首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Raf family of serine/threonine protein kinases couple growth factor receptor stimulation to mitogen activated protein kinase activation, but their own regulation is poorly understood. Using phospho-specific antisera, we show that activated Raf-1 is phosphorylated on S338 and Y341. Expression of Raf-1 with oncogenic Ras gives predominantly S338 phosphorylation, whereas activated Src gives predominantly Y341 phosphorylation. Phosphorylation at both sites is maximal only when both oncogenic Ras and activated Src are present. Raf-1 that cannot interact with Ras-GTP is not phosphorylated, showing that phosphorylation is Ras dependent, presumably occurring at the plasma membrane. Mutations which prevent phosphorylation at either site block Raf-1 activation and maximal activity is seen only when both are phosphorylated. Mutations at S339 or Y340 do not block Raf-1 activation. While B-Raf lacks a tyrosine phosphorylation site equivalent to Y341 of Raf-1, S445 of B-Raf is equivalent to S338 of Raf-1. Phosphorylation of S445 is constitutive and is not stimulated by oncogenic Ras. However, S445 phosphorylation still contributes to B-Raf activation by elevating basal and consequently Ras-stimulated activity. Thus, there are considerable differences between the activation of the Raf proteins; Ras-GTP mediates two phosphorylation events required for Raf-1 activation but does not regulate such events for B-Raf.  相似文献   

2.
The p21-activated kinase, Pak, has recently been shown to phosphorylate Raf-1 on serine 338 (S338), a critical regulatory residue. The specificity requirements for Pak-mediated phosphorylation of S338 were examined by substitution analysis of Raf-1 peptides and conserved region 3 (CR3) proteins. Phosphorylation was found to be very sensitive to alterations in amino acid side chains proximal to S338. Loss of N-terminal arginines resulted in decreased peptide phosphorylation while loss of these residues, as well as C-terminal glutamates and bulky C-terminal hydrophobic residues, decreased phosphorylation of the CR3 protein. Phosphorylation of Raf-1 on tyrosine 341 is significant in epidermal growth factor- and Src-mediated signaling, suggesting that cooperativity may exist between Pak and Src phosphorylation of Raf-1. Purified Pak and Src were found not to be cooperative in phosphorylating peptides or purified CR3 protein. However, the phosphorylation of Raf-1 S338 by Pak was increased in the presence of Src. The complexity of this signaling module could thus account for the different levels of Raf-1 activation required for fulfillment of different biological roles within the cell.  相似文献   

3.
The Raf-1 serine/threonine protein kinase requires phosphorylation of the serine at position 338 (S338) for activation. Ras is required to recruit Raf-1 to the plasma membrane, which is where S338 phosphorylation occurs. The recent suggestion that Pak3 could stimulate Raf-1 activity by directly phosphorylating S338 through a Ras/phosphatidylinositol 3-kinase (Pl3-K)/-Cdc42-dependent pathway has attracted much attention. Using a phospho-specific antibody to S338, we have reexamined this model. Using LY294002 and wortmannin, inhibitors of Pl3-K, we find that growth factor-mediated S338 phosphorylation still occurs, even when Pl3-K activity is completely blocked. Although high concentrations of LY294002 and wortmannin did suppress S338 phosphorylation, they also suppressed Ras activation. Additionally, we show that Pak3 is not activated under conditions where S338 is phosphorylated, but when Pak3 is strongly activated, by coexpression with V12Cdc42 or by mutations that make it independent of Cdc42, it did stimulate S338 phosphorylation. However, this occurred in the cytosol and did not stimulate Raf-1 kinase activity. The inability of Pak3 to activate Raf-1 was not due to an inability to stimulate phosphorylation of the tyrosine at position 341 but may be due to its inability to recruit Raf-1 to the plasma membrane. Taken together, our data show that growth factor-stimulated Raf-1 activity is independent of Pl3-K activity and argue against Pak3 being a physiological mediator of S338 phosphorylation in growth factor-stimulated cells.  相似文献   

