首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 513 毫秒
1.
Characterization of Basic Proteins from Goldfish Myelin   总被引:1,自引:0,他引:1  
Abstract: Myelin basic protein (MBP) from common goldfish ( Carassius auratus ) myelin was extracted with dilute mineral acid. Immunological cross-reactivity of the goldfish MBP, with polyclonal antisera raised against bovine MBP, suggested that the goldfish protein has epitopes for these antibodies. It also reacted with a monoclonal antibody specific for a seven amino acid epitope (130–137) conserved in the MBP of most mammalian species. To characterize the charge heterogeneity of this protein, we iodinated the protein with 125I and chromatographed it on a carboxymethyl cellulose-52 column together with a nonlabeled acid soluble fraction prepared from human white matter as a carrier protein. All of the goldfish protein was recovered in the unbound fraction, demonstrating that it was less cationic than the carrier protein (human MBP). We have also examined the urea alkaline gel profile of the goldfish MBP together with the human C-1, C-2, C-3, C-4, and C-8 components. The results from these experiments indicated that this MBP extracted from goldfish brain myelin lacked the microhet-erogeneity that is associated with MBPs from higher vertebrates. The MBPs from goldfish myelin were separated into their isoforms by reversed-phase HPLC. Amino acid compositions were determined for both the 17- and 14-kDa goldfish proteins. Amino acid analysis revealed similarities with the compositions of other MBPs; however, the serine content in both the 17- and 14-kDa proteins was higher than that of the human C-1, the mouse C-1 protein, and the shark proteins. The HPLC-purified 14-kDa goldfish protein was chemically cleaved with CNBr for partial sequence analysis. Even from the limited sequence obtained, the sequence ATAST was found in goldfish, which is also present in human, rabbit, and guinea pig MBPs.  相似文献   

2.
Incubation of myelin purified from rat spinal cord with CaCl2 (1-5 mM) in 10-50 mM Tris-HCl buffer at pH 7.6 containing 2 mM dithiothreitol resulted in the loss of both the large and small myelin basic proteins (MBPs), whereas incubation of myelin with Triton X-100 (0.25-0.5%) and 5 mM EGTA in the absence of calcium produced preferential extensive loss of proteolipid protein (PLP) relative to MBP. Inclusion of CaCl2 but not EGTA in the medium containing Triton X-100 enhanced degradation of both PLP and MBPs. The Ca2+-activated neutral proteinase (CANP) activity is inhibited by EGTA (5 mM) and partially inhibited by leupeptin and/or E-64c. CANP is active at pH 5.5-9.0, with the optimum at 7-8. The threshold of Ca2+ activation is approximately 100 microM. The 150K neurofilament protein (NFP) was progressively degraded when incubated with purified myelin in the presence of Ca2+. These results indicate that purified myelin is associated with and/or contains a CANP whose substrates include MBP, PLP, and 150K NFP. The degradation of PLP (trypsin-resistant) in the presence of detergent suggests either release of enzyme from membrane and/or structural alteration in the protein molecule rendering it accessible to proteolysis. The myelin-associated CANP may be important not only in the turnover of myelin proteins but also in myelin breakdown in brain diseases.  相似文献   

3.
Experiments were performed with isolated human myelin membrane preparations to analyse factors that may modulate association of myelin basic protein (MBP) with the membranes and could contribute to demyelinating processes. Transfer of membranes (5 mg protein ml-1) at 37 degrees C and pH 7.4 from a hypotonic medium, in which they were relatively stable, to one of physiological ionic strength produced three major effects: (1) initial dissociation of MBP from the membranes by a nonenzymatic process that was doubled in the presence of millimolar Ca2+/Mg2+; (2) within 10 min, the appearance in the medium of three major MBP fragments (14.4, 10.3, and 8.4 kilodaltons); and (3) progressive acidification of dissociated MBP and its fragments, probably due to deamidation. Between 1 and 6 h a steady state was apparent in which protein equivalent to 15% of the MBP originally bound to the membranes was found in the medium. The three major MBP fragments formed two-thirds of this solubilised material and appeared metabolically stable for 24 h. The kinetics of peptide formation suggested that dissociated, rather than membrane-bound, MBP was cleaved by myelin-associated neutral proteases. Two-dimensional electrophoresis and immunoblotting using two monoclonal antibodies indicated that proteolysis occurred in the vicinity of residues 35 and 75. Evidence was also obtained for removal of C-terminal arginines and relatively rapid deamidation in the C-terminal half of MBP. These modifications of MBP might also occur if extracellular fluid gained access to the compacted cytoplasmic space of the myelin sheath.  相似文献   

