首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of the gene for prostaglandin synthase (PGS) was examined in whole endometrial tissue derived from ewes during the oestrous cycle (Days 4-14), on Day 15 of pregnancy and following ovariectomy and treatment with ovarian steroid hormones. Whilst no significant differences were seen in PGS mRNA concentrations analysed by Northern blot analysis in endometrial tissue during the oestrous cycle or in early pregnancy, treatment of ovariectomized (OVX) ewes with oestradiol-17 beta markedly reduced endometrial PGS mRNA concentration. There was no difference in PGS mRNA concentration in ewes treated with progesterone, either alone or in conjunction with oestrogen, from that in OVX controls. In contrast, differences in immunolocalization of PGS observed in uterine tissue from OVX-steroid-treated ewes were much more marked and reflected similar changes seen previously in the immunocytochemical distribution of endometrial PGS during the oestrous cycle. In OVX ewes and those treated with oestrogen, immunocytochemical staining for PGS was seen in stromal cells, but little immunoreactive PGS was located in the endometrial epithelial cells. However, in ewes treated with progesterone alone or with oestrogen plus progesterone, PGS was found in luminal and glandular epithelial cells and in stromal cells. Intensity of immunostaining for PGS in endothelial cells and myometrium did not differ between the treatments. Thus, whilst oestrogen lowers PGS mRNA in the endometrium, presumably in stroma, it may also increase the stability of the enzyme itself in the stromal cells. Although oestradiol-17 beta has no effect on PGS in endometrial epithelium, progesterone stimulates the production of PGS in endometrial epithelial cells without altering the overall abundance of PGS mRNA in the endometrium as a whole. Conceptus-induced changes in PGF-2 alpha release by ovine endometrium would not appear to be mediated via effects on PGS gene expression or protein synthesis.  相似文献   

2.
Ovine endometrial gland development is a postnatal event that can be inhibited epigenetically by chronic exposure of ewe lambs to a synthetic progestin from birth to puberty. As adults, these neonatally progestin-treated ewes lack endometrial glands and display a uterine gland knockout (UGKO) phenotype that is useful as a model for study of endometrial function. Here, objectives were to determine: 1) length of progestin exposure necessary from birth to produce the UGKO phenotype in ewes; 2) if UGKO ewes display normal estrous cycles; and 3) if UGKO ewes could establish and/or maintain pregnancy. Ewe lambs (n = 22) received a Norgestomet (Nor) implant at birth and every two weeks thereafter for 8 (Group I), 16 (Group II), or 32 (Groups III and IV) weeks. Control ewe lambs (n = 13) received no Nor treatment (Groups V and VI). Ewes in Groups I, II, III, and VI were hemihysterectomized (Hhx) at 16 weeks of age. After puberty, the remaining uterine horn in Hhx ewes was removed on either Day 9 or 15 of the estrous cycle (Day 0 = estrus). Histological analyses of uteri indicated that progestin exposure for 8, 16, or 32 weeks prevented endometrial adenogenesis and produced the UGKO phenotype in adult ewes. Three endometrial phenotypes were consistently observed in Nor-treated ewes: 1) no glands, 2) slight glandular invaginations into the stroma, and 3) limited numbers of cyst- or gland-like structures in the stroma. Overall patterns of uterine progesterone, estrogen, and oxytocin receptor expression were not different in uteri from adult cyclic control and UGKO ewes. However, receptor expression was variegated in the ruffled luminal epithelium of uteri from UGKO ewes. Intact UGKO ewes displayed altered estrous cycles with interestrous intervals of 17 to 43 days, and they responded to exogenous prostaglandin F(2 approximately ) (PGF) with luteolysis and behavioral estrus. During the estrous cycle, plasma concentrations of progesterone in intact control and UGKO ewes were not different during metestrus and diestrus, but levels did not decline in many UGKO ewes during late diestrus. Peak peripheral plasma concentrations of PGF metabolite, in response to an oxytocin challenge on Day 15, were threefold lower in UGKO compared to control ewes. Intact UGKO ewes bred repeatedly to intact rams did not display evidence of pregnancy based on results of ultrasound. Collectively, results indicate that 1) transient, progestin-induced disruption of ovine uterine development from birth alters both structural and functional integrity of the adult endometrium; 2) normal adult endometrial integrity, including uterine glands, is required to insure a luteolytic pattern of PGF production; and 3) the UGKO phenotype, characterized by the absence of endometrial glands and a compact, disorganized endometrial stroma, limits or inhibits the capacity of uterine tissues to support the establishment and/or maintenance of pregnancy.  相似文献   

