共查询到20条相似文献,搜索用时 15 毫秒
1.
Arnold Coffer Vincent Cavailles Phillip Knowles Darryl Pappin 《The Journal of steroid biochemistry and molecular biology》1996,58(5-6):467-477
Biologically active, mouse estrogen receptor hormone-binding domain (residues 313–599) overexpressed in Escherichia coli was purified to apparent homogeneity as a single component with a molecular mass of 32.831 kDa determined by electrospray ionization mass spectrometry, and was identical to the mass predicted from the amino acid sequence. The intact domain was isolated using a novel, rapid purification scheme without recourse to any chromatographic process. Pure ERhbd maintained both high affinity estradiol binding (at optimum pH 8.0) and specificity for estrogens and anti-estrogens. The steroid-binding domain sedimented as a 4S component in the presence or absence of bound [3H]estradiol and at 2S in the presence of urea. The molecular mass of the 4S steroid unoccupied ERhbd (from dynamic light scattering) was 72 kDa, suggesting that the pure, unlabelled ERhbd formed homodimers. Steroid-labelled ERhbd electrofocussed as a single, acidic component at a pI of 5.6. Binding of ERhbd to [3H]estradiol was unaffected by Ca2+ and Mg2+ ions up to 1 mM but was significantly inhibited by Zn2+ ions at concentrations above 10 μM, an effect reversed by EDTA. 相似文献
2.
3.
4.
Bocharov EV Mineev KS Volynsky PE Ermolyuk YS Tkach EN Sobol AG Chupin VV Kirpichnikov MP Efremov RG Arseniev AS 《The Journal of biological chemistry》2008,283(11):6950-6956
Proper lateral dimerization of the transmembrane domains of receptor tyrosine kinases is required for biochemical signal transduction across the plasma membrane. The spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 embedded into lipid bicelles was obtained by solution NMR, followed by molecular dynamics relaxation in an explicit lipid bilayer. ErbB2 transmembrane segments associate in a right-handed alpha-helical bundle through the N-terminal tandem GG4-like motif Thr652-X3-Ser656-X3-Gly660, providing an explanation for the pathogenic power of some oncogenic mutations. 相似文献
5.
6.
We have used bifunctional reagents to examine the subunit composition of the non-DNA-binding form of the rat and human glucocorticoid receptor. Treatment of intact cells and cell extracts with a reversible cross-linker, followed by electrophoretic analysis of immunoadsorbed receptor revealed that three proteins of apparent approximate molecular masses, 90, 53 and 14 kDa are associated with the receptor. The first of these was identified immunochemically as a 90-kDa heat-shock protein (hsp90). The complex isolated from HeLa cells contained 2.2 mol hsp90/mol steroid-binding subunit. Cross-linking of the receptor complex in the cytosol completely prevented salt-induced dissociation of the subunits. The cross-linked receptor was electrophoretically resolved into two oligomeric complexes of apparent molecular mass 288 kDa and 347 kDa, reflecting the association of the 53-kDa protein with a fraction of the receptor. Since no higher oligomeric complexes could be generated by cross-linking cell extracts under different conditions, we conclude that most of the untransformed cytosolic receptor is devoid of additional components. 相似文献
7.
8.
9.
Characterization of hepatic lactogen receptor. Subunit composition and hydrodynamic properties 总被引:1,自引:0,他引:1
The structure of the membrane-bound and Triton X-100-solubilized female rat liver prolactin receptor has been studied by affinity cross-linking/sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and sucrose/H2O and sucrose/D2O density gradient centrifugation. Hydrodynamic characterization revealed that the 125I-human growth hormone receptor-detergent complex represents a molecular species with a Stokes radius of 61 A, a sedimentation coefficient of 5.0 s, and a calculated molecular weight of 158,000. The molecular weight of the receptor was calculated to be 92,000. Three lactogenic hormone-binding species with Mr values of 87,000, 40,000, and 35,000, respectively, were repeatedly found when detergent-solubilized preparations were analyzed using an affinity cross-linking technique. Estrogen treatment of female rats increased the intensity of these bands. Occasionally, an Mr 165,000 hormone-binding species was also found. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis studies (first dimension, nonreducing; second dimension, reducing) demonstrated that disulfide- and nondisulfide-linked hormone-binding species with Mr values of 40,000 and 35,000 are contained within the Mr 87,000 species. It is concluded that the Triton X-100-solubilized female rat liver prolactin receptor has a molecular weight of about 90,000. This molecular species contains Mr 40,000 and Mr 35,000 hormone-binding subunits. It cannot be determined whether these subunits are combined with each other or with as yet undetected subunit(s) to make up the Mr 90,000 species, or whether each one of these subunits is a proteolytic fragment of the Mr 90,000 species. 相似文献
10.
