首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homocysteine-thiolactone (HcyT) is a toxic product whose synthesis is directly proportional to plasma homocysteine (Hcy) levels. Previous studies demonstrated that the interaction between HcyT and low density lipoproteins (LDL) induces the formation of homocystamide-LDL adducts (Hcy-LDL). Structural and functional alterations of Hcy-LDL have been described and it has been suggested that homocysteinylation could increase atherogenicity of LDL. Oxidative damage of endothelial cells (EC) is considered to be a critical aspect of the atherosclerotic process. To further investigate the molecular mechanisms involved in the atherogenicity of homocysteinylated LDL, we studied the effect of interaction between Hcy-LDL and EC on cell oxidative damage, using human aortic endothelial cells (HAEC) as experimental model. Homocysteinylation of LDL was carried out by incubation of LDL, isolated from plasma of healthy normolipemic subjects, with HcyT (10-100 microM). In our experimental conditions, homocysteinylation treatment was not accompanied by oxidative damage of LDL. No modifications of apoprotein structure and physico-chemical properties were observed in Hcy-LDL with respect to control LDL (c-LDL), as evaluated using the intrinsic fluorescence of tryptophan and the probe Laurdan incorporated in lipoproteins. Our results demonstrated that Hcy-LDL incubated at 37 degrees C for 3 h with HAEC, induced an oxidative damage on human EC with a significant increase of lipid hydroperoxides in cells incubated with Hcy-LDL with respect to cell incubated with c-LDL. The compositional changes were associated with a significant decrease viability in cells treated with Hcy-LDL. The relationship between the levels of -SH groups of LDL and the oxidative damage of HAEC has been demonstrated. These results suggest that Hcy-LDL exert a cytotoxic effect that is likely related to an increase in lipid peroxidation and oxidative damage of EC.  相似文献   

2.
Recent studies have demonstrated that Apo AIV exerts a protective effect against atherosclerosis. Moreover, Qin et al. (Am. J. Physiol. 274 (1998) H1836) have demonstrated that Apo AIV, isolated from rat plasma, exerts an inhibitory effect against Cu(2+)-induced lipid peroxidation of intestinal lymph and LDL. The aim of the study was to investigate whether human Apo AIV exerts a protective effect against Cu(2+)-induced lipid peroxidation. Our results demonstrated that human Apo AIV exerted an inhibitory effect against Cu(2+) and AAPH induced lipid peroxidation of VLDL, as shown by the lower increase in the levels of TBARS and conjugated dienes in lipoproteins preincubated with Apo AIV. In addition, the tryptophan (Trp) and probe 2-(dimethylamino)-6-lauroylnaphthalene (Laurdan) fluorescence studies demonstrated that the modifications of spectral properties in both lipoproteins preincubated with Apo AIV were lower with respect to ox-lipoproteins, suggesting that Apo AIV prevents the modification of physico-chemical properties due to peroxidation.  相似文献   

3.
We investigated the effect of aluminium (Al 3+ ) on lipid peroxidation and physico-chemical properties of high density lipoproteins (HDL) isolated from human plasma. Our results demonstrated that Al 3+ enhances lipid peroxidation of human HDL as shown by the significant increase in lipid hydroperoxides in Al-treated HDL with respect to control HDL. The oxidative effect was higher at acid pH (pH 5.5) with respect to pH 7.4. Moreover, a stimulating effect of Al 3+ on iron-induced lipid peroxidation of HDL was demonstrated. The study of the effect of Al 3+ on the physico-chemical properties of HDL, using the fluorescence polarization (Pf) of the probes TMA-DPH (1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene iodide) and DPH (1,6-diphenyl-1,3,5-hexatriene), showed a significant decrease of Pf in Al-treated HDL with respect to control. These results suggest that Al 3+ induces a decrease of molecular order at the lipoprotein surface. Moreover, the study of tryptophan (Trp) fluorescence demonstrated that aluminium induces structural modifications of HDL apoproteins and on HDL physico-chemical properties. The effect of Al 3+ on lipid peroxidation of HDL was observed at aluminium concentrations similar to those observed in the brain of patients affected by neurological diseases. Aluminium-induced oxidative damage of HDL could be involved in the development of neurological diseases.  相似文献   