3.
Ing NH  Zhang Y 《Theriogenology》2004,62(3-4):403-414
A single physiological dose of estradiol up-regulates estrogen receptor-alpha(ER), progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), c-fos, cyclophilin, and actin mRNAs in the endometrium of ovariectomized ewes. Therefore, we hypothesized that these genes would be up-regulated by the preovulatory surge of estrogen which occurs on the evening of Day 15 in the estrous cycle of sheep. ER and PR mRNA concentrations increased between Day 15 and Day 1 in cyclic ewes in most endometrial epithelial cells, while GAPDH mRNA increased in epithelial and stromal cells in the deep endometrium. Day 15 pregnant ewes had lower expression of ER, PR, GAPDH, cyclophilin and actin genes. For ER and GAPDH mRNAs, the greatest reduction occurred in the superficial endometrium. Ovariectomized ewes demonstrated concentrations of ER, PR, and GAPDH mRNAs that were similar to those in the cyclic ewes. While concentrations of c-fos mRNA did not differ between groups, those of cyclophilin and actin mRNAs were lower in the pregnant and ovariectomized ewes. In conclusion, ER, PR and GAPDH gene expression rose during estrus in endometrial cells with the highest ER gene expression and were repressed in pregnant ewes in superficial endometrial cells with the greatest PR gene expression.  相似文献   

4.
Estrogen metabolism results in the formation of inactive estrogen sulphates and glucuronides. Despite the lack of receptor binding, circulating conjugated estrogens might serve as a reservoir for the active form through the involvement of specific cleaving enzymes. In order to elucidate the potential role that estrogen conjugates play in the regulation of the estrous cycle, we determined the concentration of progesterone, estrogen and estrogen conjugates in serum and endometrial homogenates of cycling gilts. In addition, we determined the mRNA expression changes of enzymes (UDP glucuronosyltransferase (UGT), β-glucuronidase (GUSB), sulphotransferases (SULT) and steroid sulphatase (STS)) and transporters (multidrug resistance-associated protein (MRP), organic anion-transporting polypeptide (OATPs)) involved in the estrogen metabolism in the endometrium across the estrous cycle. GUSB displayed highest expression at estrous (day 0), decreasing expression during metestrus (day 3 and 6), minimal expression on day 10 and 12, and increasing expression towards proestrus (day 18), suggesting either a stimulation by estrogens or a negative impact of progesterone. The mRNA expression of the influx-transporter OATP1A2 significantly increased from day 0 to 6 and decreased again by day 10, while the efflux-transporters (MRP1, MRP2, and MDR1) displayed minimal expression at day 3 and 6. The mRNA expression of the UDP-glucuronsyltransferases followed a similar pattern, with minimal expression found at day 6. The analyses of the concentration of local and circulating steroid hormones points towards an interaction of the analyzed transporters and enzymes with steroid hormones, thereby possibly regulating the reservoir of active steroids contributing to the endometrial function.  相似文献   