4.
Myelin basic protein (MBP) dissociated from brain myelin membranes when they were incubated (37 degrees C; pH 7.4) at physiological ionic strength. Zinc ions inhibited, and calcium promoted, this process. Protease activity in the membrane preparations cleaved the dissociated MBP into both small (less than 4 kilodaltons) and large (greater than 8 kilodaltons) fragments. The latter were detected, together with intact MBP, by gel electrophoresis of incubation media. Zinc ions appeared to act in two distinct processes. In the presence or absence of added CaCl2, zinc ions in the range 0.1-1 mM inhibited MBP-membrane dissociation. This process was relatively insensitive to heat and Zn2+ could be substituted by either copper (II) or cobalt (II) ions. A second effect was evident only in the presence of added calcium ions, when lower concentrations of Zn2+ (less than 0.1 mM) inhibited MBP-membrane dissociation and the accumulation of intact MBP in incubation media. This process was heat sensitive and only copper (II), but not cobalt (II), ions could replace Zn2+. To determine whether endogenous zinc in myelin membranes is bound to MBP, preparations were solubilised in buffers containing Triton X-100/2 mM CaCl2 and subjected to gel filtration. Endogenous zinc, as indicated by a dithizone-binding method, eluted with fractions containing both MBP and proteolipid protein (PLP). Thus, one means whereby zinc stabilises association of MBP with brain myelin membranes may be by promoting its binding to PLP.  相似文献   

5.
Plasma membrane proteolipid (plasmolipin), which was originally isolated from kidney membranes, has also been shown to be present in brain. In this study, we examined the distribution of plasmolipin in brain regions, myelin, and oligodendroglial membranes. Immunoblot analysis of different brain regions revealed that plasmolipin levels were higher in regions rich in white matter. Plasmolipin was also detected in myelin, myelin subfractions, and oligodendroglial membranes. Immunocytochemical analysis of the cerebellum revealed that plasmolipin was localized in the myelinated tracts. Plasmolipin levels in myelin were enriched during five successive cycles of myelin purification, similar to the enrichment of myelin proteolipid apoprotein (PLP) and myelin basic protein (MBP). In contrast, levels of Na+,K(+)-ATPase and a 70-kDa protein were decreased. When myelin or white matter was extracted with chloroform/methanol, it contained, in addition to PLP, a significant amount of plasmolipin. Quantitative immunoblot analysis suggested that plasmolipin constitutes in the range of 2.2-4.8% of total myelin protein. Plasmolipin, purified from kidney membranes, was detected by silver stain on gels at 18 kDa and did not show immunological cross-reactivity with either PLP or MBP. Thus, it is concluded that plasmolipin is present in myelin, possibly as a component of the oligodendroglial plasma membrane, but is structurally and immunologically different from the previously characterized myelin proteolipids.  相似文献   

