首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Succinate dehydrogenase (complex II or succinate:ubiquinone oxidoreductase) is a tetrameric, membrane-bound enzyme that catalyzes the oxidation of succinate and the reduction of ubiquinone in the mitochondrial respiratory chain. Two electrons from succinate are transferred one at a time through a flavin cofactor and a chain of iron-sulfur clusters to reduce ubiquinone to an ubisemiquinone intermediate and to ubiquinol. Residues that form the proximal quinone-binding site (Q(P)) must recognize ubiquinone, stabilize the ubisemiquinone intermediate, and protonate the ubiquinone to ubiquinol, while minimizing the production of reactive oxygen species. We have investigated the role of the yeast Sdh4p Tyr-89, which forms a hydrogen bond with ubiquinone in the Q(P) site. This tyrosine residue is conserved in all succinate:ubiquinone oxidoreductases studied to date. In the human SDH, mutation of this tyrosine to cysteine results in paraganglioma, tumors of the parasympathetic ganglia in the head and neck. We demonstrate that Tyr-89 is essential for ubiquinone reductase activity and that mutation of Tyr-89 to other residues does not increase the production of reactive oxygen species. Our results support a role for Tyr-89 in the protonation of ubiquinone and argue that the generation of reactive oxygen species is not causative of tumor formation.  相似文献   

2.
Summary Both vitamin E and coenzyme Q possess distinct lipoprotective antioxidant properties in biological membranes. Their combined antioxidant activity, however, is markedly synergistic when both are present together. While it is likely that vitamin E represents the initial chain-breaking antioxidant during lipid peroxidation, both fully reduced CoQH2 (ubiquinol) and semireduced CoQH. (ubisemiquinone) appear to efficiently recycle the resultant vitamin E phenoxyl radical back to its biologically active reduced form. We describe and support a potential kinetic mechanism whereby vitamin E and coenzyme Q interact in such a way as to usurp the prooxidant effects of O 2 −. . Physical interactions of vitamin E and coenzyme Q within the environment of the membrane lipid bilayer facilitate the recycling of vitamin E by ubisemiquinone and ubiquinol. Lastly, data are linked into a catalytic cycle that serves to connect normal electron transport mechanisms within biological membranes to the maintenance of lipoprotective antioxidant mechanisms.  相似文献   

3.
QP-S, a ubiquinone (Q) protein, accepts electrons from succinate through succinate dehydrogenase (SDH). A new method has produced a preparation of QP-S which has a different amino acid composition and SDS gel electrophoretic pattern from that of the old preparation (Biochemistry 19, 3579-3585 (1980)). The new preparation contains less than 1 nmol heme/mg protein; the activity of the preparation was not proportional to its heme content. A thenoyltrifluoroacetone sensitive free radical signal was detected by EPR spectroscopy in succinate-Q reductase reconstituted from this QP-S and SDH; the characteristics of this species identify it as ubisemiquinone. At pH 7.4, the Em of the two electron step was about 70 mV with E1 = 5 mV and E2 = 125 mV. The properties of the radical differed slightly from those of "Qs" radical in more intact preparations (e.g. submitochondrial particles). The present is the simplest system in which such a succinate reducible ubisemiquinone free radical has been demonstrated.  相似文献   

4.
The brief review presents evidence that, in addition to the well-known functions of ubiquinone (coenzyme Q) as a component of the mitochondrial respiratory chain, this compound in the reduced form (ubiquinol) functions as an antioxidant. Ubiquinone in a partially reduced form is found in all cell membranes. It protects efficiently not only membrane phospholipids from peroxidation but also mitochondrial DNA and membrane proteins from free-radical-induced oxidative damage. This protective role of ubiquinol is independent of the effect of exogenous antioxidants, such as vitamin E, and it can both prevent the formation of free lipid radicals and eliminate them either directly or by regenerating vitamin E.  相似文献   

5.
The mechanism of ubiquinone homologs reduction by different preparations of mitochondrial NADH dehydrogenase: complex I within submitochondrial particles, isolated NADH-ubiquinone oxidoreductase and soluble low molecular weight NADH dehydrogenase, has been investigated. It has been shown that NADH oxidation via the rotenone-insensitive reaction is associated with one-electron reduction of low molecular weight ubiquinone homologs (Q0, Q1, Q2) to semiquinone with subsequent fast oxidation of the latter by atmospheric oxygen to form a superoxide radical. The two-electron ubiquinone reduction to quinol in the rotenone-sensitive reaction is unaccompanied by the semiquinone release from the enzyme active center into the surrounding solution.  相似文献   