5.
Uterine flushings from ewes on days 0, 3, 6, 9, 12 and 15 of the estrous cycle were analyzed for total protein content. Flushings from days 9, 12 and 15 had greater (P<.01) amounts of protein than those from 0, 3 and 6. Antisera to uterine fluids from ewes at day 10 to 12 or day 14 to 15 of pregnancy detected two uterine-specific antigens in uterine flushings at day 7, 11 and 15 but not at days 0 and 3 of the cycle. A third uterine antigen was also detected in kidney tissue extracts. All three antigens were present in endometrial extracts at each stage examined. Progesterone, or estrogen plus progesterone, administration to ovariectomized ewes induced the appearance of the two uterine-specific antigens. The third antigen was detectable even in ovariectomized ewes. No pregnancy-specific antigens were detected in flushings from days 7, 11 or 15 of gestation. The effect of pregnancy on endometrial protein synthesis was examined in vitro . No differences were seen in the incorporation of (3)H-leucine in day 11 pregnant or nonpregnant or in day 14 pregnant or nonpregnant endometrium. No differences in total uterine lumenal protein were observed. Endometrial secretions, obtained by conditioning media with endometrial explant cultures, were evaluated to assess their effect on protein synthesis in day 11 embryos cultured in vitro . No significant effects of endometrial secretions or serum were observed.  相似文献   

6.
Two experiments were performed to determine changes in the abundance of oestrogen and progesterone receptor (ER alpha and PR) mRNAs in equine endometrium during the oestrous cycle and early pregnancy, and under the influence of exogenous steroids. In Expt 1, endometrial biopsies were obtained from non-mated mares during oestrus and at days 5, 10 and 15 after ovulation, and from pregnant mares at days 10, 15 and 20 after ovulation. There were overall effects of day on the abundance of ER alpha (P = 0.0001) and PR (P = 0.0014) mRNAs. The amount of ER alpha mRNA decreased at day 10 of pregnancy, and PR mRNA was reduced at day 5 in non-mated mares and at day 15 of pregnancy, compared with oestrous values. Experiment 2 was conducted to determine the effects of exogenous steroids on endometrial ER alpha and PR mRNAs. Endometrial biopsies were obtained from 19 anoestrous mares that had been treated with vehicle, oestradiol, progesterone, or oestradiol followed by progesterone for either a short or a long duration. The steroid treatment affected the abundance of ER alpha mRNA (P = 0.0420), which was higher (P < 0.05) in the oestradiol group than in the group treated with oestradiol followed by long duration progesterone. The steroid treatment did not affect the abundance of PR mRNA. These results demonstrate that the amount of steroid receptor mRNA changes with the fluctuating steroid environment in the uterine endometrium of cyclic and early pregnant mares, and that the duration of progesterone dominance may affect ER alpha gene expression. In addition, factors other than steroids may regulate ER alpha and PR gene expression in equine uterine endometrium.  相似文献   

7.
Scatchard analysis was used to determine the distribution, number, and affinity of unoccupied receptors for ovine trophoblast protein-1 (oTP-1) in endometrium of sheep throughout the estrous cycle and early pregnancy. In Experiment I, oTP-1 receptor characteristics were determined in membrane preparations of caruncular and intercaruncular regions of endometrium collected from uterine horns ipsilateral and contralateral to the ovary bearing the corpus luteum. Receptor concentrations and affinity constants for oTP-1 were not different (p greater than 0.1) between the four endometrial regions examined, suggesting that the expression of receptors for oTP-1 occurs uniformly throughout the endometrium. Endometrial receptor characteristics for oTP-1, luteal wet weights, and progesterone contents were determined throughout the estrous cycle and early pregnancy in Experiment II. Concentration of receptors and affinity constants for oTP-1 varied throughout the estrous cycle and early pregnancy (p less than 0.01), with the pattern of change differing between cyclic and pregnant ewes (p less than 0.01). Numbers of receptors for oTP-1 were maximal on Day 4 of the estrous cycle and declined progressively to Day 12 (p less than 0.05) in both cyclic and pregnant ewes. After Day 12, the quantity of unoccupied receptors for oTP-1 increased (p less than 0.05) gradually to Day 16 in cyclic ewes, but declined (p less than 0.05) further in the endometrium of pregnant ewes. The affinity constants of endometrial receptors for oTP-1 were similar in cyclic and pregnant ewes prior to Day 12, increasing threefold from Days 4 to 12 (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Conceptus-derived paracrine signals play crucial roles in the preparation of a uterine environment capable of supporting implantation and development of the conceptus. However, little is known about the regulation of endometrial tryptophanyl tRNA synthetase (WARS) and manganese superoxide dismutase (SOD2) protein expression by the implanting and post-implanting conceptus. We hypothesized that the conceptus-derived signals favourably influences uterine environment for implantation through regulation of WARS and SOD2 expression in ovine caruncular endometrium. To test this hypothesis, WARS and SOD2 protein and mRNA expression was determined in caruncular endometrial tissues of unilaterally pregnant ewes at implantation (day 16) and post-implantation (day 20) periods. WARS protein expression increased in caruncular tissues of the gravid uterine horns compared with the non-gravid uterine horns on days 16 and 20 of pregnancy. There were no changes in SOD2 protein expression between the gravid and non-gravid uterine horns, irrespective of the day of pregnancy. On day 16 of pregnancy, there were no differences in WARS and SOD2 mRNA expression between the gravid and non-gravid uterine horns but expression of both genes was higher in the gravid uterine horns when compared with the non-gravid uterine horns on day 20 of pregnancy. In conclusion, the use of the unilaterally pregnant ewe model provides for the first time firm evidence that the early implantation and post-implanting conceptus-derived signals up-regulate WARS protein expression within the caruncular endometrium. Further studies are necessary to identify these signalling molecules and to understand mechanisms whereby they exert paracrine action within the endometrium.  相似文献   