6.
Incubation of bovine CNS myelin with phospholipase C from Bacillus cereus under conditions that lead to extensive phospholipid degradation caused 10% of the myelin protein to be released from the membrane. The myelin basic protein (MBP) was a major component of the dissolved protein. Comparable incubations with phospholipase C from Clostridium perfringens, phosphatidylinositol-specific phospholipase C from Staphylococcus aureus, or cabbage phospholipase D removed little MBP. However, concentrations of sodium chloride near 1 M and concentrations of divalent metal ions between 50 and 600 mM released typically 9-12% of the total myelin protein, with MBP again as the predominant component. Repetitive washing with calcium chloride solutions resulted in dissolution of over 90% of the MBP. When myelin was incubated in 1.0 M sodium chloride or 25 mM calcium chloride, the MBP was cleaved largely into two major peptides with apparent molecular weights near 14,000 and 12,000, but with 200 mM or higher concentrations of calcium chloride most of this protein remained intact. With appropriate manipulation of the ionic milieu, it is thus possible to remove most of this extrinsic protein from the myelin surface under relatively mild conditions. The conditions that release the protein suggest that it is held at the membrane surface by ionic interactions.  相似文献   

7.
Two monoclonal antibodies, one raised by immunization with mouse myelin basic protein (MBP) and the second raised by immunization with peptide 68-88 of guinea pig MBP, were compared with respect to specificity. The former antibody (15.32) cross-reacted completely with rat, guinea pig, human, and bovine MBP. It also reacted with peptide 43-88 from each MBP. The latter antibody (22.17) was nonreactive with MBP, but cross-reacted with peptide 43-88 from rat, human, guinea pig, and bovine MBP. When tested with small peptides derived from peptide 43-88, antibody 22.17 reacted with an epitope in the C-terminal region. Antibody 15.32 reacted with an epitope in the N-terminal half of the peptide. The data show that 22.17 reacted with a unique epitope associated only with free peptide, whereas 15.32 recognized an epitope common to both peptide 43-88 and MBP.  相似文献   

8.
Myelin basic protein (MBP) is a major constituent in the myelin of the CNS. In mice, five forms of MBPs (14 kDa, two types of 17 kDa, 18.5 kDa, and 21.5 kDa) encoded by separate mRNAs have been identified based on cDNA cloning studies. These mRNAs are considered to be produced by alternative splicing from a single gene composed of seven exons. Here we report the existence of two novel MBP mRNAs encoding 19.7-kDa and 21-kDa MBPs identified by cDNA cloning using the polymerase chain reaction. Both of these MBPs contain a sequence of a previously unidentified exon of 66 nucleotides, which was mapped to be just 5' of exon 5 in the MBP gene. MBP mRNAs containing this novel exon (exon 5a) belong to a minor population in the whole brain and PNS and are somewhat enriched in the spinal cord. Exon 5a encodes a very hydrophobic segment rich in valine residues, which presumably forms a beta-pleated sheet.  相似文献   

9.
Thirty-four human sera containing parietal cell autoantibodies (PCA) specifically immunoprecipitated two antigens, with apparent molecular masses of 60-90 kDa and 100-120 kDa under nonreducing conditions and 60-90 kDa and 120-150 kDa under reducing conditions, from porcine gastric membrane extracts. A third antigen of 92 kDa was only observed in immunoprecipitates analyzed under reducing conditions. By immunoblotting, 24 of the 34 PCA-positive sera reacted with only the 60-90-kDa antigen, three reacted with a broad 60-120-kDa smear, one reacted only with a 92-kDa antigen and six did not react. Reactivity with the 60-90-kDa antigen was observed with gastric membranes from dog, pig, rat, and rabbit. Twenty PCA-negative sera did not react with these components by immunoprecipitation or immunoblotting. PCA reactivity with the 60-90-kDa antigen was abolished when the gastric membranes were (a) digested with Pronase, (b) reduced with 100 mM dithiothreitol, (c) treated with sodium periodate, or (d) digested with N-glycanase. The 60-90-kDa and 100-120-kDa components were insensitive to neuraminidase treatment. N-glycanase digestion of 125I-labeled antigens purified by immunoprecipitation and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis collapsed the 60-90-kDa antigen to a sharp 34-kDa band; the 100-120-kDa component was unaffected. These observations suggest that (i) parietal cell antigens comprise three components of 60-90, 92, and 100-120 kDa; (ii) the epitopes differ in conformational sensitivity; (iii) the 60-90-kDa antigen is a conserved molecule comprising a 34-kDa core protein extensively glycosylated with N-linked oligosaccharides; (iv) sialic acid residues are not present in the 60-90- and 100-120-kDa molecules, and (v) the carbohydrate and protein moieties of the 60-90-kDa molecule are required for antibody binding.  相似文献   