4.
Activation of the protein kinase Raf-1 is a complex process involving association with the GTP-bound form of Ras (Ras-GTP), membrane translocation and both serine/threonine and tyrosine phosphorylation (reviewed in [1]). We have reported previously that p21-activated kinase 3 (Pak3) upregulates Raf-1 through direct phosphorylation on Ser338 [2]. Here, we investigated the origin of the signal for Pak-mediated Raf-1 activation by examining the role of the small GTPase Cdc42, Rac and Ras, and of phosphatidylinositol (PI) 3-kinase. Pak3 acted synergistically with either Cdc42V12 or Rac1V12 to stimulate the activities of Raf-1, Raf-CX, a membrane-localized Raf-1 mutant, and Raf-1 mutants defective in Ras binding. Raf-1 mutants defective in Ras binding were also readily activated by RasV12. This indirect activation of Raf-1 by Ras was blocked by a dominant-negative mutant of Pak, implicating an alternative Ras effector pathway in Pak-mediated Raf-1 activation. Subsequently, we show that Pak-mediated Raf-1 activation is upregulated by both RasV12C40, a selective activator of PI 3-kinase, and p110-CX, a constitutively active PI 3-kinase. In addition, p85Delta, a mutant of the PI 3-kinase regulatory subunit, inhibited the stimulated activity of Raf-1. Pharmacological inhibitors of PI 3-kinase also blocked both activation and Ser338 phosphorylation of Raf-1 induced by epidermal growth factor (EGF). Thus, Raf-1 activation by Ras is achieved through a combination of both physical interaction and indirect mechanisms involving the activation of a second Ras effector, PI 3-kinase, which directs Pak-mediated regulatory phosphorylation of Raf-1.  相似文献   

5.
Activation of the serine/threonine kinase c-Raf-1 requires membrane localization, phosphorylation, and oligomerization. To study these mechanisms of Raf activation more precisely, we have used a membrane-localized fusion protein, myr-Raf-GyrB, which can be activated by coumermycin-induced oligomerization in NIH3T3 transfectants. By introducing a series of point mutations into the myr-Raf-GyrB kinase domain (S338A, S338A/Y341F, Y340F/Y341F, and T491A/S494A) we can separately study the role that membrane localization, phosphorylation, and oligomerization play in the process of Raf activation. We find that phosphorylation of Ser-338 plays a critical role in Raf activation and that this requires membrane localization but not oligomerization of Raf. Mutation of Tyr-341 had a limited effect, whereas mutation of both Ser-338 and Tyr-341 resulted in a synergistic loss of Raf activation following coumermycin-induced dimerization. Importantly, we found that membrane localization and phosphorylation of Ser-338 were not sufficient to activate Raf in the absence of oligomerization. Thus, our studies suggest that three key steps are required for optimal Raf activation: recruitment to the plasma membrane by GTP-bound Ras, phosphorylation via membrane-resident kinases, and oligomerization.  相似文献   

6.
Growth factors activate Raf-1 by engaging a complex program, which requires Ras binding, membrane recruitment, and phosphorylation of Raf-1. The present study employs the microtubule-depolymerizing drug nocodazole as an alternative approach to explore the mechanisms of Raf activation. Incubation of cells with nocodazole leads to activation of Pak1/2, kinases downstream of small GTPases Rac/Cdc42, which have been previously indicated to phosphorylate Raf-1 Ser(338). Nocodazole-induced stimulation of Raf-1 is augmented by co-expression of small GTPases Rac/Cdc42 and Pak1/2. Dominant negative mutants of these proteins block activation of Raf-1 by nocodazole, but not by epidermal growth factor (EGF). Thus, our studies define Rac/Cdc42/Pak as a module upstream of Raf-1 during its activation by microtubule disruption. Although it is Ras-independent, nocodazole-induced activation of Raf-1 appears to involve the amino-terminal regulatory region in which the integrity of the Ras binding domain is required. Surprisingly, the Raf zinc finger mutation (C165S/C168S) causes a robust activation of Raf-1 by nocodazole, whereas it diminishes Ras-dependent activation of Raf-1. We also show that mutation of residues Ser(338) to Ala or Tyr(340)-Tyr(341) to Phe-Phe immediately amino-terminal to the catalytic domain abrogates activation of both the wild type and zinc finger mutant Raf by both EGF/4beta-12-O-tetradecanoylphorbol-13-acetate and nocodazole. Finally, an in vitro kinase assay demonstrates that the zinc finger mutant serves as a better substrate of Pak1 than the wild type Raf-1. Collectively, our results indicate that 1) the zinc finger exerts an inhibitory effect on Raf-1 activation, probably by preventing phosphorylation of (338)SSYY(341); 2) such inhibition is first overcome by an unknown factor binding in place of Ras-GTP to the amino-terminal regulatory region in response to nocodazole; and 3) EGF and nocodazole utilize different kinases to phosphorylate Ser(338), an event crucial for Raf activation.  相似文献   

