首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
A simple and rapid method is described for the preparation of a stable isotope oxygen-18 labelled leukotriene E4 (LTE4). Oxygen-18 labelling of LTE4 methyl ester in oxygen-18 water catalysed by a pig liver esterase resulted in the incorporation of two oxygen-18 atoms in the carboxylic group of LTE4 to the extent of 89.8% ([18O2]LTE4) and one oxygen-18 atom to the extent of 9.4% ([16O18O]LTE4), with only 0.7% remaining unchanged ([16O2]LTE4). [18O2]LTE4 was found not to back-exchange following incubation in acidified urine (pH 4.0) at 4°C for up to 20 h. [18O2]LTE4 was demonstrated to be a useful internal standard in a method for the quantitative determination of LTE4 in human urine involving high-performance liquid chromatography and gas chromatography with negative-ion chemical ionization tandem mass spectrometry: the concentration of LTE4 in a 24-h urine sample of a healthy subject was determined to be 68.1 pg/ml.  相似文献   

2.
Melby ES  Soldat DJ  Barak P 《PloS one》2011,6(4):e18420
Phosphorus (P) has only one stable isotope and therefore tracking P dynamics in ecosystems and inferring sources of P loading to water bodies have been difficult. Researchers have recently employed the natural abundance of the ratio of (18)O/(16)O of phosphate to elucidate P dynamics. In addition, phosphate highly enriched in oxygen-18 also has potential to be an effective tool for tracking specific sources of P in the environment, but has so far been used sparingly, possibly due to unavailability of oxygen-18 labeled phosphate (OLP) and uncertainty in synthesis and detection. One objective of this research was to develop a simple procedure to synthesize highly enriched OLP. Synthesized OLP is made up of a collection of species that contain between zero and four oxygen-18 atoms and, as a result, the second objective of this research was to develop a method to detect and quantify each OLP species. OLP was synthesized by reacting either PCl(5) or POCl(3) with water enriched with 97 atom % oxygen-18 in ambient atmosphere under a fume hood. Unlike previous reports, we observed no loss of oxygen-18 enrichment during synthesis. Electrospray ionization mass spectrometry (ESI-MS) was used to detect and quantify each species present in OLP. OLP synthesized from POCl(3) contained 1.2% P(18)O(16)O(3), 18.2% P(18)O(2) (16)O(2), 67.7% P(18)O(3) (16)O, and 12.9% P(18)O(4), and OLP synthesized from PCl(5) contained 0.7% P(16)O(4), 9.3% P(18)O(3) (16)O, and 90.0% P(18)O(4). We found that OLP can be synthesized using a simple procedure in ambient atmosphere without the loss of oxygen-18 enrichment and ESI-MS is an effective tool to detect and quantify OLP that sheds light on the dynamics of synthesis in ways that standard detection methods cannot.  相似文献   

3.
The fungus Gaeumannomyces graminis metabolized linoleic acid extensively to (8R)-hydroperoxylinoleic acid, (8R)-hydroxylinoleic acid, and threo-(7S,8S)-dihydroxylinoleic acid. When G. graminis was incubated with linoleic acid under an atmosphere of oxygen-18, the isotope was incorporated into (8R)-hydroxylinoleic acid and 7,8-dihydroxylinoleic acid. The two hydroxyls of the latter contained either two oxygen-18 or two oxygen-16 atoms, whereas a molecular species that contained both oxygen isotopes was formed in negligible amounts. Glutathione peroxidase inhibited the biosynthesis of 7,8-dihydroxylinoleic acid. These findings demonstrated that the diol was formed from (8R)-hydroperoxylinoleic acid by intramolecular hydroxylation at carbon 7, catalyzed by a hydroperoxide isomerase. The (8R)-dioxygenase appeared to metabolize substrates with a saturated carboxylic side chain and a 9Z-double bond. G. graminis also formed omega 2- and omega 3-hydroxy metabolites of the fatty acids. In addition, linoleic acid was converted to small amounts of nearly (65% R) racemic 10-hydroxy-8,12-octadecadienoic acid by incorporation of atmospheric oxygen. An unstable metabolite, 11-hydroxylinoleic acid, could also be isolated as well as (13R,13S)-hydroxy-(9E,9Z), (11E)-octadecadienoic acids and (9R,9S)-hydroxy-(10E), (12E,12Z)-octadecadienoic acids. In summary, G. graminis contains a prominent linoleic acid (8R)-dioxygenase, which differs from the lipoxygenase family of dioxygenases by catalyzing the formation of a hydroperoxide without affecting the double bonds of the substrate.  相似文献   