9.
10.
11.
The relationship between nutrition and reproduction in sheep has been the subject of research in several international groups. This review will particularly focus on the effects of undernutrition on the potential causes of reproductive failure including abnormalities of the ovum or the embryo, luteal inadequacy and failure of the supply of progesterone to the uterus, or the mechanisms involved in maternal recognition of pregnancy. The level of nutrition and peripheral progesterone concentrations are inversely related, and increased rates of embryo loss, associated with higher progesterone concentrations in ewes with low levels of nutrition have been reported. Undernutrition may act through changes in the distribution of progesterone in the endometrium. Thus, lower endometrial levels on day 5 of the cycle in ewes fed half of their maintenance requirements have been observed, providing a link between the known role of progesterone in embryo survival by the modulation of uterine function and the higher embryo losses found in undernourished ewes. The evidence of an effect of maternal nutrition on IFNtau secretion from the conceptus and of PGF2alpha production from the uterus is presented. Moreover, undernutrition provokes a reduction in the sensitivity of the endometrium to progesterone that may affect embryo survival. Finally, a state of undernutrition induces changes in the endometrial sensitivity to steroid hormones at early stages of pregnancy that could adversely alter uterine environment to the detriment of embryo survival.  相似文献   

12.
13.
Estrogens upregulate estrogen receptor (ER) and progesterone receptor (PR) gene expression in endometrium immediately before ovulation to prepare it for nurturing embryos. Most in vitro model systems have lost the ability to upregulate expression of the ER gene in response to estradiol (E2) or the ability to express the ER gene at all. Here, we used explant cultures from control and E2-treated ewes and assessed expression of four genes (ER, PR, glyceraldehyde 3-phosphate dehydrogenase [GAPDH], and cyclophilin [CYC] genes) that are upregulated by E2 in vivo on Northern blots. In cultures from control and E2-treated ewes, ER and PR messenger ribonucleic acid (mRNA) levels dropped significantly during 24 h of culture in the absence of E2. Glyceraldehyde 3-phosphate dehydrogenase mRNA levels increased 300% in explants from control ewes to match the higher levels in the endometrium of the E2-treated ewe (in vivo and in explant culture). The only effect of E2 in the explant cultures was to prevent the decrease in PR mRNA. The new selective ER modulator, EM-800 (EM), decreased ER and PR mRNA levels in explants from control ewes but upregulated GAPDH and CYC mRNA levels. The EM treatment in vitro mimicked that of E2 by increasing the half-life of ER mRNA in endometrial explants. These data illustrate distinct, gene-specific effects of the explant culture process, E2, and EM on the expression of endometrial genes.  相似文献   