11.
Binding of the estrogen receptor DNA-binding domain to the estrogen response element induces DNA bending. 下载免费PDF全文
We have used circular permutation analysis to determine whether binding of purified Xenopus laevis estrogen receptor DNA-binding domain (DBD) to a DNA fragment containing an estrogen response element (ERE) causes the DNA to bend. Gel mobility shift assays showed that DBD-DNA complexes formed with fragments containing more centrally located EREs migrated more slowly than complexes formed with fragments containing EREs near the ends of the DNA. DNA bending standards were used to determine that the degree of bending induced by binding of the DBD to an ERE was approximately 34 degrees. A 1.55-fold increase in the degree of bending was observed when two EREs were present in the DNA fragment. These in vitro studies suggest that interaction of nuclear receptors with their hormone response elements in vivo may result in an altered DNA conformation. 相似文献
12.
J P Mornon V Bissery C Gaboriaud A Thomas T Ojasoo J P Raynaud 《Journal of steroid biochemistry》1989,34(1-6):355-361
A new technique of protein sequence analysis, namely, Hydrophobic Cluster Analysis (HCA), has been used to align and compare the sequences of proteins belonging to the receptor superfamily (steroid, thyroid hormone and retinoic acid receptors) and serpin superfamily (corticosteroid binding globulin (CBG) and alpha 1-antitrypsin (alpha 1-AT]. By matching up clusters of hydrophobic amino-acids that oftenmost correspond to identifiable secondary structures (alpha-helices, beta-strands etc.), it has been possible to deduce the following information on the secondary structures of these proteins: CBG is structurally related to alpha 1-AT (HCA score greater than 80%), the structures of the hormone-binding domains of the steroid receptors that bind 3-keto-delta 4-steroids are closely interrelated (greater than 80%) but less closely related to that of the estrogen receptor (ER) (approximately 75%), vitamin D, retinoic acid and thyroid hormone receptors are structurally closely related (greater than or equal to 80%). Their secondary structures are, however, also related to that of the steroid receptors (approximately 70%), and a high degree of analogy exists between the structures of serpins and of the hormone-binding domains of members of the steroid superfamily (60-70%). HCA has clearly shown that a previous local sequence alignment of the estrogen receptor with other steroid receptors and cytochromes P450 has to be reconsidered. The published consensus steroid binding sequence previously identified in cytochromes is in fact 80 amino-acids upstream from its previously defined position. Other regions of contiguous sequence identity have also been identified which may be involved in the hydrophobic core of the protein or in steroid binding. Their positions have been indicated using the crystal structure of alpha 1-AT as a model. 相似文献
13.
Insights into the molecular basis of binding of the peptide hormone, cholecystokinin, to its G protein-coupled receptor is of substantial interest and may contribute to the successful production and refinement of receptor-active drugs. A number of methodological approaches provide complementary data to contribute to these insights. These include receptor mutagenesis, ligand structure-activity data, conformational analysis of ligand and receptor fragments, and photoaffinity labeling. In this work, we compare and contrast each of these methods and provide our current view of the cumulative impact of the current data on molecular conformational models of the agonist-occupied type A cholecystokinin receptor. These support the key roles played by extracellular loop and tail regions of this receptor for binding its natural peptide ligand. 相似文献
14.