4.
The carcinogenic 7-methylbenz[a]anthracene and 7,12-dimethylbenz[a]anthracene were converted by rat liver microsomes into the corresponding hydroxymethyl derivatives and other metabolic products. The 7-methylbenz[a]anthracene incubation was carried out in H218O, and no incorporation of oxygen-18 was found in the hydroxymethyl metabolite isolated and purified by high pressure liquid chromatography, and analyzed by mass spectrometry. When 7-methylbenz[a]anthracene or 7,12-dimethylbenz[a]anthracene was incubated with 18O2, isotope incorporation was observed in the corresponding hydroxymethyl derivatives, indicating that such hydroxylation is a true oxygenase reaction.  相似文献   

5.
This study compared the effects of certain metabolites (either singly or in various combinations) and the methods of measuring lipogenesis (using either 14C-acetate or 3H2O incorporation into lipids) on total lipid synthesis and insulin-stimulated total lipid synthesis in the isolated rat hepatocyte. There were quantitative and qualitative differences between 14C-acetate and 3H2O incorporation into lipids; metabolites acutely affected both lipogenesis and insulin-stimulated lipogenesis with either isotope; and insulin's effect on lipogenesis was greater when measured by 14C-acetate incorporation. It is suggested that a particular choice of incubation media and isotope may inadvertently bias a study of insulin-stimulated lipogenesis and that metabolite supply plays a major role in regulating insulin-stimulated lipogenesis.  相似文献   

6.
In this communication we extend our earlier observations on estrogen-sensitive carboxyl esterases in MCF-7 human breast cancer cells able to hydrolyze esters of estradiol. Using either estradiol acetate or p-nitrophenyl hexanoate as substrates, esterase activity was found to increase 2-3-fold in MCF-7 cells maintained in the presence of 10(-8) M estradiol. Following sucrose density centrifugation, over 85% of total esterase activity was found in the cytoplasmic fraction. No esterase activity was found in spent media from growing cells. By size exclusion chromatography, estradiol acetate esterase activity exhibited a mol. wt of 45-50 kDa. Attempts to demonstrate incorporation of [3H]estradiol into estradiol fatty acid esters by the above MCF-7 cell line (203P) were unsuccessful, although, such incorporation could be demonstrated in two other MCF-7 cell sublines. Incubation of the 203P cells with 10 nM [3H]estradiol in the presence of 0.5 mM radioinert estradiol acetate resulted in the incorporation of 35 +/- 12% of the label into the estradiol acetate in 10 min. In the absence of radioinert estradiol acetate, no incorporation was observed. When MCF-7 cells were incubated with [3H]estradiol in the presence of a large excess of radioinert estradiol valerate, label was found only in estradiol valerate. Similarly, when the incubation was carried out in the presence of a mixture of radioinert estradiol acetate and valerate, label was incorporated into both esters. We conclude that the apparent formation of radiolabeled estradiol esters by MCF-7 cells incubated under the above conditions, results at least in part, from an esterase-catalyzed exchange reaction. Under conditions where no ester hydrolysis could be detected in the absence of cells, valerate and stearate esters of estradiol were found to be as effective as unesterified estradiol in stimulating esterase synthesis and the incorporation of [3H]thymidine into DNA. These results are consistent with a model in which an intracellular esterase in MCF-7 cells can generate estradiol from an exogenous lipoidal steroid and elicit an estrogen response.  相似文献   

7.
A nonspecific liver esterase was found to not only catalyze the hydrolysis of the methyl ester of prostaglandin F2α (PGF2α) but also to catalyze the exchange of the carboxyl oxygen atoms with water leading to the production of [18O2]PGF2α when the enzymatic hydrolysis is carried out in H218O. The kinetics of this oxygen-18 exchange reaction are briefly discussed. The [18O2]PGF2α was found to be relative stable toward back exchange in methanol, aqueous buffer, and urine, but rapidly back exchanged to the native PGF2α in plasma with a half-life of 1 h. The [18O2]PGF2α was relatively stable in plasma to which alcohol had been added. The utility of the oxygen-18 labeled prostaglandin as an internal standard in a gas chromatography-mass spectrometry assay was demonstrated at the picomole range.  相似文献   

8.
L-amino acids containing oxygen-18 at the carboxyl moiety have been found to undergo rapid loss of the stable isotope label through exchange with water in the presence of erythrocytes. This back exchange was found to be temperature dependent, stereo-specific, and dependent on intact cells. The results suggest that an erythrocyte system catalyzes the formation of an intermediate which adds water to the labeled acid. This system has many characteristics similar to amino acid transport.  相似文献   

9.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

10.
We confirmed that cholesterol esterase accelerated the incorporation of unesterified cholesterol solubilized in bile salt micelles into differentiated Caco-2 cells under various experimental conditions. Rat pancreatic juice and bovine cholesterol esterase increased the incorporation of micellar cholesterol into rat intestinal brush border membranes. The incorporation of micellar cholesterol was not changed in the brush border membranes enriched in and depleted of cholesterol esterase. The results suggest that the accelerated incorporation of micellar cholesterol by cholesterol esterase into absorptive cells is not mediated by the enzyme bound to the brush border membranes.  相似文献   