7.
Exposure of cells to mitogens or growth factors stimulates Raf-1 activity through a complex mechanism that involves binding to active Ras, phosphorylation on multiple residues, and protein-protein interactions. Recently it was shown that the amino terminus of Raf-1 contains an autoregulatory domain that can inhibit its activity in Xenopus oocytes. In the present work we show that expression of the Raf-1 autoinhibitory domain blocks extracellular signal-regulated kinase 2 activation by the Raf-1 catalytic domain in mammalian cells. We also show that phosphorylation of Raf-1 on serine 338 by PAK1 and tyrosines 340 and 341 by Src relieves autoinhibition and that this occurs through a specific decrease in the binding of the Raf-1 regulatory domain to its catalytic domain. In addition, we demonstrate that phosphorylation of threonine 491 and serine 494, two phosphorylation sites in the catalytic domain that are required for Raf-1 activation, is unlikely to regulate autoinhibition. These results demonstrate that the autoinhibitory domain of Raf-1 is functional in mammalian cells and that its interaction with the Raf-1 catalytic domain is regulated by phosphorylation of serine 338 and tyrosines 340 and 341.  相似文献   

8.
The calcium/calmodulin-dependent kinase II (CaMKII) participates with Ras to Raf-1 activation, and it is necessary for activation of the extracellular signal-regulated kinase (ERK) by different factors in epithelial and mesenchimal cells. Raf-1 activation is a complex multistep process, and its maximal activation is achieved by phosphorylation at Y341 by Src and at S338 by other kinase/s. Although early data proposed the involvement of p21-activated kinase 3 (Pak3), the kinase phosphorylating S338 remains to be definitively identified. In this study, we verified the hypothesis that CaMKII phosphorylates Raf-1 at Ser338. To do so, we determined the role of CaMKII in Raf-1 and ERK activation by oncogenic Ras and other factors. Serum, fibronectin, SrcY527 and RasV12 activated CaMKII and ERK, at different extents. The inhibition of CaMKII attenuated Raf-1 and ERK activation by all these factors. CaMKII was also necessary for the phosphorylation of Raf-1 at S338 by serum, fibronectin and Ras. Conversely, inhibition of Pak3 activation by blocking phosphatidylinositol 3-kinase was ineffective. The direct phosphorylation of S338 Raf-1 by CaMKII was demonstrated in vitro by interaction of purified kinases. These results demonstrate that Ras activates CaMKII, which, in turn, phosphorylates Raf-1 at S338 and participates in ERK activation upon different stimuli.  相似文献   

9.
Chen J  Siddiqui A 《Journal of virology》2007,81(12):6757-6760
The human hepatitis B virus (HBV) X protein (HBx) plays a crucial role(s) in the viral life cycle and contributes to the onset of hepatocellular carcinoma (HCC). HBx caused the mitochondrial translocation of Raf-1 kinase either alone or in the context of whole-viral-genome transfections. Mitochondrial translocation of Raf-1 is mediated by HBx-induced oxidative stress and was dependent upon the phosphorylation of Raf-1 at the serine338/339 and Y340/341 residues by p21-activated protein kinase 1 and Src kinase, respectively. These studies provide an insight into the mechanisms by which HBV induces intracellular events relevant to liver disease pathogenesis, including HCC.  相似文献   

10.
The present study characterizes the interaction between the Raf-1 kinase domain and MEK1 and examines whether the magnitude of their interaction correlates to the ability of Raf to phosphorylate MEK1. Here we show that the minimal domain required for the Raf kinase activity starts from tryptophan 342. Maximal binding of the Raf kinase domain to MEK1 and its kinase activity are achieved upon phosphorylation of the region (338)SSYY(341) in response to 4beta-12-O-tetradecanoylphorbol-13-acetate (TPA), or mutation of Y340Y341 to aspartic acids. Conversely, the TPA-stimulated MEK binding and kinase activity are diminished when this region is deleted or Ser(338) and Ser(339) are mutated to alanines. We also show that the integrity of the Raf ATP-binding site is necessary for the interaction between Raf-1 and MEK1. Furthermore, two MEK-binding sites are identified; the first is localized between amino acids 325 and 349, and the second is within the region between amino acids 350 and 648. Separately, the binding of each site to MEK1 is weak, but in a cis context, they give rise to a much stronger association, which can be further stimulated by TPA. Finally, we find that tryptophan 342, which is conserved among the Raf family and other protein kinases, is essential for the Ser(338) phosphorylation of the full-length Raf and its binding to MEK1. Taken together, our results indicate that the phosphorylation of Ser(338) and Tyr(341) on Raf exerts an important effect on reconfiguring the two MEK-binding sites. As a result, these two sites coordinate to form a high affinity MEK-binding epitope, leading to a marked increase in Raf kinase activity.  相似文献   

