首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphofructokinase was partially purified from carrot root extracts. Monovalent cations stimulated carrot phosphofructokinase activity. The enzyme was strongly inhibited by P-enolpyruvate and this inhibition was relieved by NACl or KCl. Pi inhibited the enzyme at pH 7.9 but was stimulatory at pH 6.6.  相似文献   

2.
The regulatory properties of phosphofructokinase from rat mucosa, liver, brain and muscle were investigated. Mucosal phosphofructokinase displayed cooperativity with respect to fructose 6-phosphate at pH 7.0 and so did the muscle, brain and liver isoenzymes. All these four isoenzymes were inhibited by ATP, the mucosal isoenzyme being the least inhibited. They were also inhibited by citrate and creatine phosphate. AMP, ADP, glucose 1,6-diphosphate, fructose 2,6-bisphosphate and inorganic phosphate were all strong activators for the mucosal, brain, liver and muscle phosphofructokinase, but the mucosal isoenzyme was found to be more activated than the others, accounting for the higher rates of glycolysis observed in mucosa. The results suggest that mucosal phosphofructokinase is unique and different from all the other isoenzymes.  相似文献   

3.
ATP and citrate, the well known inhibitors of phosphofructokinase (ATP: D-fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.11), were found to inhibit the activities of the multiple forms of phosphoglucomutase (alpha-D-glucose 1,6-bisphosphate: alpha-D-glucose 1-phosphate phosphotransferase, EC 2.7.5.1) from rat muscle and adipose tissue. This inhibition could be reversed by an increase in the glucose 1,6-bisphosphate (Glc-1,6-P2) concentration. Other known activators (deinhibitors) of phosphofructokinase, viz. cyclic AMP, AMP, ADP or Pi, had no direct deinhibitory action on the ATP or citrate inhibited multiple phosphoglucomutases. Cyclic AMP and AMP, could however lead indirectly to deinhibition of the phosphoglucomutases, by activating phosphofructokinase which catalyzes the ATP-dependent phosphorylation of glucose 1-phosphate to form Glc-1,6-P2, the la-ter then released the multiple phosphoglucomutases from ATP or citrate inhibition. The Glc-1,6-P2 was also found to exert a selective inhibitory effect on hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) type II, the predominant form in skeletal muscle. This selective inhibition by Glc-1,6-P2 was demonstrated on the multiple hexokinases which were resolved by cellogel electrophoresis or isolated by chromatography on DEAE-cellulose. Based on the in vitro studies it is suggested that during periods of highly active epinephrine-induced glycogenolysis in muscle, the Glc-1,6-P2, produced by the cyclic AMP-stimulated reaction of phosphofructokinase with glucose 1-phosphate, will release the phosphoglucomutases from ATP or citrate inhibition, and will depress the activity of muscle type II hexokinase.  相似文献   

4.
G A Tejwani  S Mousa 《Enzyme》1981,26(6):306-314
Rat lung phosphofructokinase is purified 250-fold to a specific activity of about 10 by using ATP-sepharose affinity chromatography. The enzyme is activated by cyclic AMP, 5'-AMP, ADP, Pi, NH4+ and K+ ions. Depending upon the concentration of these effectors, the enzyme can exist in several interconvertible forms, differing widely in their affinity for fructose-6-P. These activators also overcome the inhibition of the enzyme by ATP and citrate, thus increasing the glycolytic rate in lung during hypoxia. Unlike the enzyme from other sources, the lung phosphofructokinase is not inhibited by cyclic GMP or phosphoenolpyruvate. The enzyme is very sensitive to inactivation by trypsin and this inactivation is completely reversed by assaying the proteolyzed enzyme in presence of its activators.  相似文献   