11.
Murine spleen cells and purified B lymphocytes oxidized arachidonic acid via the lipoxygenase pathway. The major metabolite of both the whole spleen and enriched B lymphocytes was 12S-hydroxy-5,8-cis-10-trans-14-cis-eicosatetraenoic acid. A novel metabolite was observed that did not have an absorbance from 210 to 400 nm, indicating the absence of a conjugated double bond system. The new metabolite was converted to the methyl ester, reduced by platinum oxide, derivatized to the trimethylsilyl ether, and analyzed by gas chromatography-mass spectrometry. A major and a minor component were observed in the analysis of the new compound. The major component had major diagnostic ions indicating the presence of hydroxyl groups at C-12 and C-19. The minor component had major diagnostic ions indicating the presence of hydroxyl groups at C-12 and C-20. The new metabolites are characterized as a mixture of 12S,19- and 12S,20-dihydroxyeicosanoids presumably formed by hydroxylation and reduction of one or more double bonds of 12S-hydroxy-5,8-cis-10-trans-14-cis-eicosatetraenoic acid. These metabolites were formed predominantly with whole spleen lymphocytes but could be detected at longer incubation times or by using 12S-hydroxy-5,8-cis-10-trans-14-cis-eicosatetraenoic acid as the starting substrate with highly enriched B lymphocytes.  相似文献   

12.
We confirmed that cholesterol esterase accelerated the incorporation of unesterified cholesterol solubilized in bile salt micelles into differentiated Caco-2 cells under various experimental conditions. Rat pancreatic juice and bovine cholesterol esterase increased the incorporation of micellar cholesterol into rat intestinal brush border membranes. The incorporation of micellar cholesterol was not changed in the brush border membranes enriched in and depleted of cholesterol esterase. The results suggest that the accelerated incorporation of micellar cholesterol by cholesterol esterase into absorptive cells is not mediated by the enzyme bound to the brush border membranes.  相似文献   

13.
Summary Salinity and isotope ratios were determined in water from several wells in the Florida Keys, and tidal inlets. Both D/H and 18O/16O ratios of water from wells and tidal inlets were highly correlated to their salinity. Water from standing pools was enriched in deuterium and oxygen-18 relative to their salinity because of evaporation processes. 18O/16O and D/H ratios of stem water from plants of several different communities at Sugar Loaf Key, ranging from hardwood hammocks to mangroves, were highly correlated to their predawn water potential. The correlation was consistent with the presence of high salinity in waters with high 18O and D content. Most individuals from each community were either utilizing water with isotopic characteristics typical of freshwater or of ocean water, while only a few individuals had stem water with isotopic ratios intermediate to these two water sources.  相似文献   

14.
Nicotine or nornicotine enriched with stable isotopes in either the N'-methyl group or the pyrrolidine-N were fed to Nicotiana plumbaginifolia suspension cell cultures that do not form endogenous nicotine. The metabolism of these compounds was investigated by analysing the incorporation of isotope into other alkaloids using gas chromatography-mass spectroscopy (GC-MS). Nicotine metabolism primarily resulted in the accumulation of nornicotine, the N'-demethylation product. In addition, six minor metabolites appeared during the course of nicotine metabolism, four of which were identified as cotinine, myosmine, N'-formylnornicotine and N'-carboethoxynornicotine. While cotinine was formed from [(13)C,(2)H(3)-methyl]nicotine without dilution of label, N'-formylnornicotine was labelled at only about 6% of the level of nicotine and N'-carboethoxynornicotine was unlabelled. Feeding with [1'-(15)N]nornicotine resulted in incorporation without dilution of label into both N'-formylnornicotine and N'-carboethoxynornicotine. This pattern strongly indicates that, while nornicotine and cotinine are derived directly from nicotine, N'-formylnornicotine and N'-carboethoxynornicotine are metabolites of nornicotine. Thus, it is directly demonstrated that N'-formylnornicotine is not an intermediate in nicotine demethylation.  相似文献   