10.
Brain myelin membrane preparations contain a metalloproteinase activity which degrades myelin basic protein (MBP). The activity was associated with lentil lectin-binding glycoproteins solubilized from myelin and could be detected in the presence of the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS). The metalloproteinase represented about 5% of this glycoprotein fraction and was isolated from it by chromatography on DEAE-Sephacel, CM-Sepharose, and Superose 6. The proteinase had an apparent relative molecular weight (Mr) of approximately 58,000 both by gel filtration and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Mr value was unaffected by the presence of reducing agents but was diminished to about 52,000 by treating the proteinase with endoglycosidase F. The purified proteinase cleaved many bonds in MBP but did not generate trichloroacetic acid-soluble products. Two major polypeptides, putatively MBP1-73 and MBP74-170, were prominent in digests of MBP by either the purified enzyme or myelin membranes. The proteinase was active between pH 7 and 9 and was inhibited by phenanthroline and dithiothreitol but not phosphoramidon or inhibitors of serine or cysteine proteinases. Histones, but not azocasein, also served as substrates for the proteinase. From its enzymic and molecular characteristics the myelin-derived metalloproteinase appears distinct from previously described enzymes.  相似文献   

11.
The interactions of phosphatidylcholine (PC) to regions of the myelin basic protein (MBP) was examined. In solid phase binding assays the nature of the binding of unilamellar vesicles of14C-labeled phosphatidylcholine to bovine 18.5 kDa MBP, its N- and C-terminal peptide fragments, photooxidized 18.5 kDa MBP and the mouse 14 kDa protein, with an internal deletion of residues 117–157, was studied. The data were analyzed by computer-generated Scatchard plots in which non-specific binding was eliminated. Non-cooperative, low affinity binding of PC vesicles to MBP was observed, and this binding found to be sensitive to pH and ionic changes. At an ionic strength of 0.1 and pH 7.4, the binding of PC to the 14 kDa mouse MBP exhibited a Kd similar to that obtained with both the N-terminal and photooxidized 18.5 kDa bovine MBP. The studies indicated that the sites of PC interaction with MBP are located in the N-terminal region of the protein. The C-terminal region appeared to modulate the strength of the interaction slightly. Under similar conditions, lysozyme did not bind PC liposomes, and histone bound them nonspecifically.  相似文献   

12.
Ganglioside-modulated protein phosphorylation in myelin   总被引:5,自引:0,他引:5  
Gangliosides have profound effects on the phosphorylation of several proteins in myelin. Addition of polysialogangliosides to purified guinea pig brain myelin enhanced the endogenous phosphorylation of a 62-kDa phosphoprotein, but completely inhibited the phosphorylation of myelin basic protein (MBP) (18.5 kDa). The ganglioside-stimulated phosphorylation of the 62-kDa protein was dose-dependent and -specific. Asialo-GM1, ceramide trihexosides, N-acetylneuraminic acid, or colominic acid alone could not mimic this effect, suggesting that the activation process requires both the hydrophobic head group and the anionic character of the gangliosides. Studies on the time course of this reaction revealed that it was a rapid and reversible process and was affected only very slightly by Ca2+. Thus, the stimulatory effect of gangliosides may not involve Ca2+-gangliosides complexes or proteolysis, but may be mediated through an activation of a ganglioside-dependent protein kinase or due to substrate protein-glycolipid interaction. Modulation of the phosphorylation of MBP by gangliosides varies with the states of phosphorylation of this protein. Prior addition of ganglioside to myelin inhibited the phosphorylation of MBP. However, addition of gangliosides to myelin subsequent to maximal phosphorylation of MBP retarded the dephosphorylation of this protein. Phosphorylation of isolated MBP by protein kinase C was stimulated by gangliosides, provided phosphatidylserine was present. In contrast, the glycolipid inhibited the phosphorylation of a unique site catalyzed by cAMP-dependent protein kinase. This site was distinct from those phosphorylated by protein kinase C and was also sensitive to chymotryptic cleavage. Although the exact physiological significance of protein phosphorylation in myelin has yet to be established, gangliosides may play an important role in the modulation of this reversible post-translational modification mechanism.  相似文献   