5.
1. Citrate synthase [citrate oxaloacetate-lyase (CoA-acetylating), EC 4.1.3.7] was purified about 400-fold from the extreme halophile, Halobacterium cutirubrum, by a method involving (NH4)2SO4 fractionation, chromatography on DEAE-cellulose and hydroxyapatite and gel filtration on Sephadex G-200. 2. The purified enzyme was best activated by high concentrations of KCl (3M); the chlorides of other cations and K+ salts of other anions (Br-, NO3-, SCN-) were less effective than KCl as activators. The enzyme was best stabilized by high concentrations of NaCl or KCl. Cold-lability was found in the presence of 3M-KCl, but not in the presence of NaCl at concentrations up to 5M. The results suggest that both the shielding of negative charges on the enzyme molecule and the stabilization of hydrophobic bonds by high KCl concentrations were required for maximum activity of the enzyme. 3. The double-reciprocal plots for acetyl-CoA or oxaloacetate at several concentrations of the co-substrate intersected at the abscissa in the presence of either KCl or NaCl, at either 1 or 3M. The Km for oxaloacetate increased about fivefold with the salt concentration, from 1 to 3M.  相似文献   

6.
Human erythrocyte phosphofructokinase was purified 150 fold by DEAE cellulose adsorption and ammonium sulfate precipitation.At pH 7,5 the enzyme exhibits allosteric kinetics with respect to ATP, fructose 6 phosphate, and Mg2+.ATP at high concentration acted as an inhibitor and ADP, 5′AMP, 3′,5′, AMP, acted as activators. Both effectors seemed to decrease the homotropic interactions beetween the fructose 6 phosphate molecules.The activators increased the affinity of phosphofructokinase for the substrate (F6P), the inhibitor decreased it.These ligands had no effect on the maximum velocity of the reaction except in the case of ADP.Interactions between the substrates and the effector ligands on the enzyme were considered in terms of the Monod - Changeux - Wyman model for allosteric proteins.With GTP and ITP, no inhibition was observed. At saturing concentration of GTP, ATP still inhibited phosphofructokinase.Both 3′5′ AMP and fructose 6 phosphate increased the concentration of ATP required to produce an inhibition of 50 %.Citrate, like ATP, inhibited phosphofructokinase by binding most likely at the same allosteric site. Erythrocyte phosphofructokinase is inhibited by 2–3 DPG.The study of the relation log V max = f (pH) suggested, that the active center contains at least one imidazole and one sulfhydryl group.  相似文献   

7.
The isocitrate lyase from a thermophilic Bacillus is activated about threefold by a variety of salts. Such strong stimulation of activity is not seen with isocitrate lyase from the mesophiles, Bacillus licheniformis, Bacillus megaterium, Escherichia coli, and Aspergillus nidulans. The salt activation is markedly pH-dependent. At pH values above 8.6, salt (KCl) indeed inhibits the enzyme activity. Potassium chloride also causes a significant shift of the pH optimum of the enzyme towards the acid side. As the temperature of the enzyme reaction is raised, activation becomes progressively weaker. Potassium chloride also affords considerable protection against enzyme denaturation at 55 C. The activation and the stabilization, however, appear to be independent effects. Of six other enzymes in the thermophile that were examined, isocitrate dehydrogenase was equally strongly activated by KCl and malate synthase was less strongly, but significantly, activated; citrate synthase, malate dehydrogenase, glutamate dehydrogenase, and lactate dehydrogenase were unaffected or slightly inhibited by KCl. The property of being strongly activated by salt appears to be a peculiar characteristic of the thermophile isocitrate lyase and possibly evolved concomitantly with its thermostability.  相似文献   

8.
The effects of inorganic phosphate on the plasma membrane H+-ATPase of red beet (Beta vulgaris L.) were studied. ATPase activity was inhibited weakly and noncompetitively by phosphate. This anion also relieved the inhibition caused by vanadate by displacing it from the enzyme. From this effect, a dissociation constant for phosphate of 25 millimolar and an extrapolated activity at infinite phosphate concentration of 84% of the activity without inhibitors were calculated. The partial inhibition by phosphate indicates the existence of a catalytically active enzyme-phosphate complex. In the presence of 24% dimethylsulfoxide, the inhibition of ATPase activity by phosphate is much greater than in its absence. This suggests that the active enzyme-phosphate complex could be converted into a covalent phosphoenzyme through a dehydration promoted by the low water activity of the medium. The inhibitory ability of phosphate in 24% dimethylsulfoxide was dependent on the presence of potassium. Potassium ions increased both the affinity for phosphate and the inhibition caused by an infinite phosphate concentration, suggesting that potassium stimulates both phosphate binding and phosphoenzyme formation.  相似文献   