S X Lin F Yang J Z Jin R Breton D W Zhu V Luu-The F Labrie 《The Journal of biological chemistry》1992,267(23):16182-16187
Human placental 17 beta-hydroxysteroid dehydrogenase has been purified with a new rapid procedure based on fast protein liquid chromatography, yielding quantitatively a homogeneous preparation with high specific activity catalyzing the oxidation of 7.2 mumol of estradiol/min/mg of enzyme protein at 23 degrees C, pH 9.2. This preparation was shown to have a subunit mass of 34.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis while having a molecular mass of 68 kDa by both Superose-12 gel-filtration and native pore gradient gel electrophoresis. When 17 beta-hydroxysteroid dehydrogenase was expressed in HeLa cells or overproduced in insect cells using the baculovirus expression system, both from its cDNA encoding a protein of 34 kDa, the enzyme had the same migration in native and sodium dodecyl sulfate-gel electrophoresis as the purified one from human placenta and eluted from the Superose-12 column at the same elution volume. Moreover, all the above forms of this enzyme have similar specific activity. These results clearly demonstrate the identity of the three enzyme forms. The enzyme produced from the cDNA is expressed as a dimer, and its two subunits are identical. 17 beta-Hydroxysteroid dehydrogenase subunit identity is thus proved. The NH2-terminal analysis revealed a unique sequence of Ala-Arg-Thr-Val-Val-Leu-Ile for the purified enzyme from placenta, further confirming the above conclusion. 相似文献
15.
Subunit composition of the molybdate-stabilized non-activated glucocorticoid receptor from rat liver 总被引:1,自引:0,他引:1
A monoclonal IgG 2a antibody directed against the activated rat liver glucocorticoid receptor (GR) was used to prepare an immunoaffinity matrix of high capacity. The molybdate-stabilized GR from rat liver cytosol was immunoadsorbed on this gel. A non-hormone-binding protein of Mr approximately 90,000, as determined after denaturing gel electrophoresis, was eluted from this matrix following removal of molybdate and exposure to heat (25 degrees C) and salt (0.15 M NaCl). Subsequently, the Mr approximately 90,000 protein was purified to homogeneity using high-performance ion-exchange chromatography, covalently radiolabelled, and analyzed by high-performance size-exclusion chromatography and sucrose gradient ultracentrifugation. Hydrodynamic characterization indicates that, under our experimental conditions, the molybdate-stabilized rat liver GR (Rs approximately 7.4 nm, s20,w approximately 9.1 S, calculated mol. wt Mr approximately 285,000) includes one steroid-binding unit (Rs approximately 5.5 nm, S20,w approximately 4.3 S, calculated Mr approximately 100,000) and a dimer of Mr approximately 90,000 non-hormone-binding protein (Rs approximately 6.9 nm, S20,w approximately 6.1 S, calculated native Mr approximately 180,000). 相似文献
16.
For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), we have made use of affinity labeling of partially purified ER with [3H]tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or alpha-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER. 相似文献
17.
M Rexin W Busch B Segnitz U Gehring 《The Journal of steroid biochemistry and molecular biology》1991,40(1-3):287-299
Glucocorticoid receptors of S49.1 mouse lymphoma cells were analyzed under a variety of conditions. The complexes with an agonist or a steroidal antagonist can be formed in cytosolic extracts, they are of high molecular weight, Mr approximately 330,000 and have a Stokes radius of 82 A. Cross-linking by several agents stabilized this structure against subunit dissociation which produces the activated receptor form of 60 A and DNA-binding ability. Careful analysis of intermediate cross-linked forms lead to the conclusion that the large receptor structure is a hetero-tetramer consisting of one hormone-bearing polypeptide of Mr approximately 94,000, two 90 kDa subunits and a protein component of Mr approximately 50,000. The 90 kDa subunits are the heat shock protein hsp90. The high molecular weight receptor form also exists in intact cells as revealed again by cross-linking. The cytosolic complex with the antagonist can become activated to the DNA-binding form upon warming but simultaneously looses the ligand. Ligand rebinding does not occur subsequent to receptor dissociation. Upon incubation of intact cells at 37 degrees C with agonist or antagonist the respective receptor-ligand complexes are formed. The agonist complex is immediately activated, however, the antagonist complex remains stable in the undissociated state. This explains the biological effect of the antagonist. 相似文献
18.
19.