6.
Yuri Silkin 《BBA》2007,1767(2):143-150
Succinate dehydrogenase (complex II or succinate:ubiquinone oxidoreductase) is a tetrameric, membrane-bound enzyme that catalyzes the oxidation of succinate and the reduction of ubiquinone in the mitochondrial respiratory chain. Two electrons from succinate are transferred one at a time through a flavin cofactor and a chain of iron-sulfur clusters to reduce ubiquinone to an ubisemiquinone intermediate and to ubiquinol. Residues that form the proximal quinone-binding site (QP) must recognize ubiquinone, stabilize the ubisemiquinone intermediate, and protonate the ubiquinone to ubiquinol, while minimizing the production of reactive oxygen species. We have investigated the role of the yeast Sdh4p Tyr-89, which forms a hydrogen bond with ubiquinone in the QP site. This tyrosine residue is conserved in all succinate:ubiquinone oxidoreductases studied to date. In the human SDH, mutation of this tyrosine to cysteine results in paraganglioma, tumors of the parasympathetic ganglia in the head and neck. We demonstrate that Tyr-89 is essential for ubiquinone reductase activity and that mutation of Tyr-89 to other residues does not increase the production of reactive oxygen species. Our results support a role for Tyr-89 in the protonation of ubiquinone and argue that the generation of reactive oxygen species is not causative of tumor formation.  相似文献   

7.
Strains of basidiomycete yeasts isolated from different sources were studied in order to determine the content of carotenoid pigments and ubiquinone Q10 for subsequent selection work to obtain producers of these substances. High specific productivity of carotenoids (600-700 mg/g) was revealed in the representatives of the following species: Cystofilobasidium capitatum. Rhodosporidium diobovatum, R. sphaerocarpum. Rhodotorula glutinis, Rh. minuta, and Sporobolomyces roseus. The ratio of the major pigments (torulene, torularhodine, and beta-carotene) in the representatives of different species was studied. Certain specific features of pigment formation in relation to the taxonomic position of the yeasts were determined. Eurybiont species with substantial ecological lability are the most active producers of carotenoids and ubiquinone Q10 among the epiphytes. It is the first time a comparative analysis of the coenzyme Q10 content in different taxa has been performed using several strains of the same species. The maximal coenzyme Q10 production (1.84 mg/g of dry biomass) was found in the yeast species R. sphaerocarpum.  相似文献   

8.
Ubiquinone is an essential molecule in aerobic organisms to achieve both, ATP synthesis and antioxidant defence. Mutants in genes responsible of ubiquinone biosynthesis lead to non-respiring petite yeast. In C. elegans, coq-7/clk-1 but not coq-3 mutants live longer than wild type showing a 'slowed' phenotype. In this paper we demonstrate that absence in ubiquinone in coq-1, coq-2 or coq-8 mutants lead to larval development arrest, slowed pharyngeal pumping, eventual paralysis and cell death. All these features emerge during larval development, whereas embryo development appeared similar to that of wild type individuals. Dietary coenzyme Q did not restore any of the alterations found in these coq mutants. These phenomena suggest that coenzyme Q mutants unable to synthesize this molecule develop a deleterious phenotype leading to lethality. On the contrary, phenotype of C. elegans coq-7/clk-1 mutants may be a unique phenotype than can not generalize to mutants in ubiquinone biosynthesis. This particular phenotype may not be based on the absence of endogenous coenzyme Q, but to the simultaneous presence of dietary coenzyme Q and the its biosynthesis intermediate demethoxy-coenzyme Q.  相似文献   