4.
The incidence of atherosclerosis and related diseases increases with age. The aging process may enhance lipoprotein modification, which leads to an increase in the susceptibility of low density lipoprotein (LDL) and high density lipoprotein (HDL) to oxidation. Dehydroepiandrosterone (DHEA), the most abundant steroid hormone in humans, has been shown to have antiatherogenic effects. This hormone also decreases dramatically with age. In the present study, we were interested in determining the presence of DHEA/DHEAS (dehydroepiandrosterone sulfate) and changes in their concentrations in HDL and LDL lipoproteins with age. Moreover, we studied the susceptibility of LDL to oxidation with age in the presence or absence of vitamin E or DHEA. We demonstrated that vitamin E is unable to restore the decreased resistance to oxidation of LDL from elderly subjects to that of LDL obtained from young subjects. Furthermore, our results provide evidence that DHEA is an integral part of LDL and HDL and disappears to almost nondetectable levels during aging. The DHEA incorporated into the LDL from elderly subjects increased LDL resistance to oxidation in a concentration-dependent manner. The increased resistance provided by DHEA was higher than that with vitamin E. DHEA seems to act either by protecting vitamin E from disappearance from LDL under oxidation or by scavenging directly the free radicals produced during the oxidative process. Our results suggests that DHEA exerts an antioxidative effect on LDL, which could have antiatherogenic consequences. Careful clinical trials of DHEA replacement should determine whether this ex vivo effect could be translated into any measurable antiatherogenic (cardioprotective) action.  相似文献   

5.
Cardiovascular diseases are accompanied by active oxygen species and organic free radical generation. The aim of this study was to examine the possibility of using oxidized low-density lipoprotein (oxLDL) as a new diagnostic biomarker. Epidemiological study in populations of Estonia (782 subjects) and Russia (1433 subjects) was carried out in 2007-2009. The screening procedure included standard epidemiological methods. Oxidative stress was assessed by measuring the level of oxLDL using immunoassay method. Positive correlation between the levels of oxLDL and LDL cholesterol was indicated in blood of patients from estonian (r = 0.61; P < 0.05) and russian (r = 0.56; P < 0.05) populations. In russian population oxLDL/HDL cholesterol ratio was higher in the groups with highest risk of atherosclerosis development or manifest coronary artery disease (CAD). Cholesterol-rich low density lipoproteins are also more oxidized. Estimation of oxLDL/HDL ratio may be used as an independent biochemical marker for atherosclerosis.  相似文献   

6.
Antibodies against oxidized low density lipoproteins in pregnant women   总被引:1,自引:0,他引:1  
Oxidized low density lipoproteins (oxLDL) formed in vivo induce a humoral immune response. Oxidative modification of LDL renders it immunogenic and a heterogeneous population of specific anti-oxLDL antibodies is produced. These antibodies could represent a biological marker of oxidative stress and serve as markers of atherosclerosis. Autoantibodies against oxLDL (oLAb) have been detected in human subjects practically of every age. oLAb also appear in the blood of pregnant women. Some studies have shown that the levels of antibodies to oxLDL were elevated in women with established preeclampsia. The present study was aimed to estimate the oLAb IgG levels in the first and second trimester of pregnancy. Furthermore, we estimated the correlation between maternal serum (MS) levels of oLAb and alpha-1-fetoprotein (MS AFP), human chorionic gonadotrophin (MS HCG) and trophoblast-specific-beta-1-glycoprotein (MS SP1), because these proteins are determined as a part of prenatal biochemical screening for fetal congenital abnormalities. Our study deals with the oLAb changes in women with pregnancy-induced hypertension. We also investigated the correlation between oLAb IgG and anticardiolipin antibodies IgG (ACA) in the serum of pregnant women. We examined 40 pregnant women attending Institute for Mother and Child Care for their antenatal care as outpatients. Routine blood samplings between the 9-13th week of pregnancy and 16-18th week of pregnancy were performed as a part of biochemical prenatal screening for fetal congenital abnormalities (Group 1). Their mean age was 27 +/- 4.1 years. Furthermore, we examined 26 women in the second or third trimester with pregnancy-induced hypertension (Group 2). Group 2 was compared with 49 pregnant women in the second or third trimester who were normotensive (Group 3). We used commercial standardized ELISA kits for determination of oLAb IgG, ACA IgG, MS AFP and MS HCG, MS SP1 was analyzed by single radial immunodiffusion. We did not find any differences in the levels of oLAb IgG in the first and second trimester in the women of Group 1. The correlation between oLAb and ACA IgG was not statistically significant (Spearman coefficient r=0.22, p=0.1). The correlation between oLAb IgG with MS AFP, MS HCG and MS SP1 was not statistically significant. Weak negative correlation for AFP and HCG was suggested both in the first and in the second trimester. The levels of oLAb IgG in the group of women with pregnancy-induced hypertension were significantly lower than in the group of normotensive women (348 +/- 388 U/ml v.s. 579 +/- 400 mU/ml, p<0.01). We can conclude that the levels of oLAb do not differ in the first and second trimester of gravidity. However, we cannot exclude the possible influence of an inverse relationship between oLAb IgG titers and the synthesis of fetoplacental antigens. This finding is important especially in the context of the results of prenatal biochemical screening. Pregnancy-induced hypertension is associated with lower levels of oLAb. Weak cross-reactivity between oLAb and anticardiolipin antibodies may exist but there is a possibility that there are two different populations of antibodies reacting with various antigens.  相似文献   