9.
The activities of phosphofructokinase, aldolase and pyruvate kinase were diminished in extracts from skeletal muscle of streptozotocin diabetic rats, whereas the activities of glucose phosphate isomerase and phosphoglucomutase were not changed. Treatment of diabetic rats with insulin restored the activity of phosphofructokinase to normal. A kinetic study of the partially purified enzyme from normal and diabetic rats showed identical Michaelis constants for ATP and equal sensitivity to inhibition by excess of this substrate. Extracts of quick frozen muscle from diabetic rats had higher levels of citrate (an inhibitor of phosphofructokinase) and lower levels of D-fructose-1,6-bisphosphate and D-glucose-1,6-bisphosphate (activators of this enzyme). The levels of D-fructose-6-phosphate, D-glucose-6-phosphate, ATP, ADP and AMP were the same for the two groups. Our data suggest that the in vivo decrease of phosphofructokinase activity in skeletal muscle of diabetic rats is due to a decrease in the level of the enzymatically active protein as well as to an unfavorable change in the level of several of its allosteric modulators.  相似文献   

10.
Effectors of muscle phosphofructokinase show opposing action on the activity of the enzyme depending upon the concentration of phosphoryl donor employed in the assay. Established inhibitors, such as citrate, activate at low ATP or ITP concentrations while known activators, such as AMP, ADP, and cyclic AMP inhibit at low ATP or ITP concentrations. Inorganic phosphate, on the other hand, activates at all substrate concentrations. The paradoxical effects at low substrate concentrations are dependent upon the order of addition of reaction components. A model is proposed to explain these and other regulatory phenomena of phosphofructokinase.  相似文献   

11.
Chloroplast phosphofructokinase from spinach (Spinacia oleracea L.) was purified approximately 40-fold by a combination of fractionations with ammonium sulfate and acetone followed by chromatography on DEAE-Sephadex A-50. Positive cooperative kinetics was observed for the interaction between the enzyme and the substrate fructose 6-phosphate. The optimum pH shifted from 7.7 toward 7.0 as the fructose 6-phosphate concentration was taken below 0.5 mm. The second substrate was MgATP(2-) (Michaelis constant 30 mum). Free ATP inhibited the enzyme. Chloroplast phosphofructokinase was sensitive to inhibition by low concentration of phosphoenolpyruvate and glycolate 2-phosphate (especially at higher pH); these compounds inhibited in a positively cooperative fashion. Inhibitions by glycerate 2-phosphate (and probably glycerate 3-phosphate), citrate, and inorganic phosphate were also recorded; however, inorganic phosphate effectively relieved the inhibitions by phosphoenolpyruvate and glycolate 2-phosphate. These regulatory properties are considered to complement those of ADP-glucose pyrophosphorylase and fructosebisphosphatase in the regulation of chloroplast starch metabolism.  相似文献   