9.
The chemistry of ubiquinone allows reversible addition of single electrons and protons. This unique property is used in nature for aerobic energy gain, for unilateral proton accumulation, for the generation of reactive oxygen species involved in physiological signaling and a variety of pathophysiological events. Since several years ubiquinone is also considered to play a major role in the control of lipid peroxidation, since this lipophilic biomolecule was recognized to recycle alpha-tocopherol radicals back to the chain-breaking form, vitamin E. Ubiquinone is therefore a biomolecule which has increasingly focused the interest of many research groups due to its alternative pro- and antioxidant activity. We have intensively investigated the role of ubiquinone as prooxidant in mitochondria and will present experimental evidences on conditions required for this function, we will also show that lysosomal ubiquinone has a double function as proton translocator and radical source under certain metabolic conditions. Furthermore, we have addressed the antioxidant role of ubiquinone and found that the efficiency of this activity is widely dependent on the type of biomembrane where ubiquinone exerts its chain-breaking activity.  相似文献   

10.
Ubiquinol regeneration by plasma membrane ubiquinone reductase   总被引:1,自引:0,他引:1  
Summary Several enzyme systems have been proposed to play a role in the maintenance of ubiquinol in membranes other than the inner mitochondrial membrane. The aim of this study was to investigate the mechanisms involved in NADH-driven regeneration of antioxidant ubiquinol at the plasma membrane. Regeneration was measured by quantifying the oxidized and reduced forms of ubiquinone by electrochemical detection after separation by high-performance liquid chromatography. Plasma membrane incubation with NADH resulted in the consumption of endogenous ubiquinone, and a parallel increase in ubiquinol levels. The activity showed saturation kinetics with respect to the pyridine nucleotides and was moderately inhibited byp-hydroxymercuribenzoate. Only a slight inhibition was achieved with dicumarol at concentrations reported to fully inhibit DT-diaphorase. Salt-extracted membranes displayed full activity of endogenous ubiquinol regeneration, supporting the participation of an integral membrane protein. In liposomes-reconstituted systems, the purified cytochromeb 5 reductase catalyzed the reduction of the natural ubiquinone homologue coenzyme Q10 at rates accounting for the activities observed in whole plasma membranes, and decreased the levels of lipid peroxidation. Our data demonstrate the role of the cytochromeb 5 reductase in the regeneration of endogenous ubiquinol.Abbreviations AAPH 2,2-azobis-(2-amidinopropane) hydrochloride - CoQ coenzyme Q, ubiquinone - CoQH2 reduced coenzyme Q, ubiquinol - pHMB p-hydroxymercuribenzoate  相似文献   

11.
The function of ubiquinone in Escherichia coli   总被引:45,自引:17,他引:28  
1. The function of ubiquinone in Escherichia coli was studied by using whole cells and membrane preparations of normal E. coli and of a mutant lacking ubiquinone. 2. The mutant lacking ubiquinone, strain AN59 (Ubi(-)), when grown under aerobic conditions, gave an anaerobic type of growth yield and produced large quantities of lactic acid, indicating that ubiquinone plays a vital role in electron transport. 3. NADH and lactate oxidase activities in membranes from strain AN59 (Ubi(-)) were greatly impaired and activity was restored by the addition of ubiquinone (Q-1). 4. Comparison of the percentage reduction of flavin, cytochrome b(1) and cytochrome a(2) in the aerobic steady state in membranes from the normal strain (AN62) and strain AN59 (Ubi(-)) and the effect of respiratory inhibitors on these percentages in membranes from strain AN62 suggest that ubiquinone functions at more than one site in the electron-transport chain. 5. Membranes from strain AN62, in the absence of substrate, showed an electron-spin-resonance signal attributed to ubisemiquinone. The amount of reduced ubiquinone (50%) found after rapid solvent extraction is consistent with the existence of ubiquinone in membranes as a stabilized ubisemiquinone. 6. The effects of piericidin A on membranes from strain AN62 suggest that this inhibitor acts at the ubiquinone sites: thus inhibition of electron transport is reversed by ubiquinone (Q-1); the aerobic steady-state oxidation-reduction levels of flavins and cytochrome b(1) in the presence of the inhibitor are raised to values approximating those found in the membranes of strain AN59 (Ubi(-)); the inhibitor rapidly eliminates the electron-spin-resonance signal attributed to ubisemiquinone and allows slow oxidation of endogenous ubiquinol in the absence of substrate and prevents reduction of ubiquinone in the presence of substrate. It is concluded that piericidin A separates ubiquinone from the remainder of the electron-transport chain. 7. A scheme is proposed in which ubisemiquinone, complexed to an electron carrier, functions in at least two positions in the electron-transport sequence.  相似文献   