7.
Although sphingomyelin (SPH) is a major constituent of all lipoproteins, its physiological function in plasma is not known. In this study, we tested the hypothesis that SPH inhibits lipid peroxidation in low density lipoproteins (LDL) because of its effects on surface fluidity and packing density and that the relative resistance of the buoyant LDL to oxidation, compared with the dense LDL, is partly due to their higher SPH content. Depletion of SPH by treatment with SPHase resulted in shortened lag times and increased rates of oxidation in both LDL subfractions, as measured by the conjugated diene formation in the presence of Cu(2+). Oxidation of LDL by soybean lipoxygenase was similarly stimulated by the degradation of SPH. Oxidation-induced fluorescence decay of diphenylhexatriene-labeled phosphatidylcholine (PC), equilibrated with LDL-PC, was accelerated significantly by the enzymatic depletion of SPH from the lipoprotein. Oxidation of 16:0-18:2 PC in the proteoliposomes was inhibited progressively by the incorporation of increasing amounts of egg SPH into the liposomes. Treatment of SPH-containing proteoliposomes with SPHase reversed the effect of SPH, showing that the presence of intact SPH is necessary for the inhibition of oxidation. Although the incorporation of SPH into the same liposome as the PC (intrinsic SPH) protected the PC against oxidation, the addition of SPH liposomes to PC liposomes (extrinsic SPH) was not effective. Oxidation of 16:0-18:2 PC in liposomes was also inhibited by the incorporation of dipalmitoyl-PC, but not by free cholesterol. These results suggest that SPH acts as a physiological inhibitor of lipoprotein oxidation, possibly by modifying the fluidity of the phospholipid monolayer and thereby inhibiting the lateral propagation of the lipid peroxy radicals.  相似文献   

8.
The role of high density lipoproteins (HDL), their subfractions (HDL2 and HDL3) and lecithin: cholesterol acyltransferase (LCAT) on peroxidative modification of low density lipoproteins (LDL) in vitro was studied. Peroxidative modification was estimated by the formation of malonic dialdehyde (MDA) and LDL aggregates during LDL incubation at 37 degrees C for several days without Fe2+ or for 2 hours in the presence of Fe2+ in EDTA-free media. It was shown that the addition of HDL3 (but not HDL2) markedly decreases the formation of both MDA and LDL aggregates. Since LCAT is bound to HDL3, its effect was examined. An addition of LCAT isolated from human plasma (650-fold purification) at a concentration of 450 micrograms/ml resulted in a complete inhibition of LDL peroxidation and LDL aggregate formation. Heat-inactivated LCAT had no effect. Possible mechanisms of the protective effect of LCAT on LDL peroxidative modification are discussed.  相似文献   

9.
Complexes of lipopolysaccharide (LPS) B of Salmonella typhimurium with human low density lipoproteins (LDL) formed during in vitro coincubation via spontaneous incorporation of LPS (complex LDL-LPS) or through the incorporation stimulated by the serum protein fraction (LPS/LDL complex) were studied. The LPS/LDL complex was shown to maximally bind 0.24 mg of LPS per 1 mg of LDL protein, whereas the LDL-LPS complex contained only 0.07 mg of LPS per 1 mg of LDL protein. The observed incorporation of LPS into LDL particles was not possibly associated with a transfer of lipids or proteins from high density lipoproteins to LDL. The insertion of LPS was probably accompanied by the expulsion of a small portion of phosphatidylcholine molecules from the outer monolayer of LDL into the aqueous medium and by an increase in the phosphatidylethanolamine concentration in LDL. Simultaneously, the level of esterified cholesterol in the LPS/LDL complex decreased, and the concentrations of free cholesterol and triacylglycerols showed a rise. The level of free fatty acids in the LPS/LDL complex increased more than twofold compared with intact LDL. The enhancement of LPS incorporation did not result in the insertion of any serum proteins into LDL, in which apoB-100 remained the major apolipoprotein (ca. 90%); apoB-100 fragments made up to 5-7%, whereas apoE and apoC contained altogether ca. 3-5%. It is suggested that the LPS/LDL complex obtained can bind to three types of cell receptors, i.e., apoB/E receptors, LPS receptors and scavenger receptors of macrophages (monocytes); the increased level of free fatty acids in the LPS/LDL complex may accelerate its subsequent catabolism.  相似文献   