12.
In perfused rat liver, the effects of various hormones on the stimulation of phosphorylation and allosteric properties of purified phosphorfructokinase were investigated. Rat livers were perfused with [32P]phosphate followed with various hormones or cyclicAMP, and 32P-labeled phosphofructokinase was isolated. 32P incorporation into the enzyme and enzyme inhibition by ATP or citrate were determined. Only glucagon increased the 32P incorporation into phosphofructokinase and this increase was approximately threefold. The cyclicAMP level was increased simultaneously approximately four- to fivefold compared to the control perfused liver. Similar results were obtained by perfusing the liver with cyclicAMP (0.1 mm). The phosphorylated phosphofructokinase showed a decrease in the Ki values for ATP (from 0.4 to 0.2 mm) and citrate (from 2 to 0.6 mm). Neither epinephrine nor insulin affected the extent of phosphorylation or the allosteric properties of the enzyme. The half-maximal concentration of glucagon required for phosphorylation of phosphofructokinase and modification of its allosteric properties was approximately 6 × 10?11m. It is concluded that glucagon increases the inhibition of liver phosphofructokinase by ATP and citrate through phosphorylation of the enzyme involving a β-receptor-mediated cyclicAMP-dependent mechanism.  相似文献   

13.
A soluble extract from rat skeletal muscles has been used with purified mitochondrial ATPase (F1) to develop steady states with respect to glycolytic flux, the concentrations of glycolytic intermediates and inorganic phosphate, and the concentrations and ratios of adenine nucleotides. Incubations were carried out in media resembling the ionic composition in the cell cytoplasm, in an attempt to evaluate the quantitative contributions of various effectors to the overall control mechanism under simulated in vivo conditions. The primary control reaction of glycolytic flux under the conditions studied could be identified with phosphofructokinase, followed by secondary control of the reaction catalyzed by hexokinase. Glycolytic flux was increased with increasing pH over the range 6.6–7.6, both in the absence and presence of ATPase. Without other added effectors, the glycolyzing extract maintained an ATP/ADP ratio of about 50 in the pH range 7.0–7.6, and phosphofructokinase was incompletely suppressed. Addition of increasing amounts of ATPase markedly stimulated glycolytic flux coincident with lowered steady-state ATP/ADP ratios, and decreased accumulation of hexose monophosphates. Control of flux by the ATP/ADP ratio (and simultaneously altered AMP concentration) was less effective if pH (7.3 to 7.6) or phosphate concentration (2 to 20 mm) was increased. Flux through phosphofructokinase was controlled principally when the ATP/ADP ratios were varied in the range between > 50 and 15. The inhibitory effect of citrate was evaluated. Suppression of glycolytic flux and accumulation of hexose monophosphates were dependent on incubation conditions. If the pH was 7.3 or less, and the phosphate concentration low (2 mm), flux through phosphofructokinase was significantly suppressed even at citrate concentrations less than 50 μm. Simultaneous decrease in the steady-state ATP/ADP ratio and elevation of AMP was ineffective in reversing this inhibition. At higher pH and, more dramatically, when the phosphate concentration was increased, sensitivity to citrate inhibition was markedly diminished. These data, taken together with studies of respiratory control with isolated mitochondria (21., 24.), J. Biol. Chem.250, 2275–2282) strongly suggest that adenine nucleotide control of both glycolysis and respiration is exerted when the ratio of free nucleotides (not protein bound) in the cytosol is in the range of 15 to > 50. The data further suggest that citrate plays an important role in the regulation of glycolysis in muscle when the ATP/ADP ratio is high (and the phosphate concentration is correspondingly low), but that this inhibition is overcome by liberation of inorganic phosphate during muscle contraction.  相似文献   

14.
Glutathione reductase (NAD(P)h:oxidized glutathione oxidoreductase, EC 1.6.4.2) has been purified 1000-fold from the cytoplasmic fraction of human platelets. Salts, including the heretofore unreported effect of sodium citrate, activate the NADPH-dependent reduction of oxidized glutathione. Sodium citrate and monovalent salt activation appears to involve multiple sites having different binding affinities. At sub-saturating sodium phosphate, non-linear double reciprocal plots indicative of substrate activation by oxidized glutathione were observed. Initial velocity double reciprocal plots at sub-saturating and saturating concentrations of phosphate generate a family of converging lines. NADP+ is a partial inhibitor, indicating that the reduction of oxidized glutathione can proceed by more than one pathway. FMN, FAD, and riboflavin inhibit platelet glutathione reductase by influencing only the V while nitrofurantoin inhibition is associated with an increase Koxidized glutathione and a decreased V.  相似文献   