14.
Immunoreactive 10.5 KDa moiety of inhibin and hFSH was present in the baboon endometrium during menstrual cycle, early pregnancy and in castrated animals treated with steroid hormones, estrogen and/or progesterone. Endometrial differences during the menstrual cycle altered the intensity of immunostaining of inhibin and FSH. Maximum staining was observed in late luteal phase for both the hormones. In early pregnancy (35th day), the conceptus increased the staining for inhibin in the adjoining endometrial glands. Treatment of castrated animals with steroids for 14 days caused increased staining for inhibin. Maximum staining was observed when treated with estradiol or progesterone, whereas combination of estrogen and progesterone treatment decreased the staining reaction. In conclusion, both inhibin and FSH were localized in baboon endometrium and were under the influence of estrogen and progesterone.  相似文献   

15.
16.
Noninvasive, epitheliochorial placental attachment in the pig is regulated through endometrial production of protease inhibitors. The objective of the present study was to determine if the light-chain serine protease inhibitor of the inter-alpha-trypsin inhibitor family, bikunin, is produced by the porcine endometrium during the estrous cycle and early pregnancy. Western blot analysis revealed the presence of bikunin in uterine flushings of gilts collected during the luteal phase of the estrous cycle and early pregnancy (Days 12-18). However, bikunin unbound to the inter-alpha-trypsin heavy chains was detected only in endometrial explant culture medium obtained from estrus and pregnant (Days 12, 15, and 18) gilts. Endometrial bikunin gene expression was lowest on Day 10 of the estrous cycle and pregnancy, followed by a 30- to 77-fold increase on Day 15 of the estrous cycle and pregnancy. Bikunin gene expression decreased on Day 18 of the estrous cycle, whereas endometrial bikunin gene expression continued to increase in pregnant gilts. Bikunin mRNA was localized to the uterine glands between Days 15 and 18 of the estrous cycle and pregnancy. In addition to its role as a protease inhibitor, bikunin functions in stabilization of the extracellular matrix, which suggests that bikunin could be involved with facilitating placental attachment to the uterine epithelial surface in the pig.  相似文献   

17.
Stanniocalcin (STC) is a hormone in fish that regulates calcium levels. Mammals have two orthologs of STC with roles in calcium and phosphate metabolism and perhaps cell differentiation. In the kidney and gut, STC regulates calcium and phosphate homeostasis. In the mouse uterus, Stc1 increases in the mesometrial decidua during implantation. These studies determined the effects of pregnancy and related hormones on STC expression in the ovine uterus. In Days 10-16 cyclic and pregnant ewes, STC1 mRNA was not detected in the uterus. Intriguingly, STC1 mRNA appeared on Day 18 of pregnancy, specifically in the endometrial glands, increased from Day 18 to Day 80, and remained abundant to Day 120 of gestation. STC1 mRNA was not detected in the placenta, whereas STC2 mRNA was detected at low abundance in conceptus trophectoderm and endometrial glands during later pregnancy. Immunoreactive STC1 protein was detected predominantly in the endometrial glands after Day 16 of pregnancy and in areolae that transport uterine gland secretions across the placenta. In ovariectomized ewes, long-term progesterone therapy induced STC1 mRNA. Although interferon tau had no effect on endometrial STC1, intrauterine infusions of ovine placental lactogen (PL) increased endometrial gland STC1 mRNA abundance in progestinized ewes. These studies demonstrate that STC1 is induced by progesterone and increased by a placental hormone (PL) in endometrial glands of the ovine uterus during conceptus (embryo/fetus and extraembryonic membranes) implantation and placentation. Western blot analyses revealed the presence of a 25-kDa STC1 protein in the endometrium, uterine luminal fluid, and allantoic fluid. The data suggest that STC1 secreted by the endometrial glands is transported into the fetal circulation and allantoic fluid, where it is hypothesized to regulate growth and differentiation of the fetus and placenta, by placental areolae.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号