13.
Guinea pig myelin basic protein (MBP) was inserted into phosphatidylserine liposomes and Lewis rats were injected by the intracardiac (ic) route with 75 microgram doses of MBP-liposomes according to various schedules. After challenge with 75 microgram guinea pig MBP in complete Freund's adjuvant, the rats were followed for clinical signs, were tested for delayed hypersensitivity (DTH) and lymphocyte transformation (LT) to MBP. The animals were sacrificed 30 days after challenge and the central nervous system tissue was examined for histological modifications. Rats treated with two injections of MBP-liposomes, 7 days before and 7 days after challenge, showed the highest degree of protection from clinical manifestations. Histological lesions were not significantly reduced. DTH reactions to MBP were all positive, regardless of treatment. LT assays were positive overall in only 50% of the animals tested. The response to rat MBP was significantly lower than to guinea pig MBP, especially in the groups treated with MBP-liposomes. Adoptive transfer of spleen cells from MBP-liposome-treated donors reduced the clinical scores of actively induced EAE in syngeneic recipients by 40-50%. These results suggest that at least one mechanism responsible for antigen-specific protection in EAE by MBP-liposomes operates through active suppression transferable by spleen cells.  相似文献   

14.
Sites in Myelin Basic Protein that React with Monoclonal Antibodies   总被引:6,自引:6,他引:0  
The epitopes (antigenic sites) for seven monoclonal antibodies (MAbs) evoked in rats or mice by guinea pig or monkey myelin basic protein (BP) have been located in four different sequences of the BPs extracted from various species. Six of the MAbs were evoked by guinea pig BP. (1) One epitope, possibly a pair, is included within residues 1-14 of all BPs tested and reacts with two rat IgG MAbs. (2) A definite pair of overlapping epitopes includes the central Phe91-Phe92 sequence. One epitope is contained entirely within sequence 90-99 and reacts with a rat IgG MAb. The substitution of Ser in chicken BP for Thr97 destroys this epitope. The other epitope appears to include residues on the amino side of Phe44 and even of His32 and suggests some tertiary structure in BP. This epitope reacts with a mouse IgM MAb that does not recognize the chicken substitution. (3) The third epitope lies within residues 114-121, specifically including Trp118, and reacts with a rat IgG MAb. A cross-reacting epitope probably includes residues 44-45 in certain species (guinea pig and bovine but not rabbit). (4) Another pair of epitopes is located within residues 131-140 but is severely species-restricted. This region in guinea pig BP evoked a species-specific mouse IgM MAb. The same region in monkey BP evoked the seventh MAb, a mouse IgG, which reacts with human, chimpanzee, monkey, bovine, and rat-18.5 kDa BPs and to a lesser extent rabbit BP but not with guinea pig, pig, or chicken BPs. Some tertiary structure in guinea pig BP is also suggested by the reactivities with the IgM MAb. All of the MAbs react with myelin in histologic preparations, but the optimum method of preparation of the tissue varies with each.  相似文献   