12.
Low-molecular-weight aldehydes (glyoxal, methylglyoxal, 3-deoxyglucosone) generated on autooxidation of glucose under conditions of carbonyl stress react much more actively with amino groups of L-lysine and epsilon-amino groups of lysine residues of apoprotein B-100 in human blood plasma low density lipoproteins (LDL) than their structural analogs (malonic dialdehyde (MDA), 4-hydroxynonenal) resulting on free radical oxidation of lipids under conditions of oxidative stress. Glyoxal-modified LDL aggregate in the incubation medium with a significantly higher rate than LDL modified by MDA, and MDA-modified LDL are markedly more poorly absorbed by cultured human macrophages and significantly more slowly eliminated from the rat bloodstream upon intravenous injection. Studies on kinetics of free radical oxidation of rat liver membrane phospholipids have shown that ubiquinol Q(10) is the most active lipid-soluble natural antioxidant, and suppression of ubiquinol Q(10) biosynthesis by beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitors (statins) is accompanied by intensification of lipid peroxidation in rat liver biomembranes and in LDL of human blood plasma. Injection of ubiquinone Q(10) protects the human blood plasma LDL against oxidation and prevents oxidative stress-induced damages to rat myocardium. A unified molecular mechanism of atherogenic action of carbonyl-modified LDL in disorders of lipid and carbohydrate metabolism is discussed.  相似文献   

13.
Piperidine nitroxides such as TEMPOL act as antioxidants in vivo due to their interconversion among nitroxide, hydroxylamine, and oxoammonium derivatives, but the mechanistic details of these reactions are unclear. As mitochondria are a significant site of piperidine nitroxide metabolism and action, we synthesized a mitochondria-targeted nitroxide, MitoTEMPOL, by conjugating TEMPOL to the lipophilic triphenylphosphonium cation. MitoTEMPOL was accumulated several hundred-fold into energized mitochondria where it was reduced to the hydroxylamine by direct reaction with ubiquinol. This reaction occurred by transfer of H() from ubiquinol to the nitroxide, with the ubisemiquinone radical product predominantly dismutating to ubiquinone and ubiquinol, together with a small amount reacting with oxygen to form superoxide. The piperidine nitroxides TEMPOL, TEMPO, and butylTEMPOL reacted similarly with ubiquinol in organic solvents but in mitochondrial membranes the rates varied in the order: MitoTEMPOL > butylTEMPOL > TEMPO > TEMPOL, which correlated with the extent of access of the nitroxide moiety to ubiquinol within the membrane. These findings suggest ways of using mitochondria-targeted compounds to modulate the coenzyme Q pool within mitochondria in vivo, and indicate that the antioxidant effects of mitochondria-targeted piperidine nitroxides can be ascribed to their corresponding hydroxylamines.  相似文献   

14.
Endogenous ubiquinones (UQ) such as coenzyme Q(10) are essential electron carriers in the mitochondrial respiratory chain, and the reduced ubiquinol form (UQH(2)) is a chain-breaking antioxidant, decreasing oxidative damage caused by lipid peroxidation within mitochondria. Consequently, exogenous UQ are used as therapies to decrease mitochondrial oxidative damage. The proximal radical produced during mitochondrial oxidative stress is superoxide (O(2)(.-)) and the reaction between UQ and O(2)(.-) to form the ubisemiquinone radical anion (UQ(.-)) may also be important for the scavenging of O(2)(.-) by exogenous UQ. The situation in vivo is that many UQ are predominantly located in the hydrophobic membrane core, from which O(2)(.-) will be excluded but its conjugate acid, HOO(.), can enter. The reactivity of UQ or UQH(2) with HOO(.) has not been reported previously. Here a pulse radiolysis study on the reactions between UQ/UQH(2) and O(2)(.-)/HOO(.) in water and in solvent systems mimicking the surface and core of biological membranes has been undertaken. O(2)(.-) reacts very rapidly with UQ, suggesting that this may contribute to the scavenging of O(2)(.-) in vivo. In contrast, UQH(2) reacts relatively slowly with HOO(.), but rapidly with other oxygen- and carbon-centered radicals, indicating that the antioxidant role of UQH(2) is mainly in preventing lipid peroxidation.  相似文献   