11.
Activation of Raf-1 is a complex process in which phosphorylation of Ser(338)-Tyr(341) is a critical step. Previous studies have shown that Pak1/2 is implicated in both Ras-dependent and -independent activation of Raf-1 by phosphorylating Raf Ser(338). The present study explores the structural basis of Raf-1 phosphorylation by Pak1. We found that Pak directly associates with Raf-1 under both physiological and overexpressed conditions. The association is greatly stimulated by 4beta-12-O-tetradecanoylphorbol-13-acetate and nocodazole and by expression of the active mutants of Rac and Ras. The active forms of Pak generated by mutation of Thr(423) to Glu or truncation of the amino-terminal moiety exhibit a greater binding to Raf than the wild type, whereas the kinase-dead mutant Pak barely binds Raf. The extent of binding to Raf-1 is correlated with the ability of Pak to phosphorylate Raf and induce mitogen-activated protein kinase activation. Furthermore, the Raf-1 binding site is defined to the carboxyl terminus of the Pak catalytic domain. In addition, our results suggest that the amino-terminal regulatory region of Raf inhibits the interaction. Taken together, the results indicate that the interaction depends on the active conformations of Pak and Raf. They also argue that Pak1 is a physiological candidate for phosphorylation of Raf Ser(338) during the course of Raf activation.  相似文献   

12.
Raf kinases are essential for regulating cell proliferation, survival, and tumorigenesis. However, the mechanisms by which Raf is activated are still incompletely understood. Phosphorylation plays a critical role in Raf activation in response to mitogens. The present study characterizes phosphorylation of Ser338, a crucial event for Raf-1 activation. Here we report that mutation of Lys375 to Met diminishes phosphorylation of Ser338 on both wild type Raf-1 in cells treated with epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA) and a constitutively active mutant in which Tyr340/Tyr341 are replaced by 2 aspartic acids, a conserved substitution present in natural B-Raf. The loss of Ser338 phosphorylation in these Raf mutants is not engendered by a mutation-induced conformational change, inasmuch as mutation of another site (Ser471 to Ala) in the activation segment also abolishes Ser338 phosphorylation, whereas both the kinase-dead mutants of Raf-1 are phosphorylated well by active Pak1. Furthermore, our data demonstrate that EGF-stimulated phosphorylation of Ser338 is inhibited by Sorafenib, a Raf kinase inhibitor, but not by the MEK inhibitor U0126. Interestingly, a kinase-dead mutation and Sorafenib also markedly reduce phosphorylation of Ser445 on B-Raf, a site equivalent to Raf-1 Ser338. Finally, our data reveal that Ser338 is phosphorylated on inactive Raf-1 by an active mutant of Raf-1 when they are dimerized in cells and that artificial dimerization of Raf-1 causes Ser338 phosphorylation, accompanied by activation of ERK1/2. Altogether, our data suggest that Ser338 on Raf-1 is autophosphorylated in response to mitogens.  相似文献   

13.
We have investigated the role that S259 phosphorylation, S621 phosphorylation, and 14-3-3 binding play in regulating Raf-1 activity. We show that 14-3-3 binding, rather than Raf-1 phosphorylation, is required for the correct regulation of kinase activity. Phosphorylation of S621 is not required for activity, but 14-3-3 binding is essential. When 14-3-3 binding to conserved region 2 (CR2) was disrupted, Raf-1 basal kinase activity was elevated and it could be further activated by (V12,G37)Ras, (V23)TC21, and (V38)R-Ras. Disruption of 14-3-3 binding at CR2 did not recover binding of Raf-1 to (V12,G37)Ras but allowed more efficient recruitment of Raf-1 to the plasma membrane and stimulated its phosphorylation on S338. Finally, (V12)Ras, but not (V12,G37)Ras, displaced 14-3-3 from full-length Raf-1 and the Raf-1 bound to Ras. GTP was still phosphorylated on S259. Our data suggest that stable association of Raf-1 with the plasma membrane requires Ras-mediated displacement of 14-3-3 from CR2. Small G proteins that cannot displace 14-3-3 fail to recruit Raf-1 to the membrane efficiently and so fail to stimulate kinase activity.  相似文献   

