the swimmeret surface elicited EPSPs in f5 and the extensor excitors, and IPSPs in the flexor excitors. The amplitude of these synaptic potentials decreased as the stimulus intensity was reduced. 4. Stimulation of feathered hair (both sexes) and smooth hair (female only) sensilla produced responses characteristic of extension whereas bristly spines on the male accessory lobe excited only two flexor excitors without affecting any of the other postural motor neurons. 5. Summed synaptic responses recorded from the motor neurons differed in their amplitudes and latencies according to the type of mechanoreceptor stimulated-cuticular receptors, feathered hairs or smooth hairs. Stimulation of the swimmeret cuticle produced the strongest responses (shortest latency, largest amplitude), while feathered hair stimulation initiated the weakest responses (longest latency, smallest amplitude). 6. The relatively long latencies (greater than 35 ms) and the complex form of the EPSPs and IPSPs indicate the involvement of multisynaptic interneuronal pathways in the reflex arcs.  相似文献   

11.
Responses of neurons of motor cortex evoked by stimulations of pyramidal tract (PT) and ventroposterolateral (VPL) nucleus of thalamus were studied in cats immobilized by Myorelaxin. Antidromic spikes were found in 22.6% and in 9.9% of cortical cells when PT and VPL were stimulated, respectively. Fast- and slow-conducting PT-neurones could be differentiated according to antidromic excitation latencies. PT stimulation evoked EPSPs in 46.3% of studied neurones and VPL stimulation--in 48.2% ones. Monosynaptic EPSPs were identified in responses of fast- and slow-conducting PT-units and of neurones projecting in VPL; mechanisms and functional role of such reactions are discussed. Di- and polysynaptic IPSPs were evoked in 74.5% of units by PT stimulation and in 94.4%--by VPL stimulation. Three groups of IPSPs were classified with durations to 120, 130-280 and more than 300 ms. Duration of PT-evoked IPSPs was higher in cortical neurones from surface layers and VPL-evoked ones--in units localized in deep layers.  相似文献   

12.
Responses of the general cortex to moving stimuli were studied in turtles. The evoked potential, the synaptic nature of its individual components, and the mechanisms of their generation were analyzed. The evoked potential had a negative-positive sequence. The negative part consisted of a slow negative wave on which fast negative complexes were superposed. These components reflected EPSPs of afferent nature generated on dendrites of the principal neurons. The first fast negative complex was followed by a rhythmic discharge superposed on the slow negative and positve waves. The negative waves of the rhythmic discharge were shown to reflect EPSPs and the positive waves IPSPs, probably generated on dendrites of cortical neurons. The rhythmic EPSP — IPSPs are evidently generated by a feedback mechanism, whereas the positive wave reflects dendritic IPSPs of the principal neurons.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 249–256, May–June, 1977.  相似文献   

13.

Background

Vestibulo-ocular reflex (VOR) gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD) at vestibular synapses.

Methodology/Principal Findings

Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular) and inhibitory (floccular) inputs converging on medial vestibular nucleus (MVN) neurons (input-spike-timing dependent plasticity, iSTDP). To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarisation, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning.

Conclusions

These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR performance in vivo.  相似文献   

14.
1. The connexions between stretch receptors of the wings and motoneurones innervating flight muscles have been studied anatomically and physiologically. 2. Filling with cobaltous chloride shows that the single neurone of a forewing stretch receptor has a complex pattern of branches within the mesothoracic ganglion and branches which extend into the pro- and meta-thoracic ganglia. The single neurone of a hindwing stretch receptor has extensive branches in the metathoracic ganglion and branches in themesothoracic ganglion. The branches of both receptors are confined to the ipsilateral halves of the ganglia. 3. A stretch receptor gives information about the velocity and extent of elevation of a wing. 4. Each spike of a forewing stretch receptor casuses an EPSP in ipsilateral mesothoracic depressor motoneurones and an IPSP in elevators. The connexions are thought to be monosynaptic for the following reasons. The EPSPs in the first basalar (depressor) motoneurone follow each spike of the stretch receptor at a frequency of 125 Hz and with a constant latency of about 1 msec. In a Ringer solution containing 20 mM-Mg2+ the amplitude EPSP declines gradually. The IPSP'S upon elevators have similar properties but occur with a latency of 4-6 msec. 5. The connexions therefore comprise a monosynaptic negative feed-back loop; elevation of the wing excites the stretch receptor which then inhibits the elevator motoneurones and excites the depressors. 6. A hindwing stretch receptor synapses upon metathoracic flight motoneurones in the same way, causing EPSPs in depressor and IPSPs in elevator motoneurones. 7. No connexions of either fore- or hindwing stretch receptors have been found with contralateral flight motoneurones. 8. Interganglionic connexions are made by both receptors. For example, both fore- and hindwing stretch receptors cause EPSPs upon the meso- and metathoracic first basalar motoneurones. 9. Stimulation of the axon of a stretch receptor with groups of three stimuli repeated every 50-100 msec thus simulating the pattern which it shows during flight, causes subthreshold waves of depolarization in depressor motoneurones. When summed with an unpatterned input, the stretch receptor is able to influence the production of spikes in motoneurones on each cycle. During flight, it is expected that the stretch receptor will influence the time at which a motoneurone will spike and hence have an effect on the amplitude of the upstroke and upon the phase relationship between spikes of motoneurones.  相似文献   