15.
The neurological mutant mice shiverer (shi) and myelin deficient (shimld) lack a functional gene for the myelin basic proteins (MBP), have virtually no myelin in their CNS, shiver, seize, and die early. Mutant mice homozygous for an MBP transgene have MBP mRNA and MBP in net amounts approximately 25% of normal, have compact myelin, do not shiver or seize, and live normal life spans. We bred mice with various combinations of the normal, transgenic, shi, and shimld genes to produce mice that expressed MBP mRNA at levels of 0, 5, 12.5, 17.5, 50, 62.5, and 100% of normal. The CNS of these mice were analyzed for MBP content, tissue localization of MBP, degree of myelination, axon size, and myelin thickness. MBP protein content correlated with predicted MBP gene expression. Immunocytochemical staining localized MBP to white matter in normal and transgenic shi mice with an intensity of staining comparable to the degree of MBP gene expression. An increase in the percentage of myelinated axons and the thickness of myelin correlated with increased gene expression up to 50% of normal. The percentage of myelinated axons and myelin thickness remained constant at expression levels greater than 50%. The presence of axons loosely wrapped with oligodendrocytic membrane in mice expressing lower amounts of MBP mRNA and protein suggested that the oligodendroglia produced sufficient MBP to elicit axon wrapping but not enough to form compact myelin. Mean axon circumference of myelinated axons was greater than axon circumference of unmyelinated axons at each level of gene expression, further evidence that oligodendroglial cells preferentially myelinate axons of larger caliber.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In this study, we investigated the expression of various G proteins in whole sciatic nerves, in myelin and nonmyelin fractions from these nerves, and in membranes of immortalized Schwann cells. In myelin, nonmyelin, and Schwann cell membranes we detected two 39-40-kDa pertussis toxin substrates that were resolved on separation on urea-gradient gels. Two cholera toxin substrates with apparent molecular masses of 42 and 47 kDa were present in nerve and brain myelin and in Schwann cell membranes. In these membranes, a third 45-kDa cholera toxin substrate, which displayed the highest labeling, was also present. Immunoblotting with specific antisera allowed the identification of G(o) alpha, Gi1 alpha, Gi2 alpha, Gi3 alpha, Gq/G11 alpha, and the two isoforms of Gs alpha in nerve homogenates, nerve, and brain myelin fractions. In Schwann cell membranes we identified G(o) alpha, Gi2 alpha, Gi3 alpha, and proteins from the Gq family, but no immunoreactivity toward anti-Gi1 alpha antiserum was detected. In these membranes, anti-Gs alpha antibody recognized the three cholera toxin substrates mentioned above, with the 45-kDa band displaying the highest immunoreactivity. Relative to sciatic nerve myelin, the Schwann cell membranes revealed a significantly higher expression of Gi3 alpha and the absence of Gi1 alpha. The different distribution of G proteins among the different nerve compartments might reflect the very specialized function of Schwann cells and myelin within the nerve.  相似文献   

17.
A monoclonal antibody against the membrane domain of human erythrocyte band 3 was tested for its ability to bind to rabbit renal brush border membranes. A single brush border protein with a molecular mass of 43 kDa was recognized by the band 3 antibody. Using DNase I coupled to an agarose-bead support this 43-kDa protein was partially purified by removing actin and a number of actin-bound proteins from the brush border membranes. The partially purified 43 kDa-band was eluted from sodium dodecyl sulfate-polyacrylamide gels and used to make a highly sensitive and specific guinea pig antiserum. This antiserum, but not serum from control guinea pigs, cross-reacts with purified band 3 from human, rabbit, and bovine erythrocytes confirming the immunologic similarity among these proteins. The 43-kDa protein can be stained by the periodic acid-Schiff base method and binds wheat germ agglutinin and concanavalin A, demonstrating that it is a glycoprotein. Furthermore, in the absence of dithiothreitol, the immunoreactive brush border protein migrates with a molecular mass of 86 kDa on an sodium dodecyl sulfate-polyacrylamide gel suggesting that under nonreducing conditions it exists as a dimer. The 43-kDa protein could be solubilized in octyl glucoside and was further purified using gel filtration chromatography. The amino acid composition of the 43-kDa brush border protein was obtained, and its similarity with erythrocyte band 3 is discussed.  相似文献   