10.
Receptor-mediated incorporations of two modified low density lipoproteins (LDL), acetylated LDL (acetyl-LDL) and oxidized LDL were compared in vitro in mouse peritoneal macrophages by cross-competition experiments. Excess amount of oxidized LDL inhibits the binding of [125I]acetyl-LDL only partially, and excess amount of acetyl-LDL inhibits that of [125I]oxidized LDL also only partially, suggesting that the uptake of the two LDL by macrophages is mediated by partially overlapped yet different mechanisms. Scatchard analysis of [125I]acetyl-LDL binding showed a linear plot and addition of excess amount of oxidized LDL partially displaced the binding sites without changing the affinity, suggesting that there are two classes of receptors with similar affinity; one is specific for acetyl-LDL and the other is common. And the plot of [125I]oxidized LDL binding showed a curvilinear plot and excess amount of acetyl-LDL partially displaced the binding sites of the low affinity, suggesting that there are two classes of binding sites with different affinities and the low affinity one is shared with acetyl-LDL. These results indicate that macrophage receptors for modified LDL consist of at least three receptors, two of which are specific for each LDL and the rest is a common receptor.  相似文献   

11.
Low density lipoproteins (LDL), isolated by ultracentrifugal flotation, were oxidized (LDLOXID) slowly during dialysis against 0.15 M NaCl and subsequent incubation in 96% air-4% CO2 at 37 degrees C. Butylated hydroxytoluene prevented LDL oxidation. LDL preparations from different sera were oxidized at different rates and the degree of lipid peroxidation was controlled by varying the incubation time. Mild oxidation did not alter the electrophoretic mobility of the LDLOXID preparations. LDLOXID contained lipid peroxides in neutral lipids, had increased amounts of lysophosphatidylcholine, and contained a number of complex oxidation products that were generated from the oxidation of free fatty acids. These oxidation products included large amounts of soluble material that cross-reacted with antibodies to PGE2 but not 6-keto-PGF1 alpha. The amount of cross-reacting material was proportional to the degree of lipid peroxidation. Cross-reacting material in LDLOXID preparations was evidently formed from the oxidation of free fatty acids released from LDL, since cross-reacting material was also formed when a synthetic fat emulsion was oxidized in the presence of free arachidonic acid.  相似文献   

12.
Vascular endothelium produces prostacyclin (PG12) and endothelium-derived vascular relaxing factor (EDRF), which are potent vasodilators and hence, may have a role in the regulation of blood pressure. Both PG12 and EDRF are readily degraded by free radicals, especially superoxide anion. Hence, we studied free radical generation and lipid peroxidation in patients with uncontrolled essential hypertension. It was observed that superoxide anion and hydrogen peroxide production by polymorphonuclear leukocytes (PMN) and the levels of lipid peroxides (measured by thiobarbituric acid assay) were higher in uncontrolled hypertensives compared to controls. Both free radical generation and the levels of lipid peroxides reverted to normal values when assayed after the control of hypertension. The calcium antagonist, verapamil, and beta-1 blocker, metoprolol, at the doses used inhibited free radical generation by phorbolmyristate acetate-stimulated PMNs. On the other hand, angiotensin II augmented free radical generation in normal PMN. In addition, it was also observed that both linoleic acid and arachidonic acid levels are low in the plasma of patients with hypertension compared to controls. These results suggest that increase in free radical generation by PMN and alterations in the plasma concentrations of essential fatty acids are closely associated with uncontrolled hypertension.  相似文献   