14.
Activation of Raf-1 by Ras requires recruitment to the membrane as well as additional phosphorylations, including phosphorylation at serine 338 (Ser-338) and tyrosine 341 (Tyr-341). In this study we show that Tyr-341 participates in the recruitment of Raf-1 to specialized membrane domains called "rafts," which are required for Raf-1 to be phosphorylated on Ser-338. Raf-1 is also thought to be recruited to the small G protein Rap1 upon GTP loading of Rap1. However, this does not result in Raf-1 activation. We propose that this is because Raf-1 is not phosphorylated on Tyr-341 upon recruitment to Rap1. Redirecting Rap1 to Ras-containing membranes or mimicking Tyr-341 phosphorylation of Raf-1 by mutation converts Rap1 into an activator of Raf-1. In contrast to Raf-1, B-Raf is activated by Rap1. We suggest that this is because B-Raf activation is independent of tyrosine phosphorylation. Moreover, mutants that render B-Raf dependent on tyrosine phosphorylation are no longer activated by Rap1.  相似文献   

15.
Activation of the extracellular signal-regulated kinase (ERK) 1/2 cascade by polypeptide growth factors is tightly coupled to adhesion to extracellular matrix in nontransformed cells. Raf-1, the initial kinase in this cascade, is intricately regulated by phosphorylation, localization, and molecular interactions. We investigated the complex interactions between Raf-1, protein kinase A (PKA), and p21-activated kinase (PAK) to determine their roles in the adhesion dependence of signaling from epidermal growth factor (EGF) to ERK. We conclude that Raf-1 phosphorylation on serine 338 (S338) is a critical step that is inhibited in suspended cells. Restoration of phosphorylation at S338, either by expression of highly active PAK or by expression of an S338 phospho-mimetic Raf-1 mutation, led to a partial rescue of ERK activation in suspended cells. Raf-1 inhibition in suspension was not due to excessive negative regulation on inhibitory sites S43 and S259, as these serines were largely dephosphorylated in suspended cells. Finally, strong phosphorylation of Raf-1 S338 provided resistance to PKA-mediated inhibition of ERK activation. Phosphorylation at Raf-1 S43 and S259 by PKA only weakly inhibited EGF activation of Raf-1 and ERK when cells maintained high Raf-1 S338 phosphorylation.  相似文献   

16.
Raf-1 is an important effector of Ras mediated signaling and is a critical regulator of the ERK/MAPK pathway. Raf-1 activation is controlled in part by phosphorylation on multiple residues, including an obligate phosphorylation site at serine 338. Previously PAK1 and casein kinase II have been implicated as serine 338 kinases. To identify novel kinases that phosphorylate this site, we tested the ability of group II PAKs (PAKs 4-6) to control serine 338 phosphorylation. We observed that all group II PAKs were efficient serine 338 kinases, although only PAK1 and PAK5 significantly stimulated Raf-1 kinase activity. We also showed that PAK5 forms a tight complex with Raf-1 in the cell, but not A-Raf or B-Raf. Importantly, we also demonstrated that the association of Raf-1 with PAK5 targets a subpopulation of Raf-1 to mitochondria. These data indicate that PAK5 is a potent regulator of Raf-1 activity and may control Raf-1 dependent signaling at mitochondria.  相似文献   

17.
Extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase pathway, has been increasingly implicated in the pathogenesis of Alzheimer's disease due to its critical role in brain function. While we previously demonstrated that ERK is activated in Alzheimer's disease, the upstream cascade leading to its activation had not been fully examined. In this study, we focused on Raf-1, one of the physiological activators of the ERK pathway. Raf-1 is activated by phosphorylation at Ser338 and Tyr340/341 and inhibited by phosphorylation at Ser259. Interestingly, phosphorylation at all three sites on Raf-1 was increased as evidenced by both immunocytochemistry and immunoblot analysis in Alzheimer's disease brains compared to age-matched controls. Both phospho-Raf-1 (Ser259) and phospho-Raf-1 (Ser338) were localized to intracytoplasmic granular structures, whereas phospho-Raf-1 (Tyr340/341) was localized to neurofibrillary tangles and granules in pyramidal neurons in Alzheimer's disease hippocampus. There is extensive overlap between phospho-Raf-1 (Ser338) and phospho-Mek1/2, the downstream effector of Raf-1, suggestive of a mechanistic link. Additionally, increased levels of Raf-1 are associated with Ras and MEK1 in Alzheimer's disease as evidenced by its coimmunoprecipitation with Ras and Mek1, respectively. Based on these findings, we speculate that Raf-1 is activated to effectively mediate Ras-dependent signals in Alzheimer's disease.  相似文献   