15.
The use of stable isotope probing of fatty acid methyl esters (FAME-SIP) is a powerful tool to study the microorganisms involved in xenobiotic biodegradation in soil. Nevertheless, it is important to determine how representative these molecules are of microorganisms both qualitatively and quantitatively. Using Cupriavidus necator JMP134 as a simple experimental model, we showed that the (13)C-labelling technique can be used both at a global (here defined as cellular, medium and CO(2)) and molecular level to study the metabolism of 2,4-Dichlorophenoxyacetic acid (2,4-D). Although isotopic fractionation among substrate, biomass and FAME were observed, this technique could be used when using a highly (13)C-labelled substrate. Global (13)C analyses gave similar results to those obtained with traditional (14)C-labelling methods. After 10 days of incubation 59% of ring-C was mineralized and about 30% remained in the liquid medium. A maximum of 11% was incorporated into the biomass after 3 days. The assimilation yield of chain-C into the biomass was about half that of ring-C, suggesting a preferential use of chain-C for energy acquisition. Molecular analysis of the lipid fraction evidenced that the incorporation of the labelled 2,4-D did not correspond to a bioaccumulation of pesticide residues but to the metabolism of the 2,4-D carbons for FAME synthesis. Provided the labelling is located on the benzenic ring, the assessment of (13)C-FAME is a robust method to quantify the incorporation of (13)C into the whole microbial biomass. However, the variability of the (13)C incorporation among FAME due to physiological processes has to be considered in complex biological systems. The coupling of bulk and molecular studies with a simple model as C. necator JMP134 is a good approach for testing FAME-SIP.  相似文献   

16.
The following high performance liquid chromatography system was found suitable for separating most lipoxygenase metabolites of arachidonic acid: Techsphere 5-C18 column, eluting solvent methanol:water:acetic acid (65:35:0.06 v/v), pH 5.3. Comparisons with other packing materials and solvent systems are described. The method could be used to identify lipoxygenase products released from mouse macrophage cells stimulated with gamma-hexachlorocyclohexane. Detection limits between 1 and 10 ng were obtained.  相似文献   

17.
The effects of various lipoxygenase metabolites of arachidonic acid (AA) were investigated on the growth of freshly isolated human bone marrow mononuclear cells and marrow stromal cell cultures. LTB4, LXA4, LXB4, 12-HETE and 15-HETE (1 microM) decreased [3H]-thymidine incorporation on marrow stromal cell cultures without affecting cell number. Only 12-HETE showed a dose-response effect on [3H]-thymidine incorporation. While LTB4 (1 microM) decreased thymidine incorporation on marrow mononuclear cells, LTC4, LXA4, LXB4, 12-HETE and 15-HETE had no effect. The lipoxygenase inhibitor NDGA had no effect on both cell types suggesting no role of endogenous lipoxygenase metabolites on cell growth. These results suggest no important role of lipoxygenase metabolites of AA on the proliferation of human marrow mononuclear cells and marrow stromal cell cultures.  相似文献   

18.
Abstract

A facile method for the synthesis of highly enriched 18O labeled pyrimidine ribonucleosides is described using uridine as a model compound. The isotopic label may be selectively incorporated into the base moiety at O2 or into the ribose portion of the molecule at the 5′ position. In addition, both positions may be labeled and this is the first report of a method for labeling of both the base and sugar moieties of pyrimidine ribonucleosides. The site and level of isotope incorporation may be determined mass spectrometrically.  相似文献   

19.
Stable isotope probing - linking microbial identity to function   总被引:3,自引:0,他引:3  
Stable isotope probing (SIP) is a technique that is used to identify the microorganisms in environmental samples that use a particular growth substrate. The method relies on the incorporation of a substrate that is highly enriched in a stable isotope, such as (13)C, and the identification of active microorganisms by the selective recovery and analysis of isotope-enriched cellular components. DNA and rRNA are the most informative taxonomic biomarkers and (13)C-labelled molecules can be purified from unlabelled nucleic acid by density-gradient centrifugation. The future holds great promise for SIP, particularly when combined with other emerging technologies such as microarrays and metagenomics.  相似文献   

20.
Fast atom bombardment mass spectrometry (FAB-MS) has been used to measure positional isotope exchange rates in enzyme-catalyzed reactions. The technique has been applied to the reactions catalyzed by acetyl-CoA synthetase and argininosuccinate synthetase. The FAB technique is also able to quantitatively determine the oxygen-18 or oxygen-17 content of nucleotides on as little as 10 nmol of material with no prior derivatization. Acetyl-CoA synthetase has been shown by FAB-MS to catalyze the positional exchange of an oxygen-18 of ATP from the beta-nonbridge position to the alpha beta-bridge position in the presence of acetate. These results are consistent with acetyl adenylate as a reactive intermediate in this reaction. Argininosuccinate synthetase was shown not to catalyze a positional isotope exchange reaction designed to test for the formation of citrulline adenylate as a reactive intermediate. Argininosuccinate synthetase was also found not to catalyze the transfer of oxygen-18 from [ureido-18O]citrulline to the alpha-phosphorus of ATP in the absence of added aspartate. This experiment was designed to test for the transient formation of carbodiimide as a reactive intermediate. These results suggest that either argininosuccinate synthetase does not catalyze the formation of citrulline adenylate or the enzyme is able to completely suppress the rotation of the phosphoryl groups of PPi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号