13.
Increasing evidence suggests that the postprandial state is a contributing factor to the development of atherosclerosis. To evaluate the effects of acute hyperglycemia on the oxidative stress, concentrations of serum-oxidized low density lipoprotein (oxLDL), paraoxonase 1 (PON1), and thiobarbituric acid reactive substances (TBARS) were measured in subjects with normal glucose tolerance (NGT) (n=35), impaired glucose tolerance (IGT) (n=25), and diabetic glucose tolerance (DGT) (n=20). In NGT group, the 2 hours' TBARS and oxLDL levels were not statistically different when compared to baseline, and 2 hours' PON1 activities were higher when compared to baseline (p<0.01). Subjects with IGT and DGT have higher 2 hours' serum TBARS and oxLDL levels than their baseline levels (p<0.01, for each). Baseline oxLDL levels of both IGT and DGT groups were higher than NGT group (p<0.01 and p<0.01, respectively). While there were not any significant differences in 2 hours' versus baseline PON1 activities in the IGT group, the 2 hours' versus baseline PON1 activities in the DGT group were significantly lower (p<0.01). The postchallenge 2 hours' PON1 activities of both IGT and DGT groups were lower than NGT group (p<0.01 and p<0.01, respectively). Baseline oxLDL was positively correlated with 2 hours' glucose (r=0.613, p<0.01) in IGT and DGT groups. PON1 activities were correlated with HDL-cholesterol, total cholesterol, and fasting glucose (r=0.680, r=0.698 and r=0.431, respectively, for each p<0.01) in NGT. In conclusion, oxidative stress occurs at an early stage in diabetes, and protective effects of HDL against atherosclerosis may be dependent on the PON1 activities.  相似文献   

14.
We have tested a hypothesis that aggregates of modified low density lipoproteins (LDL) play the key role in the accumulation of lipids by cells of unaffected aortic intima. It was demonstrated using analysis of relative dispersion of light transmission fluctuations as well as gel filtration on Sepharose CL-2B that LDL modified by oxidation, glycosylation, desialylation and malondialdehyde treatment form aggregates under the conditions of culture. Native LDL failed to aggregate under the same conditions. It was demonstrated that modified LDL, unlike native LDL, bring about a 2- to 3-fold rise in cholesteryl ester levels of cultured cells. Moreover, direct and strong correlation (r = 0.86) was observed between the degree of lipoprotein aggregation and the amount of cholesteryl esters accumulated. Removal of modified LDL aggregates by filtration through a 0.1 micron filter or gel filtration completely prevented the intracellular accumulation of cholesteryl esters. These findings indicate that LDL aggregates play an essential, if not the decisive, role in the intracellular accumulation of lipids in vitro.  相似文献   

15.
The role of oxidized plasma lipoproteins in modifying arachidonic acid (AA) metabolism was studied in smooth muscle cells (SMC). Very low density lipoproteins (VLDL), unoxidized low density lipoproteins (LDLBHT) isolated with butylated hydroxytoluene (BHT), and oxidized LDL (LDLOXID) were separated from human serum. Thiobarbituric acid reactant (TBAR) levels were adjusted by saline incubations. Prostanoids in guinea pig SMC cultures were measured either by radioimmunoassay (RIA) or the isolation by high performance liquid chromatography (HPLC) of labeled prostanoids from SMC prelabeled with [14C]AA. Cell morphology and viability were studied by staining with Giemsa, nile red, and propidium iodide. VLDL and LDLBHT had little effect on prostanoid synthesis. Low-TBAR-LDLOXID enhanced total prostanoid levels and diminished the release of labeled prostanoids. Similar effects were found with exogenous free AA (unlabeled). Low-TBAR-LDLOXID did not affect the release of endogenous phospholipid AA as free AA. Synergism occurred between LDLOXID and exogenous free AA in prostanoid synthesis. Low-TBAR-LDLOXID evidently enhanced prostanoid levels in SMC both by supplying AA and by stimulating cyclooxygenase. High-TBAR-LDLOXID blocked prostanoid synthesis and enhanced cell death but time and pulse-recovery experiments showed that these effects were unrelated. High-TBAR-LDLOXID stimulated prostanoid synthesis when BHT was added to the incubation media. High-TBAR-LDLOXID also caused massive free AA release and the formation of many nonprostanoid derivatives. High-TBAR-LDLOXID evidently diminished overall prostanoid levels in SMC by inhibiting cyclooxygenase and at the same time stimulating AA release and the formation of other AA derivatives.  相似文献   