15.
The nature of the synaptic relationship between 7 identified postural interneurons and 5 pairs of superficial motoneurons was examined by obtaining dual intracellular recordings from interneuron-motoneuron pairs in the lobster 2nd abdominal ganglion. For six different interneuron-motoneuron pairs EPSPs recorded from motoneurons occurred with a short (1 to 3 ms) fixed latency following each presynaptic spike recorded from the interneuron. This suggests that there is a monosynaptic relationship between these interneurons and motoneurons. Monosynaptic pathways accounted for 27% of all excitatory connections. Preliminary evidence indicates that the monosynaptic potentials are mediated by an excitatory chemical synapse since: all IPSPs occurred with latencies greater than 5 ms, there was no evidence for electrical coupling, and one of the interneurons produced facilitating PSPs. A majority of all monosynaptic connections were made by two of the flexion producing interneurons (FPIs), 201 and 301. The synaptic outputs of these FPIs were similar in that both made monosynaptic connections with a different bilaterally homologous pair of motoneurons. Both also produced larger EPSPs and more vigorous spiking in contralateral members of the bilateral motoneuron pairs. A previous study demonstrated that interneurons 201 and 301 are the only postural interneurons yet identified that express motor programs indistinguishable from command neurons. Taken together, these results suggest that certain intersegmental interneurons share properties with command neurons and driver neurons, and that there may not be a sharp morphological or functional distinction between these two cell types.  相似文献   

16.
Neuronal pathways for the lingual reflex in the Japanese toad   总被引:1,自引:0,他引:1  
1. Anuran tongue is controlled by visual stimuli for releasing the prey-catching behavior ('snapping') and also by the intra-oral stimuli for eliciting the lingual reflex. To elucidate the neural mechanisms controlling tongue movements, we analyzed the neuronal pathways from the glossopharyngeal (IX) afferents to the hypoglossal (XII) tongue-muscle motoneurons. 2. Field potentials were recorded from the bulbar dorsal surface over the fasciculus solitarius (fsol) to the electrical stimulation of the ipsilateral IX nerve. They were composed of three successive negative waves: S1, S2 and N wave. The S1 and S2 waves followed successive stimuli applied at short intervals (10 ms or less), whereas the N wave was strongly suppressed at intervals shorter than 500 ms. Furthermore, the S1 wave had lower threshold than the S2 wave. 3. Orthodromic action potentials were intra-axonally recorded from IX afferent fibers in the fsol to the ipsilateral IX nerve stimuli. Two peaks found in the latency distribution histogram of these action potentials well coincided with the negative peaks of the S1 and the S2 waves of the simultaneously recorded field potentials. Therefore, the S1 and S2 waves should represent the compound action potentials of two groups of the IX afferent fibers with different conduction velocities. 4. Ipsilateral IX nerve stimuli elicited excitatory postsynaptic potentials (EPSPs) in the tongue-protractor motoneurons (PMNs) and the tongue-retractor motoneurons (RMNs). Inhibitory postsynaptic potentials were not observed. 5. The EPSPs recorded in PMNs had mean onset latencies of 6.4 ms measured from the negative peaks of the S1 wave. The EPSPs were facilitated when paired submaximal stimuli were applied at intervals shorter than 20 ms, but were suppressed at intervals longer than 30 ms. Furthermore, the EPSPs were spatially facilitated when peripherally split two bundles of the IX nerve were simultaneously stimulated. 6. On the other hand, the EPSPs recorded in RMNs had shorter onset latencies, averaging 2.5 ms. In 14 of 43 RMNs, early and late EPSP components could be reliably discriminated. The thresholds for the early EPSP components were as low as those for the S1 waves, whereas for the late EPSP components the thresholds were usually higher than those for the S2 waves.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
There are a limited number of ways by which an orderly recruitment of motoneurones by size might occur in a population of similar neurones activated by synapses with invariant average properties and uniform distribution: (i) The smaller motoneurones might have lower voltage thresholds, or, if spherical, current thresholds that increase more rapidly than the square of the diameter, or faster than the inverse of input resistance, (ii) Smaller motoneurones might receive a higher uniform density of afferent boutons than larger cells, (iii) Larger cells might show a disproportionately large increase in soma diameter compared with smaller cells, thus having a smaller ratio of soma to dendrite input resistances.In particular, a size principle does not automatically arise from cells receiving a constant density of afferent terminals, even if the afferents end preferentially on the motoneurone dendrites, and despite the fact that individual synapses generate larger EPSPs in smaller cells.  相似文献   

