首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Progesterone receptor (PR), a member of the nuclear receptor superfamily, is a key regulator of several processes in reproductive function. We have studied the dynamics of the interaction of PR with a natural target promoter in living cells through the use of fluorescence recovery after photobleaching (FRAP) analysis and also have characterized the dynamics of the interaction of PR with the mouse mammary tumor virus (MMTV) promoter reconstituted into chromatin in vitro. In photobleaching experiments, PR in the presence of the agonist R5020 exhibits rapid exchange with the MMTV promoter in living cells. Two PR antagonists, RU486 and ZK98299, have opposite effects on receptor dynamics in vivo. In the presence of RU486, PR binds to the promoter and is exchanged more slowly than the agonist-activated receptor. In contrast, PR bound to ZK98299 is not localized to the promoter and exhibits higher mobility in the nucleoplasm than the agonist-bound receptor. Significantly, PR bound to R5020 or RU486 can recruit the SWI/SNF chromatin remodeling complex to the promoter, but PR activated with ZK98299 cannot. Furthermore, we found ligand-specific active displacement of PR from the MMTV promoter during chromatin remodeling in vitro and conclude that the interaction of PR with chromatin is highly dynamic both in vivo and in vitro. We propose that factor displacement during chromatin remodeling is an important component of receptor mobility and that ligand-specific interactions with remodeling complexes can strongly influence receptor nuclear dynamics and rates of exchange with chromatin in living cells.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Activated steroid receptors induce chromatin remodeling events in the promoters of some target genes. We previously reported that transiently expressed progesterone receptor (PR) cannot activate mouse mammary tumor virus (MMTV) promoter when it adopts the form of ordered chromatin. However, when expressed continuously, the PR acquires this ability. In this study we explored whether this gain of function occurs through alterations in nucleoprotein structure at the MMTV promoter or through changes in receptor status. We observed no major structural differences at the MMTV promoter in the presence of constitutively expressed PR and found its mechanism of activation to be very similar to that of the glucocorticoid receptor (GR). However, a systematic comparison of the functional behavior of the transiently and constitutively expressed PR elucidated significant differences. The transiently expressed PR is activated in the absence of ligand by cAMP and by components in FBS and has significantly increased sensitivity to progestins. In contrast, the constitutively expressed PR is refractory to activation by cAMP and serum and has normal sensitivity to its ligand. In addition, while the PR is localized to the nucleus in both cases, a significant fraction of the transiently expressed PR is tightly bound to the nucleus even in the absence of ligand, while the majority of constitutively expressed PR is not. These results strongly suggest that the PR undergoes processing in the cell subsequent to its initial expression and that this processing is important for various aspects of its function, including its ability to productively interact with target genes that require chromatin remodeling for activation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号