16.
Prostaglandin (PG) E1 was demonstrated to stimulate the transfer of phosphatidylcholine and cholesterol esters from human high density lipoproteins (HDL3) to low density lipoproteins (LDL). The enhancement effect of PGE1, on the interlipoprotein lipid transfer was seen at low PG concentrations under conditions of spontaneous exchange as well as in the presence of lipoprotein-depleted plasma, or partly purified plasma lipid exchange protein. PGE2 and PGF2 showed no significant influence on the interlipoprotein lipid transfer. Evidence is presented suggesting that the PGE1-induced stimulation of interlipoprotein lipid exchange results in enhancement of LCAT-catalyzed cholesterol esterification in plasma. It is proposed that the effect of PGE1 is due to the previously described PGE1-induced reorganization of the HDL surface [(1984) FEBS Lett. 173, 291-293] and that PG-lipoprotein interaction may be a factor regulating cholesterol homeostasis.  相似文献   

17.
I I Vlasova 《Biofizika》1999,44(2):272-280
The effect of low-density lipoproteins on the structure of platelet plasma membrane was studied by electron paramagnetic resonance spectroscopy. Low-density lipoproteins were incubated with platelet rich plasma at a volume ratio 1:1. Plasma incubated with buffer served as a control. After incubation, the fluidity of platelet plasma membrane was determined by electron spin resonance probes 5-doxylstearate and 16-doxylstearate, which were immobilized in membranes of cells subjected to triple precipitation. Significant differences in the order parameter S, which characterizes the spectrum of the 5-doxylstearate probe, for samples incubated with the buffer and oxidized low-density lipoproteins were found. The dependence of the parameter on incubation time and the extend of oxidation of low-density lipoproteins were obtained. No significant differences in rotational correlation time of 16-doxylstearate between platelets incubated with and without oxidized low-density lipoproteins was observed within the limits of experimental error; however, the changes in the half-width of the low-field component may be considered reliable. The interaction of oxidized low-density lipoproteins with platelets leads to an increase in plasma membrane fluidity, thereby mediating the activating action on platelets.  相似文献   

18.
In the range of concentrations 12.5–100 mM glucose stimulated Cu-mediated free radical peroxidation of low density lipoproteins (LDL) from human blood plasma. Based on analysis of kinetic parameters of the LDL peroxidation it was found that intensification of this process is caused by formation of free radical intermediates of glucose autooxidation during generation of reactive oxygen species in the presence of transition metal ions. Normalization of blood glucose in patients with type 2 diabetes during therapy was accompanied by a significant decrease of LDL oxidation. Therapy with the sugar-lowering drug metformin, which utilizes methylglyoxal, caused much higher inhibition of the in vivo LDL peroxidation in blood of patients with diabetes mellitus probably due to the decrease of methylglyoxal-dependent generation of superoxide anion radicals shown by us earlier [Biochemistry (Moscow) 2009, vol. 74, pp. 568–574].  相似文献   

19.
Oxidation of human low density lipoprotein (LDL) generates proinflammatory mediators and underlies early events in atherogenesis. We identified mediators in oxidized LDL that induced an inflammatory reaction in vivo, and activated polymorphonuclear leukocytes and cells ectopically expressing human platelet-activating factor (PAF) receptors. Oxidation of a synthetic phosphatidylcholine showed that an sn-1 ether bond confers an 800-fold increase in potency. This suggests that rare ether-linked phospholipids in LDL are the likely source of PAF-like activity in oxidized LDL. Accordingly, treatment of oxidized LDL with phospholipase A(1) greatly reduced phospholipid mass, but did not decrease its PAF-like activity. Tandem mass spectrometry identified traces of PAF, and more abundant levels of 1-O-hexadecyl-2-(butanoyl or butenoyl)-sn-glycero-3-phosphocholines (C(4)-PAF analogs) in oxidized LDL that comigrated with PAF-like activity. Synthesis showed that either C(4)-PAF was just 10-fold less potent than PAF as a PAF receptor ligand and agonist. Quantitation by gas chromatography-mass spectrometry of pentafluorobenzoyl derivatives shows the C(4)-PAF analogs were 100-fold more abundant in oxidized LDL than PAF. Oxidation of synthetic alkyl arachidonoyl phosphatidylcholine generated these C(4)-PAFs in abundance. These results show that quite minor constituents of the LDL phosphatidylcholine pool are the exclusive precursors for PAF-like bioactivity in oxidized LDL.  相似文献   

20.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号