15.
alpha-Lipoic (LA) acid (thioctic acid) is an intramolecular disulfide that may be simply endogenically turned into dithiol. Dihydrolipoic acid (DHLA)/ LA and DHLA are bioantioxidants. They are synthesized in the body and taken with diet. Water- and lipide-soluble LA is highly-effective against the reactive oxygen species. LA (DHLA) protect the biomembranes, mitochondria from oxidative stresses of various kinds. LA, DHLA and lipoamide function as cofactors of polyenzyme mitochondrial complexes of 2-oxoacid dehydrogenases, of glycin decarboxylases and of some other enzymes. LA (DHLA) is ubiquinone reactivator and synergist by vitamin A, C, E. LA optimizes glucose metabolism, it is effective in insulin-resistant diabetes and its complications, in neutopathies and neurodegenerative diseases.  相似文献   

16.
Kobayashi K  Tagawa S  Mogi T 《Biochemistry》2000,39(50):15620-15625
To elucidate a unique mechanism for the quinol oxidation in the Escherichia coli cytochrome bo, we applied pulse radiolysis technique to the wild-type enzyme with or without a single bound ubiquinone-8 at the high-affinity quinone binding site (Q(H)), using N-methylnicotinamide (NMA) as an electron mediator. With the ubiquinone bound enzyme, the reduction of the oxidase occurred in two phases as judged from kinetic difference spectra. In the faster phase, the transient species with an absorption maximum at 440 nm, a characteristic of the formation of ubisemiquinone anion radical, appeared within 10 micros after pulse radiolysis. In the slower phase, a decrease of absorption at 440 nm was accompanied by an increase of absorption at 428 and 561 nm, characteristic of the reduced form. In contrast, with the bound ubiquinone-8-free wild-type enzyme, NMA radicals directly reduced hemes b and o, though the reduction yield was low. These results indicate that a pathway for an intramolecular electron transfer from ubisemiquinone anion radical at the Q(H) site to heme b exists in cytochrome bo. The first-order rate constant of this process was calculated to be 1.5 x 10(3) s(-1) and is comparable to a turnover rate for ubiquinol-1. The rate constant for the intramolecular electron transfer decreased considerably with increasing pH, though the yields of the formation of ubisemiquinone anion radical and the subsequent reduction of the hemes were not affected. The pH profile was tightly linked to the stability of the bound ubisemiquinone in cytochrome bo [Ingledew, W. J., Ohnishi, T., and Salerno, J. C. (1995) Eur. J. Biochem. 227, 903-908], indicating that electron transfer from the bound ubisemiquinone at the Q(H) site to the hemes slows down at the alkaline pH where the bound ubisemiquinone can be stabilized. These findings are consistent with our previous proposal that the bound ubiquinone at the Q(H) site mediates electron transfer from the low-affinity quinol oxidation site in subunit II to low-spin heme b in subunit I.  相似文献   

17.
Coenzyme Q plays an integral role in oxygen metabolism and management, and there is a positive correlation between low tissue coenzyme Q concentrations and the progression of many degenerative diseases. Retinal oxidative damage plays a role in the pathogenesis of many degenerative eye diseases; nevertheless, despite the retina's high rate of oxygen metabolism, there is little data relating to retinal coenzyme Q concentrations. In this study, we quantified coenzyme Q in the model bovine eye and determined whether it could function as a retinal lipid antioxidant. We found that the neural retina's ubiquinone concentration exceeded those of the vitreous humor, lens, choroid, and extraocular muscle, but it was lower than those measured in heart, kidney, liver, and brain tissues. Ubiquinol was found to be as effective as vitamin E as a retinal lipid antioxidant. The overall relatively low levels of ubiquinone found in the retina, coupled with the retina's need for lipid antioxidants and oxidative metabolism, suggests that retinal function might be sensitive to changes in ubiquinone concentrations.  相似文献   