15.
Crystalline trypsinogen is completely transformed into trypsin by means of trypsin in the presence of calcium salts. The process follows the course of a pure autocatalytic unimolecular reaction. In the absence of calcium salts, the autocatalytic formation of trypsin from trypsinogen is complicated by the transformation of part of the trypsinogen into an inert protein which cannot be changed into trypsin by any known means. Salts increase or decrease the rate of both reactions so that the ultimate amount of trypsin formed varies with the nature and concentration of the salt used. With equivalent concentrations of salt the percentage of trypsinogen changed into trypsin is greatest in the presence of calcium ion followed in order by strontium; magnesium and sodium; rubidium, ammonium, lithium, and potassium; caesium and barium. With the anions the largest percentage of trypsinogen transformed into trypsin was found with the acetate, sulfate, oxalate, citrate, tartrate, fluoride, and chloride ions followed in order by bromide, nitrate, and iodide. The formation of inert protein is completely suppressed by concentrations of calcium ion greater than 0.02 M.  相似文献   

16.
Human erythrocytes suspended in isotonic lactose solution lost potassium and continued to lose potassium even when resuspended in isotonic sodium chloride. The same phenomenon was observed when the cells were suspended in an isotonic solution of the sodium salt of glutamate, a nonpenetrating anion. The presence of 5 mEq per liter of sodium chloride in the lactose or sodium glutamate suspensions greatly reduced the initial potassium loss and the potassium loss when the cells were resuspended in sodium chloride solution. Salts of nonpenetrating anions were less or not effective in blocking lactose damage. The results indicate that absence of penetrating anions in the suspending media is the initiating condition of lactose damage. Chloride and consequently potassium are lost from the erythrocyte. Changes in cellular ionic pattern and/or changes in the cell membrane result in a nontransient damage manifested by continued potassium loss by lactose-treated cells resuspended in isotonic NaCl.  相似文献   

17.
The conservation of desirable properties in foods and ingredients is often based on the maintenance of the amorphous metastable properties of the systems. Enzymes may be stabilized by drying in saccharide matrices, but a second excipient is generally required to improve sugar protective effects. The effect of electrolytes on the thermophysical properties of sugar systems is of special interest because of their major influence on water structure and their possible interactions with biomolecules. Salts affect the kinetics of very important changes in sugar systems such as crystallization. The purpose of the present work was to analyze fungal β-galactosidase stability in supercooled systems of trehalose-containing electrolytes (water soluble acetates, citrates, and chlorides of magnesium and potassium). The degree of sugar crystallization was also related to enzyme stability. Potassium citrate and acetate improved enzyme stability during freeze-drying and thermal treatment of samples at water activity (a w) of 0.22. However, trehalose crystallization inhibition at a w = 0.43 (which was about 50–60%, related to the system without salt) impaired enzyme protection. Certain salts may act retarding sugar crystallization, but in the presence of salts, trehalose crystallization is even more critical because the enzyme is confined in a highly salt-concentrated region. Thus, crystallization inhibition by sugar–salt combinations should be carefully conducted. Santagapita, Research Fellow, CONICET, Argentina. Buera, Member of CONICET, Argentina. An erratum to this article can be found at  相似文献   