18.
1. The interneurones which make widespread connexions with flight motoneurones also synapse upon ventilatory motoneurones so that in all 50 motoneurones receive synapses. They influence three aspects of ventilation; (a) the closing and opening movements of the thoracic spiracles, (b) some aspects of abdominal pumping movements and (c) the recruitment of some motoneurones controlling head pumping. 2. The two closer motoneurones of a particular thoracic spiracle receive the same excitatory synaptic inputs (EPSPs) during expiration. The EPSPs match those in appropriate flight motoneurones. 3. The closer motoneurones of each thoracic spiracle whose somata are in the pro-, meso- or metathoracic ganglia all receive the same excitatory synaptic inputs. These inputs are an adequate explanation of the pattern of spikes in the closer motoneurones. Both the slow ventilatory and fast rhythms of synaptic potentials are expressed as spikes; the slow as the overall expiratory burst of spikes and the fast as the groups of spikes within that burst. This establishes a ventilatory function for the interneurones. All thoracic closer motoneurones therefore receive the same excitatory commands which will tend to synchronize the movements of each spiracle. 4. Spiracular opener motoneurones are inhibited during expiration, their IPSPs matching the EPSPs in flight or closer motoneurones. Therefore the interneurones have reciprocal effects on the antagonistic motoneurones of the spiracles. 5. The interneurones synapse upon some motoneurones which control the pumping movements of the abdomen and which have their somata in the metathoracic or first unfused abdominal ganglion. Motoneurones in four separate ganglia therefore receive inputs from these interneurones. 6. The interneurones also synapse upon motoneurones which control an auxiliary form of ventilation, head pumping.  相似文献   

19.
A linear lumped model was proposed for the hippocampal CA 1 region of anesthetized rats using differential equations of time-independent coefficients, the afferent and efferent fibers of the alveus as inputs and the averaged evoked potentials (AEPs) and poststimulus time histograms as outputs. The alvear tract, a major efferent path, was proposed to activate interneurons monosynaptically while the anterior alveus activated orthodromically pyramidal cells which then excited the interneurons. The interneurons then inhibited pyramidal cells. The observable field outputs were the excitatory postsynaptic potentials (EPSPs) of interneurons and the inhibitory postsynaptic potentials (IPSPs) of pyramidal cells. Positive neurophysiological feedbacks were proposed among interneurons and among pyramidal cells in order to account for the prolonged time courses of the interneuronal EPSPs and the pyramidal cell IPSPs. The parameters of the model were optimized by a nonlinear regression program which minimized the sum of squared deviations between the model-generated and actual AEPs. The parameters included the temporal dispersion of the input tract (about 3 ms) and the membrane time constant of interneuronal and pyramidal cell populations (4.8 ms). In anesthetized rats, positive feedback gain coefficients were 0.07 among interneurons and 0.85 among pyramidal cells. After a compound spike (I), two postsynaptic AEP components (II and III) of different time courses were detectable at all depths within CA 1 except at the turnover for each component. The hypothesis that the AEP component II was generated by interneurons was tested and confirmed. The quantitative model constitutes a concise construct of the functional organization of the hippocampal CA 1 region, which suggests further theoretical extensions and experimentation.  相似文献   

20.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号