18.
The ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans exhibits a thermodynamically stable ubisemiquinone radical detectable by EPR spectroscopy. The radical is centered at g = 2.004, is sensitive to antimycin, and has a midpoint potential at pH 8.5 of +42 mV. These properties are very similar to those of the stable ubisemiquinone (Qi) previously characterized in the cytochrome bc1 complexes of mitochondria. The micro-environment of the Rieske iron-sulfur cluster in the Paracoccus cytochrome bc1 complex changes in parallel with the redox state of the ubiquinone pool. This change is manifested as shifts in the gx, gy, and gz values of the iron-sulfur cluster EPR signal from 1.80, 1.89, and 2.02 to 1.76, 1.90, and 2.03, respectively, as ubiquinone is reduced to ubiquinol. The spectral shift is accompanied by a broadening of the signal and follows a two electron reduction curve, with a midpoint potential at pH 8.5 of +30 mV. A hydroxy analogue of ubiquinone, UHDBT, which inhibits respiration in the cytochrome bc1 complex, shifts the gx, gy, and gz values of the iron-sulfur cluster EPR signal to 1.78, 1.89, and 2.03, respectively, and raises the midpoint potential of the iron-sulfur cluster at pH 7.5 from +265 to +320 mV. These changes in the micro-environment of the Paracoccus Rieske iron-sulfur cluster are like those elicited in mitochondria. These results indicate that the cytochrome bc1 complex of P. denitrificans has a binding site for ubisemiquinone and that this site confers properties on the bound ubisemiquinone similar to those in mitochondria. In addition, the line shape of the Rieske iron-sulfur cluster changes in response to the oxidation-reduction status of ubiquinone, and the midpoint of the iron-sulfur cluster increases in the presence of a hydroxyquinone analogue of ubiquinone. The latter results are also similar to those observed in the mitochondrial cytochrome bc1 complex. However, unlike the mitochondrial complexes, which contain eight to 11 polypeptides and are thought to contain distinct quinone binding proteins, the Paracoccus cytochrome bc1 complex contains only three polypeptide subunits, cytochromes b, c1, and iron-sulfur protein. The ubisemiquinone binding site and the site at which ubiquinone and/or ubiquinol bind to affect the Rieske iron-sulfur cluster in Paracoccus thus exist in the absence of any distinct quinone binding proteins and must be composed of domains contributed by the cytochromes and/or iron-sulfur protein.  相似文献   

19.
Coenzyme Q (ubiquinone, UQ) is increasingly considered as a significant natural antioxidant, which protects biomembranes in concert with alpha-tocopherol. In vitro experiments demonstrated that reduced UQ (ubiquinol) can improve the chain-breaking activities of alpha-tocopherol by recycling the antioxidant-derived reaction product, the chromanoxyl radical, to the native antioxidant. Less attention, however, was devoted to the antioxidant-derived reaction products of reduced UQ. Although both alpha-tocopherol and ubiquinol were found to be equally effective in scavenging chain-propagating lipid radicals. alpha-tocopherol protected lipid membranes from lipid peroxidation more efficiently than ubiquinol. The present study not only provides data which document this discrepancy but also contributes experimental data on the existence of ubiquinol derived pro-oxidants, which give an explanation of this phenomenon.  相似文献   

20.
Ubiquinone (coenzyme Q10), in addition to its function as an electron and proton carrier in mitochondrial electron transport coupled to ATP synthesis, acts in its reduced form (ubiquinol) as an antioxidant, inhibiting lipid peroxidation in biological membranes and protecting mitochondrial inner-membrane proteins and DNA against oxidative damage accompanying lipid peroxidation. Tissue ubiquinone levels are subject to regulation by physiological factors that are related to the oxidative activity of the organism: they increase under the influence of oxidative stress, e.g. physical exercise, cold adaptation, thyroid hormone treatment, and decrease during aging. In the present study, coenzyme Q homologues were separated and quantified in the brains of mice, rats, rabbits, and chickens using high-performance liquid chromatography. In addition, the coenzyme Q homologues were measured in cells such as NG-108, PC-12, rat fetal brain cells and human SHSY-5Y and monocytes. In general, Q1 content was the lowest among the coenzyme homologues quantified in the brain. Q9 was not detectable in the brains of chickens and rabbits, but was present in the brains of rats and mice. Q9 was also not detected in human cell lines SHSY-5Y and monocytes. Q10 was detected in the brains of mice, rats, rabbits, and chickens and in cell lines. Since both coenzyme Q and vitamin E are antioxidants, and coenzyme Q recycles vitamins E and C, vitamin E was also quantified in mice brain using HPLC-electrochemical detector (ECD). The quantity of vitamin E was lowest in the substantia nigra compared with the other brain regions. This finding is crucial in elucidating ubiquinone function in bioenergetics; in preventing free radical generation, lipid peroxidation, and apoptosis in the brain; and as a potential compound in treating various neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号