18.
We investigated the effect of divalent metal ions on the proteolytic cleavage and activation of platelet Factor XIII by thrombin and trypsin. In the absence of metal ions (5 mM EDTA), trypsin and thrombin rapidly degraded platelet Factor XIII (80 kDa) to low-molecular-mass peptides (50-19 kDa) with simultaneous loss of transglutaminase activity. Divalent metal ions protected Factor XIII from proteolytic inactivation with an order of efficacy of Ca2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. Calcium (2 mM) increased by 10- to 1000-fold the trypsin and thrombin concentrations required to degrade Factor XIII to a 19-kDa peptide. Factor XIIIa formed by thrombin in the presence of 5 mM EDTA had one-half the specific activity of Factor XIIIa formed in the presence of calcium. Factor XIII was cleaved by trypsin in the presence of 5 mM Ca2+ to a 51 +/- 3-kDa fragment that had 60% of the original Factor XIIIa activity. A similar tryptic peptide formed in the presence of 5 mM EDTA did not have transglutaminase activity. In the presence of 5 mM Mg2+, thrombin cleaved Factor XIII to a major 51 +/- 3-kDa fragment that had 60% of the Factor XIIIa activity. Mn2+ (0.1-5 mM) limited trypsin and thrombin proteolysis. The resulting digest containing a population of Factor XIII fragments (50-14 kDa) expressed 50-60% transglutaminase activity of Factor XIIIa. Factor XIII was fully activated by both trypsin and thrombin in the presence of 5 mM Zn2+, resulting in two fragments of 76 and 72 kDa. We conclude that the binding of divalent metal ions to platelet Factor XIII induces conformational changes in the protein that alter its susceptibility to proteolysis and influence the expression of transglutaminase activity.  相似文献   

19.
An iodinated photosensitive derivative of norepinephine, N-(p-azido-m-iodophenethylamidoisobutyl)-norepinephrine (NAIN), has been synthesized and characterized. NAIN stimulated adenylate cyclase activity in guinea pig lung membranes in a manner similar to (-)-isoproterenol and was inhibited by (-)-alprenolol. NAIN was shown to compete with [125I]iodocyanobenzylpindolol for the beta-adrenergic receptor in guinea pig lung membranes with an affinity which was dependent on the presence of guanyl nucleotides. Carrier-free radioiodinated NAIN ([125I]NAIN) was used at 2 nM to photoaffinity label the beta-adrenergic receptor in guinea pig lung membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of (-)-alprenolol (1 microM) protectable [125I]NAIN labeling showed the same molecular mass polypeptide (65 kDa) that was specifically derivatized with the antagonist photolabel [125I]iodoazidobenzylpindolol. Specific labeling of the beta-adrenergic receptor with [125I]NAIN was dependent on the presence of MgCl2 and the absence of guanyl nucleotide. Guanosine-5'-O-(3-thiotriphosphate (100 microM) abolished specific labeling by [125I]NAIN. N-Ethylmaleimide (2 mM) in the presence of [125I]NAIN protected against the magnesium and guanyl nucleotide effect. These data show that NAIN is an agonist photolabel for the beta-adrenergic receptor.  相似文献   

20.
Axonal injury is one of the key features of traumatic brain injury (TBI), yet little is known about the integrity of the myelin sheath. We report that the 21.5 and 18.5-kDa myelin basic protein (MBP) isoforms degrade into N-terminal fragments (of 10 and 8 kDa) in the ipsilateral hippocampus and cortex between 2 h and 3 days after controlled cortical impact (in a rat model of TBI), but exhibit no degradation contralaterally. Using N-terminal microsequencing and mass spectrometry, we identified a novel in vivo MBP cleavage site between Phe114 and Lys115. A MBP C-terminal fragment-specific antibody was then raised and shown to specifically detect MBP fragments in affected brain regions following TBI. In vitro naive brain lysate and purified MBP digestion showed that MBP is sensitive to calpain, producing the characteristic MBP fragments observed in TBI. We hypothesize that TBI-mediated axonal injury causes secondary structural damage to the adjacent myelin membrane, instigating MBP degradation. This could initiate myelin sheath instability and demyelination, which might further promote axonal vulnerability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号