18.
The kinetic and molecular properties of a phosphofructokinase derived from a transplantable rat thyroid tumor lacking regulatory control on the glycolytic pathway were studied. The properties of the near-purified enzyme (specific activity 140 units/mg) were compared with those of phosphofructokinase from normal rat thyroid (specific activity 134 units/mg). The electrophoretic mobilities and gel elution behavior of these two enzymes were almost similar. The thyroid tumor phosphofructokinase showed, however, a greater degree of size and/or shape heterogeneity in the presence of ATP than the normal thyroid enzyme, as determined by gel filtration and sucrose density gradient centrifugation. Kinetic studies below pH 7.4 showed a sigmoid response curve for both enzymes when the velocity was determined at 1 mM ATP with varying levels of fructose-6-P. The interaction coefficient, however, was 4.2 and 2.6 for normal and tumor thyroid phosphofructokinase, respectively. Ammonium sulfate decreased the cooperative interactions with the substrate fructose-6-P in both enzymes. The thyroid tumor enzyme, however, was less sensitive to the inhibition by ATP and by citrate. The reversal of citrate inhibition by cyclic 3':5'-adenosine monophosphate was also less effective with the thyroid tumor phosphofructokinase, while the protective effect of fructose-6-P was stronger. The difference in citrate inhibition between tumor and normal thyroid enzyme was not strongly affected by varying the MgCl2 concentration up to 10 mM. It is concluded that the complex allosteric regulation typical of the normal thyroid phosphofructokinase is still present in the enzyme isolated from the thyroid tumor tissue. The latter, however, is more loosely controlled by its physiological effectors, such as ATP, citrate, and cyclic AMP.  相似文献   

19.
Citrate synthase (citrate-oxaloacetate lyase (CoA acetylating), EC 4.1.3.7) has been purified to electrophoretic homogeneity from a marine Pseudomonas. The enzyme was made up of identical subunits, with a molecular wieght of about 53 000, as determined by sodium dodecyl sulphate - polyacrylamide gel electrophoresis. The native enzyme (citrate synthase II, CS II) could be dissociated by dialysis against 20 mM phosphate (Pi), pH 7; the enzyme thus obtained (citrate synthase I, CS I) was still active, but presented different molecular weight and kinetic and regulatory properties. CS II was activated by adenosine monophosphate (AMP), Pi, and KCl, and inhibited by reduced nicotinamide adenine dinucleotide (NADH), being apparently insensitive to adenosine triphosphate (ATP) and adenosine diphosphate (ADP). The inhibition by NADH was completely counteracted by 0.1 mM AMP, but not by 50 mM Pi or 0.1 M KCl. The activation by KCl and Pi, or by KCl and AMP was nearly additive, whereas that by AMP and Pi was not. The activators acted essentially by increasing Vmax, although they also caused a decrease in the Km values. CS I was inhibited by ATP, ADP, AMP, and KCl, and was insensitive to NADH. CS I could be reassociated after elimination of Pi by dialysis, regaining the higher molecular weight and the activation by AMP characteristic of CS II.  相似文献   

20.
Glutamate overcomes the salt inhibition of DNA polymerase III holoenzyme   总被引:2,自引:0,他引:2  
Even though Escherichia coli can grow in media containing up to 1 M NaCl, one-fifth that amount of NaCl will completely inhibit the in vitro activity of DNA polymerase III holoenzyme. It has been established that the major intracellular ionic osmolytes are potassium and glutamate (Richey, B., Cayley, D. S., Mossing, M. C., Kolka, C., Anderson, C. F., Farrar, T. C., and Record, M. T., Jr. (1987) J. Biol. Chem. 262, 7157-7164). We have found that holoenzyme catalyzes replication efficiently in vitro in up to 1 M potassium glutamate. Two salt effects on the replication of single-stranded DNA were observed. At low salt replicative activity was enhanced and at high salt there was anion-specific inhibition. We have found that DNA polymerase III holoenzyme tolerated 10-fold higher concentrations of glutamate than chloride. The ability of various anions to extend the useful range of salt concentrations followed the order: phosphate less than chloride less than N-Ac-glutamate less than acetate less than glycine less than aspartate less than glutamate. With the exception of phosphate, this order followed the Hofmeister series indicating that the anion-specific effects were due to anions interacting at the protein-water interface at weak anion binding sites. Glutamate did not reverse the inhibition by chloride. The low salt enhancement and high salt inhibition effects were additive for the two anions indicating that they competed for common anion binding sites. The major salt-sensitive step was holoenzyme binding to template rather than the subsequent elongation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号