18.
We have previously shown that inhibition of phosphatidylinositol (PI) 3-kinase severely attenuates the activation of extracellular signal-regulated kinase (Erk) following engagement of integrin/fibronectin receptors and that Raf is the critical target of PI 3-kinase regulation [1]. To investigate how PI 3-kinase regulates Raf, we examined sites on Raf1 required for regulation by PI 3-kinase and explored the mechanisms involved in this regulation. Serine 338 (Ser338), which was critical for fibronectin stimulation of Raf1, was phosphorylated in a PI 3-kinase-dependent manner following engagement of fibronectin receptors. In addition, fibronectin activation of a Raf1 mutant containing a phospho-mimic mutation (S338D) was independent of PI 3-kinase. Furthermore, integrin-induced activation of the serine/threonine kinase Pak-1, which has been shown to phosphorylate Raf1 Ser338, was also dependent on PI 3-kinase activity and expression of a kinase-inactive Pak-1 mutant blocked phosphorylation of Raf1 Ser338. These results indicate that PI 3-kinase regulates phosphorylation of Raf1 Ser338 through the serine/threonine kinase Pak. Thus, phosphorylation of Raf1 Ser338 through PI 3-kinase and Pak provides a co-stimulatory signal which together with Ras leads to strong activation of Raf1 kinase activity by integrins.  相似文献   

19.
Genetic and biochemical evidence suggests that the Ras protooncogene product regulates the activation of the Raf kinase pathway, leading to the proposal that Raf is a direct mitogenic effector of activated Ras. Here we report the use of a novel competition assay to measure in vitro the relative affinity of the c-Raf-1 regulatory region for Ras-GTP, Ras-GDP, and 10 oncogenic and effector mutant Ras proteins. c-Raf-1 associates with normal Ras and the oncogenic V12 and L61 forms of Ras with equal affinity. The moderately transforming mutant Ras[E30K31] also bound to the c-Raf-1 regulatory region with normal affinity. Transformation-defective Ras effector mutants Ras[N33], Ras[S35], and Ras[N38] bound poorly. In contrast, the transformation defective Ras[G26I27] and Ras[E45] mutants bound to the c-Raf-1 regulatory region with nearly wild-type affinity. A stable, high-affinity Ras-binding region of c-Raf-1 was mapped to a 99-amino-acid subfragment of the first 257 residues. The smallest Ras-binding region identified consisted of N-terminal residues 51 to 131, although stable expression of the domain and high-affinity binding were improved by the presence of residues 132 to 149. Deletion of the Raf zinc finger region did not reduce Ras-binding affinity, while removal of the first 50 amino acids greatly increased affinity. Phosphorylation of Raf[1-149] by protein kinase A on serine 43 resulted in significant inhibiton of Ras binding. demonstrating that the mechanism of cyclic AMP downregulation results through structural changes occurring exclusively in this small Ras-binding domain.  相似文献   

20.
The Raf-1 kinase activates the ERK (extracellular-signal-regulated kinase) pathway. The cyclic AMP (cAMP)-dependent protein kinase (PKA) can inhibit Raf-1 by direct phosphorylation. We have mapped all cAMP-induced phosphorylation sites in Raf-1, showing that serines 43, 259, and 621 are phosphorylated by PKA in vitro and induced by cAMP in vivo. Serine 43 phosphorylation decreased the binding to Ras in serum-starved but not in mitogen-stimulated cells. However, the kinase activity of a RafS43A mutant was fully inhibited by PKA. Mutation of serine 259 increased the basal Raf-1 activity and rendered it largely resistant to inhibition by PKA. cAMP increased Raf-1 serine 259 phosphorylation in a PKA-dependent manner with kinetics that correlated with ERK deactivation. PKA also decreased Raf-1 serine 338 phosphorylation of Raf-1, previously shown to be required for Raf-1 activation. Serine 338 phosphorylation of a RafS259A mutant was unaffected by PKA. Using RafS259 mutants we also demonstrate that Raf-1 is the sole target for PKA inhibition of ERK and ERK-induced gene expression, and that Raf-1 inhibition is mediated mainly through serine 259 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号